®
SAP .NET
Connector

Version 1.0

November 2002

© Copyright 2002 SAP AG. All rights reserved.

No part of this publication may be reproduced or transmitted in any
form or for any purpose without the express permission of SAP AG.
The information contained herein may be changed without prior
notice.

Some software products marketed by SAP AG and its distributors
contain proprietary software components of other software vendors.

Microsoft®, WINDOWS®, NT®, EXCEL®, Word®, PowerPoint® and
SQL Server® are registered trademarks of Microsoft Corporation.

IBM®, DB2®, DB2 Universal Database, 0S/2%, Parallel Sysplex®,
MVS/ESA, AIX®, S/390%, AS/400%, 0S/390%, OS/400°, iSeries,
pSeries, xSeries, zSeries, z/OS, AFP, Intelligent Miner, WebSphere®,
Netfinity®, Tivoli® Informix and Informix® Dynamic Server " are
trademarks of IBM Corp. in USA and/or other countries.

ORACLE® is a registered trademark of ORACLE Corporation.

UNIX®, X/Open®, OSF/1®, and Motif ® are registered trademarks of
the Open Group.

LINUX is a registered trademark of Linus Torvalds and others.

Citrix®, the Citrix logo, ICA®, Program Neighborhood®, MetaFrame®,
WinFrame®, VideoFrame®, Multiwin® and other Citrix product names
referenced herein are trademarks of Citrix Systems, Inc.

HTML, DHTML, XML, XHTML are trademarks or registered
trademarks of W3C®, World Wide Web Consortium, Massachusetts
Institute of Technology.

SAPd

SAP AG
NeurottstraRe 16
69190 Walldorf
Germany

T +49/18 05/34 34 24
F +49/18 05/34 34 20
www.sap.com

JAVA®is a registered trademark of Sun Microsystems, Inc.
J2EE™ is a registered trademark of Sun Microsystems, Inc.

JAVASCRIPT® is a registered trademark of Sun Microsystems, Inc.,
used under license for technology invented and implemented by
Netscape.

SAP, SAP Logo, R/2, RIVA, R/3, SAP ArchiveLink, SAP Business
Workflow, WebFlow, SAP EarlyWatch, BAPI, SAPPHIRE,
Management Cockpit, mySAP, mySAP.com, and other SAP products
and services mentioned herein as well as their respective logos are
trademarks or registered trademarks of SAP AG in Germany and in
several other countries all over the world. MarketSet and Enterprise
Buyer are jointly owned trademarks of SAP Markets and Commerce
One. All other product and service names mentioned are the
trademarks of their respective owners.

Disclaimer

Some components of this product are based on Java™. Any code
change in these components may cause unpredictable and severe
malfunctions and is therefore expressively prohibited, as is any
decompilation of these components.

Any Java™ Source Code delivered with this product is only to be used
by SAP’s Support Services and may not be modified or altered in any
way.

Documentation in the SAP Service Marketplace

You can find this documentation at the following address:
http://service.sap.com/connectors

Typographic Conventions Icons

Type Style Represents Icon Meaning

Example Text Words or characters that A Caution
appear on the screen. These
include field names, screen ﬁ Example
titles, pushbuttons as well as '_|
menu names, paths and —_
options. [) Note
Cross-references to other 7 Recommendation
documentation e

Example text Emphasized words or phrases @Ii} Syntax
in body text, titles of graphics
and tables

EXAMPLE TEXT

Example text

Exanpl e text

<Exanpl e
text>

EXAVMPLE TEXT

Names of elements in the
system. These include report
names, program names,
transaction codes, table
names, and individual key
words of a programming
language, when surrounded by
body text, for example,
SELECT and INCLUDE.

Screen output. This includes
file and directory names and
their paths, messages, names
of variables and parameters,
source code as well as names
of installation, upgrade and
database tools.

Exact user entry. These are
words or characters that you
enter in the system exactly as
they appear in the
documentation.

Variable user entry. Pointed
brackets indicate that you
replace these words and
characters with appropriate
entries.

