
1

How to Make Your
ABAP Code Unicode-
Enabled
Dr. Christian Hansen
Server Technology Internationalization,
SAP AG

2

 SAP AG 2003, TechED_Basel / ABAP151, Christian Hansen / 0

Contents

Part I – SAPs approach to Unicode
� Demo – Unicode vs. Non-Unicode R3
� Unicode Essentials
� Transparent Unicode Enabling for R/3

Part II – Unicode Enabled ABAP
� Unicode Restrictions
� New ABAP Features

Part III – Tools for Unicode Enabling
� Migration to Unicode
� Unicode Scan UCCHECK
� Coverage Analyzer SCOV

Exercises

3

 SAP AG 2003, TechED_Basel / ABAP151, Christian Hansen / 0

Unicode Essentials

What is Unicode?
� Character encoding schema for (nearly) all characters used world

wide

� Each character has a unique number („Unicode code point“)
�Notation U+nnnn (where nnnn are hexadecimal digits)

� See http://www.unicode.org for complete code charts

4

 SAP AG 2003, TechED_Basel / ABAP151, Christian Hansen / 0

Demo – View table content in Old MDMP World

West European View Japanese View Korean View

� In an MDMP (Multi Display Multi Processing Code Page) system character data is
encoded in different code pages. Depending on the view you choose, you will handle
only a part of the data correctly. In an MDMP system you have to take care of the
proper use of language keys.

� Byte representation of the character data in the database and in the memory of the
application server:

- German : rot x'726F74‘ ISO-8859-1

- English : red x'726564‘ ISO-8859-1

- Korean :빨간색 x'BBA1B0A3BBF6‘ KSC5601

- Japanese : 赤 x'90D4‘ SJIS

5

 SAP AG 2003, TechED_Basel / ABAP151, Christian Hansen / 0

Demo - View table content on Unicode System

UnicodeUnicode

� In a Unicode system the character data is encoded in only one code page. There is
only one view: Missinterpretation of the data is not possible.

� Byte representation of the character data in the memory of the application server with
the UTF-16 variant of Unicode:

- German : rot x'0072006F0074‘ UTF-16 Big Endian

- English : red x'007200650064‘ UTF-16 Big Endian

- Korean :빨간색 x'BE68AC04C0C9‘ UTF-16 Big Endian

- Japanese : 赤 x'8D64‘ UTF-16 Big Endian

� The database may contain the same byte representation or any 1:1 transformation into
any other Unicode representation (UTF-8, UTF-16 Big Endian, UTF-16 Little Endian)

6

 SAP AG 2003, TechED_Basel / ABAP151, Christian Hansen / 0

E3 91 B979 3434 79U+3479

CE B1B1 0303 B1U+03B1α

C3 A4E4 0000 E4U+00E4ä
6161 0000 61U+0061a

UTF-8UTF-16
little endian

UTF-16
big endian

Unicode
codepoint

Character

Representation of Unicode Characters

UTF-16 – Unicode Transformation Format, 16 bit encoding
� Fixed length, 1 character = 2 bytes (surrogate pairs = 2 + 2 bytes)
� Platform dependent byte order
� 2 byte alignment restriction

UTF-8 – Unicode Transformation Format, 8 bit encoding
� Variable length, 1 character = 1...4 bytes
� Platform independent
� no alignment restriction
� 7 bit US ASCII compatible

7

 SAP AG 2003, TechED_Basel / ABAP151, Christian Hansen / 0

Character Expansion Model
� Separate Unicode and non-Unicode versions of R/3

� No explicit Unicode data type in ABAP
� Single ABAP source for Unicode and non-Unicode systems

� 1 character = 2 bytes (UTF16),
(types C, N, D, T, STRING)

� Unicode kernel
� Unicode database

� 1 character = 1 byte
(types C, N, D, T, STRING)
� Non-Unicode kernel
� Non-Unicode database

ABAP
source

Non-
Unicode

R/3

Unicode
R/3

ABAP
source
ABAP
source

Transparent Unicode Enabling of R/3

8

 SAP AG 2003, TechED_Basel / ABAP151, Christian Hansen / 0

Transparent Unicode Enabling of R/3

Implications:
� Major part of ABAP coding is ready for Unicode without any

changes

� Minor part of ABAP coding has to be adapted to comply with
Unicode restrictions

�Syntactical restrictions

�Additional runtime checks

�Runtime tests for semantic changes

9

 SAP AG 2003, TechED_Basel / ABAP151, Christian Hansen / 0

Program attribute „Unicode checks active“
� Required to run on a Unicode system

� If attribute is set, additional restrictions:
� apply at compile and at run time
�apply in Unicode systems and in non-Unicode systems
� ensure that program will run on non-Unicode and Unicode systems with

(almost) identical behavior

not allowed ok
Atrribute not set

(not Unicode
enabled)

okokAttribute set
(Unicode enabled)

Unicode
system

Non-Unicode
system

Unicode-Enabled ABAP Programs

� Attribute can be set for all program objects, i.e. reports, function pools, classes,
interfaces, type pools, ...