Keys on the keyboard, for
example, function keys (such
as F2) or the ENTER key.

SAP .NET Connector w

Contents

BAP INET CONNECLOT ...t eeeeeeeenaaaeas 6|
Part | SAP NET CONNECtOr OVEIVIEWcuvueeeeeeereeeeeeireeeeeennns 6|
R T 8|
D PIIEOUISTEES ..uveeeieviieeeeeeeee ettt e e ettt e e e e e tteaeeeeetreeeeeeenseeas 9|

3 Creating an ASP .NET Web Application Using the SAP .NET
AT e S 10|
B SAP Client APPlCAIONS . .uiiiiiiieiieiieiiesiesieasieesieesieesieesieesseesseesreesseeanes 13
R O Y R oY= r 13
4.2 REC OF SOAP . . o e 13
4.3 CoNNECING 10 the SAP SYSIEIMuuiiiiieeiiieiiiieee e e et eeee e s eeeeeeeeeeseneteeeeeeeeesannneeees 13
N T AT R YA Tor: A o T 14
4.5 ASYNCAIONOUS METNOUScciiiiiiiiiieee e 14
4.6 TRFC and QRFC SUPPOrt. 14|
4.7 Monitoring and DEDUGGINGuveeveeiiiiiiiiiiieieieiees 15
I 1 O PP PP PP PPPPPP 16
B SAP .NET Server APPlCAtiONScceeeecuveieeeeeiiieeeeeieeeeeeeeeeeeeaaeana, 17
R G VS (= 1 PP PP PP 18
5.2 AUTNENTICALION. ... eiii it e e e e s e e e e e e e e s aene e eeeeeeeaaneeeeeeeeeeseannneees 18
5.3 Monitoring and DEDUGOING ..o 18
5.4 TRFC anNd QR C uiiiiiiiiii it e e e st ee e e eeesaast et eeereeaessaassnebeeereeeessaasnnreneeeaeessnnnnnes 18
Part Il SAP .NET Connector Programmers’ Reference................... 20
[L OVEIVIEW OF ClaSSES ... uuiiuiiietiisiitiiitieesiiisisseesiesisesisesisesiessiessiessisssiseans 20
P SAP Client ProgramimMing ...oouooeeeieiieiisiisississiesiessssiisssiesssesasesaieeans 22
1 SAPCIIENt Class ... 22
2.2 SAPCHENt ProXy GENEIAON........uuuiiieeeiiiiuiiieiieeeeeiietitieetaeassaanteereeeeeesaannntneeeeaeeesannrneeees 23
2.3 CUSTOMIZING SAP PIOXIES ...ccoiiiiiiiieieiieiieeeee e ee et eeeeeeseea e et et seseasseeessnnnnseseseseessenes 25
&Pdient MELNOAS .o eeeeea 27|
5 SAPCHENT EXCEPIIONS ..ieeiiieeiiteiee ettt e e e e e e et aeseeeeeeebebaeseeeaessenrnnnaaaaeess 29
5.1 RfcCommunicatioNEXCEPLioON ClAaSScceeeeiiecviiiiiieeeeeecieeeeeeeeeeeeeaeeeeeeeeeees 31
D.5.2 RICEXCEPHON ClASS .euvvuuiiiiiiiiiiiiee it e e ee e e e e e e eeetetieeeeeaeseenrnes 32
P.5.3 RFCADAPEXCEPLION CIASS ...ccciiiiiie e aa e e e 33
D.5.4 RFCLOGONEXCEPLION ClASS ...ovvvvveveiiiiiiiiiiiieiee e ee et eeeeeeseeeseeeeetanseseasseeeenns 34
P.5.5 RFCSYStEMEXCEPHION CIASSvveeeiivviieeiiiiiieeeiiiieeeeetiieeeeetieeeeeeiteeeeeitteeeesenreeeeennreeeeanens 35
2.6 Debugging Of SAPCHENT PTOXIESiiciiiieeiiiiiiiiiiieeeee e eeeeeeeeeeeeeeeeseeeeeseesaeeaeseensnnes 36
2.7 AUTNENEICALION. L e ittt e e e e s s e e e e e e e s i i e e e e s s i e e e e e e se s 37
P. 7.1 User Name and PASSWOIT.............c..ueeeeeeeeeeeeeeeeeeeeeeeeeeesveeeeeeneneeeesneneeeensenneeessen 38
R.7.2 SINGIE SIgN-ON....uiiiiiiiiiiiii i 39
P.7.2.1 X509 COITIIICAIES.......ecceeeeeeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeseeeneseeneseresseeeesneesanes 40
P.7.2.2 MICTOSOTt NET PaASSPONMevvieeiiiiiiiiiiieeeeeeeeeeeeeeeeeeetteeeeeaeessannnteeeeeeaeesannnneeees 44
P.7.2.3 KerberoS and NT LM,uuueiiiiieiiiiitieeieeaeessssteeeeereaeessaasseeeereeessssaeererereaesasnansees 45
P.7.2.4 Destination ClassS ... 47
D.7.2.5 SAPLOGONDESHNAION ClAaSS......cccvvvvuiiiieiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeieeeeeeeeeeeeniaan 49
R.7.2.6 SAPLOGINPIoVider Class..........ooiiiiiiiiiiiiiiseeee s 51
R.7.2.7 SAP LOGIN FOMM ..o ss s s 52
2.8 SAPIDOCSENAEN CIASS ...eiiiieiiiiiiiiiiiieeeeieitttieieeeeeeseetiteeeeaeaseasntaeeeeeaeesaannntneeeeaeeeaannneeees 53
2.9 ASYNCHIONOUS METNOOS ... iiie ittt e e ettt ee e e e e e s ettt eeeessssnteeereeaesassnnreeeeeeeeeasanneens 55