10

 SAP AG 2003, TechED_Basel / ABAP151, Christian Hansen / 0

Program Attribute „Unicode checks active“

11

 SAP AG 2003, TechED_Basel / ABAP151, Christian Hansen / 0

Contents

Part I – SAPs approach to Unicode
� Demo – Unicode vs. Non-Unicode R3
� Unicode Essentials
� Transparent Unicode Enabling for R/3

Part II – Unicode Enabled ABAP
� Unicode Restrictions
� New ABAP Features

Part III – Tools for Unicode Enabling
� Migration to Unicode
� Unicode Scan UCCHECK
� Coverage Analyzer SCOV

Exercises

12

 SAP AG 2003, TechED_Basel / ABAP151, Christian Hansen / 0

Unicode Enabled ABAP - Overview

Design Goals
� Platform independence

� Identical behavior on Unicode and non-Unicode systems
� Highest level of compatibility to the pre-Unicode world

�Minimize costs for Unicode enabling of ABAP Programs
� Improved security, maintainability, and readability of ABAP

programs

Main Features
� Clear distinction between character and byte processing

1 Character <> 1 Byte
� Enhanced checks prevent programming based on memory layout

assumptions
� Improved conversion facilities
� Improved dataset interface
� Improved support for dynamic programming

13

 SAP AG 2003, TechED_Basel / ABAP151, Christian Hansen / 0

CONCATENATE cf1 cf2 TO cf3.
IF cf1 CS cf2. ...

CONCATENATE xf1 xf2 TO xf3 IN BYTE MODE.
IF xf1 BYTE-CS xf2. ...

Unicode Restrictions – String Processing

Character Processing

� String operations are only allowed for character-like operands
�ABAP types C, N, D, and T, STRING
�Structures consisting only of characters (C, N, D, T)
�X and XSTRING are no longer considered character-like types

Byte Processing

� Variants of string operations for byte processing
�Addition „IN BYTE MODE“ for statements
�Prefix „BYTE-“ for comparison operations

� Only operands of type X or XSTRING allowed

14

 SAP AG 2003, TechED_Basel / ABAP151, Christian Hansen / 0

Unicode Restrictions – Length and Distance

Determining the Length and Distance
� Counted in bytes or in characters? Specify!

DESCRIBE FIELD...LENGTH... IN (BYTE | CHARACTER) MODE.

DESCRIBE DISTANCE BETWEEN ... AND ... INTO ...
IN (BYTE | CHARACTER) MODE.

Example

FORM write3 USING fld TYPE c.

DATA: fldlen TYPE i.

DESCRIBE FIELD fld LENGTH fldlen IN CHARACTER MODE.

IF fldlen >= 3.

WRITE: / fld(3).

ENDIF.

ENDFORM.

15

 SAP AG 2003, TechED_Basel / ABAP151, Christian Hansen / 0

MOVE Between Incompatible Structures
� Matching data layout („fragment views“) required

Example

C(4) C(3) X(3) C(4) I

C(6) N(4) X(3) N(4) I P(8)

C(3)

C(10) X(3) C(4) I P(8)

struc1

struc2

fragments

cstru = xstru. "Unicode error!

DATA:
BEGIN OF cstru,

first(10) TYPE c,
tab(1) TYPE c,
last(10) TYPE c,

END OF cstru.

DATA:
BEGIN OF xstru,

first(10) TYPE c,
tab(1) TYPE x VALUE '09',
last(10) TYPE c,

END OF xstru.

Unicode Restrictions - MOVE

� Same rule as for MOVE applies for implicit Moves too:
�Operations for internal tables: LOOP AT itab INTO wa ...

�Comparison between structures

�Moving/Comparing Internal Tables: rules based on line types of tables

�Database Operations with workareas:
z SELECT * FROM dbtab INTO wa ...

z SELECT * FROM dbtab INTO TABLE wa ...

z UPDATA dbtab FROM wa ...

z ...