4 November 2002

w SAP .NET Connector

[2.10 TRFEC Client Programmingc...ccueeeeuueeeuueeeerieeetieeeteeeetieeeeteeeeeeeeeseeeesseeseseeesneeesnns 57
P.10. 1 RICTID ClASS.eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseensseeeeseeenesenessnneesneesneeeeseneessees 58
.11 QRFC Client Programmingc.cooiiiiiiisiiisisisssiss s 59
PIT.T RICQUEUETTEM CIASSooooveeoseeeseseececseseeiseseneneeeeeneneeeeenenensnsnenensninenenseerenes 60

[2. 12 CONNECHON CIASSESecovieeeieeeetieeetieeeeteeeeteeeeeeeeeeeteeeetteeeteeeeateeenteeaeseeesseeesnseenns 61
P.12.1 SAPCONNECHON CIASSc.veeseeeeeeneeesneeesane 61
P.12.2 SAPCONNECHONPOOI CIASSccccveeieeiiiieiiiieeiieeieeeiieetieeetiieeeeeireserenesereeaeneeeanes 63
[2.13 Data Binding With SAPCIENE........civiiiiiiiiisese s 64
B SAP RFC Server Programmingcc..eeeeeeeueeeeeeeeuieeeeeeenieeeeeeereeneeaannn. 67
3.1 SAPSEIVEI ClASS......ciiiiiiiiiiiiiiiiiiiiiiiiiieiiieieeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeseessesseesesssesesssessseseseseneees 68
'§.2 Calling our RFC .NET Server from SAP Programs.............ocooi 70
3.3 Monitoring and Debugging SAPServer Stubs...........ccccevveeeiiiiciiiiie e 72
3.4 SAPSErVEr @nNd TRIECottt e sttt e e e et ses et eeaessssssebereeseesesaansnreeereaeessannnnes 73
A Data TYPE REFEIENCE ... eeeaeeaaaeeeaaan 78
4.1 RFC To .NET Data TYPE MapPPiNgcccocuvriiiiieeeeeiiiiiieeeeeessaeiieeeeeaeessasnnneeeeeeeesaannnnnees 78
.2 SAPTADIE ClaSS ..oiiiiiiiiiiiiiie ettt e e e e e s et eeeeess s ereeeeessassnreeeneeeeesaannreees 79
.3 SAPSIIUCIUIE ClaSS.. . iiiiiiiiiiiiiiiiiiiiiiiiiieieeieeeeeeeeeeeeeeeeeeeteeeeeeeeeeeseessereeeseseseseseseeeseeeseeereees 80
4.4 RFC Parameter Mapping t0 CH.......oovvvviiiiiiiiiiiiiiieiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeee e eeeeeeeeeeeeeaeeeeeeas 81
T 00T o =R UUR PR VU TN U U UV U U 82
5.1 WINAOWS FOIM SAMPIEccvveiiiiieiiiees ettt e e e st e e s e seaeennaeeeenns 82
5.2 Webform Samples. ... 83
RS0] o] SN S S O = = ppp 84
|§.4 IDOC ReceiVer as @ WINAOWS SEIVICE.......uuuuiieeeieiieiieeeeeeeeeeeeeeaaeasasaenteeenaaaeasanneneeees 85)
|§.5 IDOC Submitter WindOWS FOMM . ..ooiiiiiiieiiiiiie et e e e e s eeeeessannneeeeeeas 86
5.6 SIMPIE RFC WED SEIVICE .veciiiiieeee ettt e e eeeeeaaeesaaneeeeeaaeeesannnnes 87
5.7 Simple Visual Basic WINAOWS FOIM........cccuuuuiiiiiiiiiiiieeiiieiieeeeee e eeeeeeeeese e s e eeeevnnas 88
5.8 X.509 CertifiCate SAMPIE ..iuiiiiiiiiiiiiiiieiiiii ittt it eeeeeeeeeeeeeeeerereeeeeeeeeereeeerereeeeereeeeeteeeeeees 89

November 2002 5

SAP .NET Connector

Part | SAP .NET Connector Overview

The SAP .NET Connector is a programming environment inside of Visual Studio .NET that
enables communication between the Microsoft .NET platform and SAP Systems. It supports
SAP Remote Function Calls (RFC) and Web services, and allows you to write various
applications, for example, Web form, Windows form, and console applications within
Microsoft Visual Studio .NET. You can use all Common Language Runtime (CLR)
programming languages such as Visual Basic .NET, C#, or Managed C++.

This documentation presents an overview of some key features of SAP .NET Connector and
its architecture.

Microsoft .NET mySAP Technology
) Visual Studio.NET Proxy BOR
D(?SIgn Class DDIC
time ‘CHH c# H ‘ Generator oo
L repository
N Web I RFC |
Application Services .NET < » | RFC Layer
Connector
Run- -
time Runtime SOAP
.NET Connector < > | SOAP Layer
Component (generated) SAP NET
Common Language Connector
Runtime

The connector is composed of several parts. First, there is extensive integration with Visual
Studio .NET including a wizard for generating SAP proxies from the SAP data dictionary
directly or from a WSDL file contained in the SAP IFR or a standard WSDL file. Within Visual
Studio the connector includes several designer components to make developing SAP
applications easier including destination components and an SAP Table component. SAP
tables are a very important data type because they usually contain the results of the RFC call
(for example a table of customer address data or sales orders). The SAP table component
allows SAP table parameters to be data bound to most .NET data aware controls. Within
Visual Studio you have graphical interfaces for the SAP proxies and you can easily customize
your solution in a familiar way. This allows you to easily understand and work with the objects
involved in interfacing with your SAP system and Microsoft .NET.

The Visual Studio developers can work in their choice of programming language (for example
Visual Basic, C++, C#) to interact with the SAP proxies. The SAP proxies themselves are
generated in C#. The SAP.NET connector provides a custom tool in Visual Studio so that
SAP proxies can be automatically updated and customized instead of having to make these
changes manually or having to rerun the proxy generation wizard.