16

 SAP AG 2003, TechED_Basel / ABAP151, Christian Hansen / 0

Access To Structures With Offset/Length
� Structure must begin with characters
� Offset/length counted in characters
� Access only allowed within the character type prefix of a structure

ASSIGN fld+off(len) TO ...
� Access must not exceed field boundaries
� If ASSIGN fails, field-symbol is set to „unassigned“
� New ... RANGE addition allows the permissible boundaries

to be expanded

N(6) C(4) X(3) C(5)

+off(len)

Unicode Restrictions – Access with Offset or Length

� In the past, ASSIGN with offset/length access exceeding field boundaris has been
used in some cases for processing "repetition groups" within structures. Now, there is
a new statement „ASSIGN ... INCREMENT…“ available for processing „repetition
groups“ within structures on a more abstract and a more secure level.

17

 SAP AG 2003, TechED_Basel / ABAP151, Christian Hansen / 0

New ABAP Features – Character Utilities

Class CL_ABAP_CHAR_UTILITIES
� Constant attributes with system specific values

charsize length of 1 character in bytes
newline
cr_lf
form_feed
horizontal_tab
vertical_tab
backspace
minchar X’00‘ in non-Unicode systems, U+0000 in Unicode systems
maxchar X‘FF‘ in non-Unicode systems, U+FFFD in Unicode systems

Example

CLASS cl_abap_char_utilities DEFINITION LOAD.

DATA: text TYPE string.

REPLACE cl_abap_char_utilites=>horizontal_tab
WITH space INTO text.

� Use the constant attributes rather than hard coding byte values

18

 SAP AG 2003, TechED_Basel / ABAP151, Christian Hansen / 0

New ABAP Features – Extended File Interface

Reading / Writing Different Text Formats

� Only character-like fields allowed for reading / writing text files
� Explicit open required in Unicode enabled programs

Reading / Writing Legacy Formats

� Reading or writing data in a format compatible to non-Unicode systems
� Not character-like structures allowed

OPEN DATASET dsn IN TEXT MODE
ENCODING (DEFAULT | UTF-8 | NON-UNICODE).

TRANSFER text TO dsn.

READ DATASET dsn INTO text.

OPEN DATASET dsn IN LEGACY (TEXT | BINARY) MODE
... (LITTLE | BIG) ENDIAN
... CODEPAGE cp.

� If you open your text file with ENCODING DEFAULT, the text format used for reading
or writing data will be platform dependent:
�In an non-Unicode system, data will be written in non-Unicode format

�In a Unicode-system, data will be written in Unicode format UTF-8

19

 SAP AG 2003, TechED_Basel / ABAP151, Christian Hansen / 0

system code pageÆ any code pageCL_ABAP_CONV_OUT_CE

any code page Æ any code page CL_ABAP_CONV_X2X_CE

any code pageÆ system code pageCL_ABAP_CONV_IN_CE

ConversionABAP Class

New ABAP Features – Conversion Classes

Conversion classes
� Code page conversion

�Unicode / non-Unicode code pages
� Endian conversion

� little endian / big endian byte order
� Character conversion

�Unicode codepoint / ABAP character

� Use this classes to replace TRANSLATE CODEPAGE (and TRANSLATE NUMBER
FORMAT)

20

 SAP AG 2003, TechED_Basel / ABAP151, Christian Hansen / 0

New ABAP Features – Includes with Group Names

Symbolic Access to Includes of Structures

skey = stru-key.

srest = stru-rest.

WRITE: stru-r2.

skey = stru(4).

srest = stru+4(20).

WRITE: stru-r2.

Pre-Unicode Unicode enabled with group names

DATA: BEGIN OF stru.
INCLUDE TYPE t_key as key.
INCLUDE TYPE t_rest as rest.

DATA: END OF stru.

DATA: skey TYPE t_key,
srest TYPE t_rest.

TYPES: BEGIN OF t_key,

k1(2) TYPE x,

k2(2) TYPE c,

END OF t_key.

TYPES: BEGIN OF t_rest,

r1(10) TYPE c,

r2(10) TYPE c,
END OF t_rest.

stru

k1 k2 r1 r2

key rest

� Use this feature to avoid offset programming

� The example above shows the use of includes with group names defined in ABAP.
Similarly, you can introduce group names for includes in DDIC structures (transaction
SE11 Æ tab strip componentsÆ entry in column ‘group‘)

21

 SAP AG 2003, TechED_Basel / ABAP151, Christian Hansen / 0

DATA: my_buffer TYPE xstring.
data1 TYPE some_type.

...

EXPORT id = data1 TO DATA BUFFER my_buffer.

FORM read_buffer USING buffer TYPE xstring.
DATA: fld2 TYPE some_type.
IMPORT id = fld2 FROM DATA BUFFER buffer.
...

ENDFORM.

New ABAP Features – Import/Export Data Buffer

Using fields of type xstring as data containers
� Writing data to an xstring.

�Data is stored in a platform-independent format
�Contents of xstring can be exchanged with any other 6.10-system (Unicode

and non-Unicode)
� Reading data from an xstring

�Automatic conversion of data during import

� Use this feature to avoid using big character fields as container

22

 SAP AG 2003, TechED_Basel / ABAP151, Christian Hansen / 0

Creating Data Objects Dynamically
� Creating and accessing data objects on the heap

Casting to User Defined Types
� Look at the contents of a field as a value of another type

� fld must provide sufficient alignment and length for the given type

DATA: dref TYPE REF TO data.

CREATE DATA dref TYPE sometype.
CREATE DATA dref TYPE (typename).
CREATE DATA dref TYPE c LENGTH len.
CREATE DATA dref TYPE STANDARD TABLE OF (typename)

ASSIGN dref->* TO <f>. "access data object

FIELD-SYMBOLS: <f> TYPE any.

ASSIGN fld TO <f> CASTING TYPE sometype.
ASSIGN fld TO <f> CASTING TYPE (typename).

New ABAP Features – Dynamic Programming Support

� Use this to create data objects with fitting type rather than using big character fields as
container

� Example: Using dynamically created data objects as a work area for dynamic
database operations
FORM write_column USING tname TYPE c

cname TYPE c.

DATA: dref TYPE REF TO data.
FIELD-SYMBOLS: <wa> TYPE any,

<comp> TYPE any.

CREATE DATA dref TYPE (tname).
ASSIGN dref->* TO <wa>.

SELECT * FROM (tname) INTO <wa>.

ASSIGN COMPONENT cname OF STRUCTURE <wa> TO <comp>.
IF sy-subrc <> 0. EXIT. ENDIF.
WRITE: / <comp>.

ENDSELECT.

ENDFORM.

23

 SAP AG 2003, TechED_Basel / ABAP151, Christian Hansen / 0

SIMPLESIMPLE

CLIKECLIKE

XSEQUENCEXSEQUENCECSEQUENCECSEQUENCE NUMERICNUMERIC

II FF PPXX XSTRINGXSTRINGCC STRINGSTRING NN DD TT character-like
structures
(C,N,D,T)

character-like
structures
(C,N,D,T)

New ABAP Features - Generic Types

New generic types for parameters and field-symbols
� Eliminate untyped parameters or field-symbols for improved

security and performance

24

 SAP AG 2003, TechED_Basel / ABAP151, Christian Hansen / 0

New ABAP Features – Enhancement Categorization
If you are writing software for others you may have the following

Problem
� Enhancements on structures or tables may affect your coding:

�Syntax-/runtime errors
�Changed behavior (e.g. damaged or changed data)

Solution
� Maintaining the enhancement category in the DDIC: SE11 (Extras ->

Enhancement Category)
�Can not be enhanced
�Can be enhanced - character like
�Can be enhanced – character and numerical type
�Can be arbitrarily enhanced

Æ Additional checks are done on your ABAP programs (SLIN) and show
possible problems in allowed enhancement situations

� The feature is available as of basis release 6.20

� For details please look at note 493387

25

 SAP AG 2003, TechED_Basel / ABAP151, Christian Hansen / 0

New ABAP Features – ABAP list programming

ABAP lists: Difference between memory and display length

Î 1 Character <> 1 Display Column

’한’
Character units
in the memory

Display columns

Non-Unicode 2 2
Unicode 1 2

� Unicode systems normally continue to use the old-fashioned non-proportional fonts on
ABAP lists. Because of that nothings has changed on the output side and the former
double byte characters are still twice as wide as European characters. But Unicode
systems store the data in a different way: Also Asian characters can be stored in a
character field of length 1.

� In fact using ABAP lists itself is old fashioned as they cannot use proportional fonts
and lack a couple of other necessary features. Therefore the new ABAP List Viewer
has replaced most ABAP lists on the screen. For formular printing on the other hand
more powerful tools as Sapscript or Smart forms should be used instead of ABAP list
printing.

26

 SAP AG 2003, TechED_Basel / ABAP151, Christian Hansen / 0

New ABAP Features – ABAP list programming

 Handling for character fields:

Truncation may be done during display to synchronize memory length and
display length at the field boundaries.

� The circeled numbers are two columns wide at the display. The shown example
results from the following data declarations and WRITE statements:

DATA F1(5). F1 = '①②③④⑤'.
DATA F2(3). F2 = '①②③'.
DATA F3(6). F3 = '①②③④⑤ '. “one space at the end
DATA F4(4). F4 = 'ABCD'.

WRITE: AT /1 F1 NO-GAP
, AT (9) F2 CENTERD NO-GAP
, AT (7) F3 RIGHT JUSTIFIED NO-GAP
, F4.

27

 SAP AG 2003, TechED_Basel / ABAP151, Christian Hansen / 0

New ABAP Features – ABAP list programming

 Handling for strings:

Padding is done in the list table (here for the first field S1) to synchronize
memory length and display length at the field boundaries.

� The circeled numbers are two columns wide at the display. The shown example
results from the following data declarations and WRITE statements:

DATA S1 TYPE STRING. S1 = '①②③④⑤'.
DATA S2 TYPE STRING. S2 = '①②③'.
DATA S3 TYPE STRING. S3 = '①②③④⑤'.
DATA S4 TYPE STRING. S4 = 'ABCD'.

WRITE: AT /1 S1 NO-GAP
, (9) S2 CENTERD NO-GAP
, (12) S3 RIGHT JUSTIFIED NO-GAP
, S4.

28

 SAP AG 2003, TechED_Basel / ABAP151, Christian Hansen / 0

New ABAP Features – Different list types

Half width (Default) Dynamic Full width

� In order to give users the possibility to switch to a truncation-free output, such an
option is offered in the menu System -> List -> Display type.

� There will be three different types:
Half-width (= DEFAULT):
output with truncation where necessary.
In this representation the layout is saved, but data truncation may occur.

Dynamic:
increase output length where necessary to output all data.
In this representation the layout may be destroyed, but all data is visible.

Full-width:
Output the list table content with the half-width letters spaced. In this representation the layout and
the data is saved, but the list has an unusual look and feel

29

 SAP AG 2003, TechED_Basel / ABAP151, Christian Hansen / 0

New ABAP Features – ABAP list programming

New ABAP statements
� SET/GET CURSOR MEMORY OFFSET
� Dynamic output length: WRITE (*) field.

Maximum output length: WRITE (**) field.

Utility Class CL_ABAP_LIST_UTILITIES
� Calculating display lengths
� Conversions display length Æ memory length inside fields
� Handling of implicit field boundaries

See note 541299 for details

In detail the class CL_ABAP_LIST_UTILITIES contains:

� Calculating display lengths:
� DEFINED_OUTPUT_LENGTH :

� DYNAMIC_OUTPUT_LENGTH :

� MAXIMUM_OUTPUT_LENGTH :

� Conversions display length Æ memory length inside fields
� DISPLAY_OFFSET / MEMORY_OFFSET

� Handling of implicit field boundaries
� MEMORY_TO_DISPLAY / DISPLAY_TO_MEMORY

� STRUCTURE_TO_DISPLAY / DISPLAY_TO_STRUCTURE

� FRAME_SEPARATED_TO_DISPLAY / DISPLAY_TO_FRAME_SEPARATED

30

 SAP AG 2003, TechED_Basel / ABAP151, Christian Hansen / 0

New ABAP Features – ABAP list programming

� Fields, that have a implicit sub structuring which is invisible to the ABAP list processor
when writing the field as a whole, need a special treatement.

� Fields with implicit substructure appear in two different flavors: in memory-layout and
display-layout:
� A field in memory-layout is well suited for manipulations with memory offsets and lengths but

must not be output to the display as it is, as the implicit layout is lost at the display.

� The display oriented one is well suited for direct display output, but manipulations with memory
offsets and lengths will destroy the implicit layout or even overwrite content.

� In order to convert a field with implicit sub structuring from the memory-layout into the
display-layout (and vice versa) different types of methods are provided. The difference
lays in the way that the field boundaries are determined. The most general method is:

CL_ABAP_LIST_UTILITIES=>MEMORY_TO_DISPLAY / DISPLAY_TO_MEMORY

The implicit field boundaries are explicitly supplied via an offset table.

31

 SAP AG 2003, TechED_Basel / ABAP151, Christian Hansen / 0

New ABAP Features – ABAP list programming

Golden rules for ABAP list programming

a) Don’t mix up display length and memory length
b) Don’t smudge field boundaries
c) Don’t overwrite parts of fields
d) Don’t do self programmed right-justified or centered
e) Don’t do self programmed scrolling (memory based)
f) Don’t forget to specify suficcient output length, if all

data needs always to be visible

32

 SAP AG 2003, TechED_Basel / ABAP151, Christian Hansen / 0

Contents

Part I – SAPs approach to Unicode
� Demo – Unicode vs. Non-Unicode R3
� Unicode Essentials
� Transparent Unicode Enabling for R/3

Part II – Unicode Enabled ABAP
� Unicode Restrictions
� New ABAP Features

Part III – Tools for Unicode Enabling
� Migration to Unicode
� Unicode Scan UCCHECK
� Coverage Analyzer SCOV

Exercises

33

 SAP AG 2003, TechED_Basel / ABAP151, Christian Hansen / 0

Migrating to Unicode Enabled ABAP

Step 1

� In non-Unicode system

� Adapt all ABAP programs to Unicode syntax and runtime restrictions

� Set attribute "Unicode enabled" for all programs

Step 2

� Set up a Unicode system

� Unicode kernel + Unicode database

� Only ABAP programs with the Unicode attribute are executable

� Do runtime tests in Unicode system

� Check for runtime errors

� Look for sematic errors

� Check ABAP list layout with former double byte characters

� Step 1 can also be conducted in the Unicode system. However thats the brute force
method, because at the beginning none of your programs is running. You make them
work one by one doing the Unicode enablement and setting the Unicode attribute.
Doing step 1 in a non Unicode system allows for a smooth transition, because at the
beginning all programs are running and you set the Unicode attribute one by one only
after you made sure, that the program is Unicode compliant.

� In most cases, a program should behave identically in non-Unicode and Unicode
systems after the "Unicode enabled" flag has been set. All of the runtime errors
caused by the new restrictions for unicode-enabled programs can already be detected
by tests in non-Unicode systems.

� Final tests however have to be done in the Unicode system, because some semantic
differences will show up only in the Unicode system. For example the difference
between DESCRIBE FIELD f LENGTH len IN BYTE MODE and DESCRIBE FIELD f
LENGTH len IN CHARATCER MODE is visible only in the Unicode system.

34

 SAP AG 2003, TechED_Basel / ABAP151, Christian Hansen / 0

Step 1 – Unicode Enabling with UCCHECK

Use UCCHECK to analyze your applications:

� Remove errors

� Inspect statically not analyzable places (optional)

�Untyped field symbols

�Offset with variable length

�Generic access to database tables

� Set unicode program attribute
using UCCHECK or SE38 / SE24 / ...

� Do additional checks with SLIN (e.g. matching of actual and formal
parameters in function modules)

35

 SAP AG 2003, TechED_Basel / ABAP151, Christian Hansen / 0

Transaction UCCHECK

� Essentially, the transaction UCCHECK does the ABAP syntax check for the selected
programs as if the "Unicode enabling" attribute has already been set.

� If you check „Display lines that cannot be analyzed statically“ you will get hints on
places that may have problems at runtime

36

 SAP AG 2003, TechED_Basel / ABAP151, Christian Hansen / 0

UCCHECK – Setting Unicode Flag

37

 SAP AG 2003, TechED_Basel / ABAP151, Christian Hansen / 0

UCCHECK – Statically Non-Analyzable Places

What to do with the places that can only be checked
at runtime ?

� Reduce their number

�In many cases you can specify the type of parameters and
field-symbols

�Use generic ABAP types where neccessary

�Mark those places that really need untyped parameters
due to some kind of generic programming with “#EC * as
OK after you did revise them.

� Do Î Runtime tests

38

 SAP AG 2003, TechED_Basel / ABAP151, Christian Hansen / 0

Step 2 – Testing Your Application

Final tests in the Unicode system

Runtime tests, Runtime tests, Runtime tests, ...

�Because the amount of warnings due to statically not analyzable places
may be very large, you cannot type everything. In this case you have to rely
on run-time tests.

�Some semantic problems may be seen only in the Unicode
system (e.g. byte or character length)

�ABAP list layout can be checked only manually

Monitoring of runtime tests:

Having test plans is good, knowing the coverage of the test is better:

Use the ABAP Coverage Analyzer to monitor runtime tests

39

 SAP AG 2003, TechED_Basel / ABAP151, Christian Hansen / 0

ABAP Coverage Analyzer

Coverage Analyzer (Transaction SCOV)

� persistently traces the execution of all program objects within one system

� traces all processing blocks

� i.e. FORMS, Methods, Modules... and ABAP events

� collects Information

� Number of calls

� Number of runtime errors

� Number of program changes

Two Different Target Groups

� Developers

� Help to see in detail which parts of your programs are used and which are not

� Quality Managers

� Determine the overall system coverage during a test phase

� You will find a complete description of the coverage analyzer at transaction SCOV Æ
Menu Help Æ Application help

� A good overview is found in SAP Professional Journal 2002 Vol4/5:
“Improve Testing by Tracing ABAP Program Execution: Take a Closer Look with the
Coverage Analyzer”

40

 SAP AG 2003, TechED_Basel / ABAP151, Christian Hansen / 0

Coverage Analyzer – Details View for Developers

� In order to look at the execution details of your program, choose Coverage AnalzyerÆ
DisplayÆ Details, type in the name of your program and double klick on the line with
your program. You see a list of the processing blocks with the following column
headers (see also F1 help):
� Acc.Exec (Accumulated Executions) :

This counter records the number of times that a processing block has been executed since the
start of the Coverage Aanalyzer.

� Acc.Err. (Accumulated Runtime Errors) :
This counter records the number of times that a runtime error occured during the execution of a
processing block since the start of the Coverage Analyzer.

� Acc.Chng. (Accumulated Changes) :
This counter records the number of times a processing block is reset. A processing block is ‘reset'
whenever the program in which it is contained is explicitly or implicitly changed.

� Curr.Exec. (Current Executions) :
This counter records the number of times that a processing block has been executed in the current
version (since the last reset).

� Curr.Err. (Current Runtime Errors) :
This counter records how often a runtime error occurred during the execution of a processing
block in the current version (since the last reset) of the Coverage Analyzer

� In the example above, you can see that the subroutine F11 has been executed 12
times with a total of 6 runtime errors. The program (and thus F11) was changed once.
After that change, F11 was called 10 times with 2 runtime errors.

41

 SAP AG 2003, TechED_Basel / ABAP151, Christian Hansen / 0

Coverage Analyzer – Global View for QM

1

2

3

4

� In order to get an overview of the complete system activities, choose Coverage
AnalzyerÆ DisplayÆ Global. You can see a list of condensed results ordered by
development class or author. In addition you can see the change of different values
over time.

� In the figure above you see
1. Unicode

This value indicates how many percent of the processing blocks have the Unicode flag set (the flag
itself is set per program)

2. Capacity Utilization
This value is computed as the ratio of used processing blocks to loaded processing blocks

3. Accumulated Executions (Percent)
This value indicates in percent how many processing blocks have been executed since the start of
the Coverage Analyzer.

4. “Tested” processing blocks (Percent)
This value indicates in percent how many processing blocks have been executed in the actual
version without runtime errors.

� In the example above you can see that currently 98% of the processing blocks in the
system belong to a program that has the Unicode flag set, 26% have been executed
since start of the coverage analyzer, 9% have been executed in the active version
without errors and the capacity utilization is 29%.

42

 SAP AG 2003, TechED_Basel / ABAP151, Christian Hansen / 0

Contents

Part I – SAPs approach to Unicode
� Demo – Unicode vs. Non-Unicode R3

� Unicode Essentials

� Transparent Unicode Enabling for R/3

Part II – Unicode Enabled ABAP
� Unicode Restrictions

� New ABAP Features

Part III – Tools for Unicode Enabling
� Migration to Unicode

� Unicode Scan UCCHECK

� Coverage Analyzer SCOV

Exercises

Technical information:

The exercises are based on the following Releases/Patchlevels

� Basis 6.20 Unicode system Support Package >= 21, Kernel Patch level >= 401

� Basis 6.20 non Unicode system Support Package >= 21, Kernel Patch level >= 401, Konfiguration as
MDMP System (RSCPINST) with at least German, Japanese, Korean and English Locale installed

� SAPGUI 6.20 Patch Level >=34.

� Users were created with transaction BC_TOOLS_USER

� In order to show and experiment with multilangual data you may create a table with the fields
COLOR,/SPRAS/NAME with the types CHAR 1 / LANG 1 / CHAR 6 and fill the table with report
RSCPCOLORS . This may be done in both a non Unicode MDMP and a Unicode system. To display
the content use SE16 Æ F6 Æ ALV Grid Æ Enter Æ F7 Æ F8.

43

 SAP AG 2003, TechED_Basel / ABAP151, Christian Hansen / 0

Exercise I - Unicode Enabled ABAP

 Using UCCHECK to remove static Unicode syntax errors
� Make your own copy of the programs

TECHED_UNICODE_EXERCISE_1/2/3/4 and 5 in the non-Unicode system.
� Inspect the programs using the transaction UCCHECK.
� Remove all static Unicode errors and set the Unicode attribute.

 Find critical places with UCCHECK
� Make your own copy of program TECHED_UNICODE_EXERCISE_6 in the

non-Unicode system.
� Run the program, check for static errors with UCCHECK and set the

Unicode attribute.
� Try to rerun the program.
� Analyze the program with the UCCHECK option “statically not analyzable

places”.
� Remove warnings by properly typing parameters and variables.
� Remove Unicode runtime errors.

Hints for the exercises:

� If not already existing copy TECHED_UNICODE_EXERCISE_n to
ZTECHED_UNICODE_EXERCISE_n_XX where XX ist the two digit group number

� Solutions are in TECHED_UNICODE_SOLUTION_n

� Don’t forget to activate the programs before checking with UCCHECK

� In the object selection uncheck the option “Exclude $* Packages”

� TECHED_UNICODE_EXERCISE_6:

� Use “#EC * to hide warnings from places that cannot be removed by proper typing.

� Use generic types for the subroutine F00.

44

 SAP AG 2003, TechED_Basel / ABAP151, Christian Hansen / 0

Exercise II – Unicode Enabled ABAP

Using SCOV to screen runtime tests
� Generate a copy of program TECHED_UNICODE_EXERCISE_7 on the

Unicode system.

� Look in the Coverage Analyzer for the list of processing blocks.

� Execute the program several times and look in the Coverage Analzyer for
the coverage of the different processing blocks.

� Find the errors in form F100 and F11.

Look at the ABAP list layout
� Generate a copy of the programs TECHED_UNICODE_EXERCISE_8/9/10

in the Unicode system.

� Execute the programs. Find and understand the pitfalls of the shown list
programming techniques.

� Remove the errors.

Logon in the Unicode system and do SCOV runtime tests:

� The coverage analyzer has already be switched on for you to activate data collection at SCOV Æ
Administration Æ “On/Off, Status”Æ Switch Coverage Analyzer On/Off, Button “On” . Before the “Data
Collection: Bckgrd Server” has been maintained at SCOV Æ Administration Æ Settings

� If you want to cover all subroutines, you should look at the program coding with the debugger. It is just
a simple tree structure.

� If you don’t want to spend too much time, try the following number combinations

� 0/0

� 0/1

� 1/0/1/0

� 1/0/1/1

� 1/1

� Finally, try the following path:

� 1/0/42 (Unicode error, visible only in a Unicode system)

� 1/13 (Data dependent error, not Unicode specific)

45

 SAP AG 2003, TechED_Basel / ABAP151, Christian Hansen / 0

Q&A

Questions?

46

 SAP AG 2003, TechED_Basel / ABAP151, Christian Hansen / 0

Further Information

Î Public Web:
Technical information: http://service.sap.com/Unicode@SAP
Customer contact: mail globalization@sap.com

Î Related Workshops/Lectures at SAP TechEd 2003
SM202 Globalization: Unicode@SAP

Î Related SAP Education Training Opportunities
SAP Unicode Learning Maps:
www.service.sap.com/okp --> My Learning Maps --> Unicode

Î Consulting Contact
Roy Wood, VP SAP NetWeaver Consulting Practice (r.wood@sap.com)

47

 SAP AG 2003, TechED_Basel / ABAP151, Christian Hansen / 0

Please complete your session evaluation and
drop it in the box on your way out.

Feedback

Thank You !

The SAP TechEd ’03 Basel Team

48

 SAP AG 2003, TechED_Basel / ABAP151, Christian Hansen / 0

� No part of this publication may be reproduced or transmitted in any form or for any purpose without the express
permission of SAP AG. The information contained herein may be changed without prior notice.

� Some software products marketed by SAP AG and its distributors contain proprietary software components of other
software vendors.

� Microsoft®, WINDOWS®, NT®, EXCEL®, Word®, PowerPoint® and SQL Server® are registered trademarks of
Microsoft Corporation.

� IBM®, DB2®, DB2 Universal Database, OS/2®, Parallel Sysplex®, MVS/ESA, AIX®, S/390®, AS/400®, OS/390®,
OS/400®, iSeries, pSeries, xSeries, zSeries, z/OS, AFP, Intelligent Miner, WebSphere®, Netfinity®, Tivoli®, Informix
and Informix® Dynamic ServerTM are trademarks of IBM Corporation in USA and/or other countries.

� ORACLE® is a registered trademark of ORACLE Corporation.

� UNIX®, X/Open®, OSF/1®, and Motif® are registered trademarks of the Open Group.

� Citrix®, the Citrix logo, ICA®, Program Neighborhood®, MetaFrame®, WinFrame®, VideoFrame®, MultiWin® and
other Citrix product names referenced herein are trademarks of Citrix Systems, Inc.

� HTML, DHTML, XML, XHTML are trademarks or registered trademarks of W3C®, World Wide Web Consortium,
Massachusetts Institute of Technology.

� JAVA® is a registered trademark of Sun Microsystems, Inc.

� JAVASCRIPT® is a registered trademark of Sun Microsystems, Inc., used under license for technology invented
and implemented by Netscape.

� MarketSet and Enterprise Buyer are jointly owned trademarks of SAP AG and Commerce One.

� SAP, R/3, mySAP, mySAP.com, xApps, xApp, SAP NetWeaver and other SAP products and services mentioned
herein as well as their respective logos are trademarks or registered trademarks of SAP AG in Germany and in
several other countries all over the world. All other product and service names mentioned are the trademarks of
their respective companies.

Copyright 2003 SAP AG. All Rights Reserved