6 November 2002

Runtime Architecture

.NET Business Application

Generated Proxy Classes

SAP .NET Connector Class Library

' '

LIBRFC32.DLL .NET SOAP Classes
RFC SOAP
Protocol Protocol
== —
— e !
= |
- 1_
SAP Server = 4.6D SAP Server with Web Server

(> 620) or non SAP Server

At runtime, the SAP proxies communicate with the SAP system by either the SAP RFC
protocol (1 i brfc32. dl |') or via SOAP. SAP systems up to release 46D do not have SOAP
support while SAP systems starting from 6.20 can use either SOAP or RFC. Non-SAP
systems can be connected using SOAP. The SAP client solution is derived from the Microsoft
SoapHtt pd i ent Prot ocol class. The SoapHtt pC i ent Prot ocol class is part of the
Microsoft .NET framework and specifies the class proxies derive from when using SOAP.
This base class for SAP clients provides .NET developers with a familiar way to use SAP
functionality.

Deployment of the connector is made easier by use of configuration files so that values need
not be hard coded in the application but instead updated in XML files. In addition, the
connector supports all SAP authentication options and can be used in any type of Visual
Studio .NET solution such as web services, ASP.NET web application, Windows forms, NT
Service and more.

November 2002

1 Features w

1 Features

Using SAP .NET Connector and SAP .NET Proxy Wizard, you can:

Easily write .NET Windows and Web form applications that access SAP remote enabled
functions (RFC)

Write client applications for the SAP server using either RFCs or HTTP/SOAP/XML
(outside-in)

Write RFC server applications that run in a .NET environment and can be implemented
from within the SAP System (inside-out)

You can develop entirely within Microsoft Visual Studio .NET:

Use the Proxy Wizard integrated in Microsoft Visual Studio .NET to generate proxy
objects that are easy to use

Use any common programming language that has full access to the Microsoft .NET
Framework

Use IntelliSense help in Microsoft Visual Studio .NET through strongly typed data models
and method signatures

Bind SAP tables and structures to Windows and Web form controls (DataBinding)

Use security authentication methods such as Single Sign-on, Kerberos, and Microsoft
Passport

November 2002

w 2 Prerequisites

2 Prerequisites

Development System Deployment System
* Windows 2000 or Windows XP *« Windows 2000 or Windows XP
e Microsoft Visual Studio .NET ¢ Microsoft .NET Framework

Download this file from
http://msdn.microsoft.com/netframework|

» Java Runtime Environment (JRE)
You can download JRE version 1.3 or later
from |nttp://java.sun.com/j2se/1.3/jre] « LIBRFC32. dl |, Release 6.20 or higher

e SAP. Net. Set up. nsi e SAP. NET. Connector. dl |
Execute this file.

November 2002 9

http://java.sun.com/j2se/1.3/jre
http://msdn.microsoft.com/netframework

3 Creating an ASP .NET Web Application Using the SAP .NET Connector w

3 Creating an ASP .NET Web Application Using
the SAP .NET Connector

The following example shows how to create a .NET project using Microsoft Visual Studio
.NET. In the example, a client application reads and displays customer data from an SAP
System using a search value and then displays it in a data grid.

The example uses the function module RFC_CUSTOVER_GET, which requires that customer
data exist in the target SAP System, for example, in IDES. Although it is possible to rename
all development objects and generated proxy classes, default names are used in this
example. This example is provided as part of the connector sample code (DNCWebApp).

Procedure
1. Open Microsoft Visual Studio .NET.
2. Create a new C# Web form project:
Choose New — New Project - Visual C# Projects — ASP .NET Web Application.
4

You can also create a project in any other common programming language
for .NET, for example, in Visual Basic .NET. In this case, you must add the
SAP .NET proxy classes as a separate project in the Microsoft Visual Studio
.NET solution.

3. Rename the form Webf or niL. aspx to Def aul t. aspx.
4. Add Web controls to your Web form.
In our example, we add a TextBox, a Button and a DataGrid control.
5. Add proxy classes to connect the Web applications to your SAP server.
a. Inthe Solution Explorer, right-click on your project.
b. Choose Add - Add new item.
c. Select Web Project Iltems - SAP Connector Class and choose Open.
The SAP .NET Connector Wizard opens.
d. Decide from where you want to generate the proxy classes.
You can create proxies from:

— Web Services Description Language (WSDL) files that originate in an SAP
interface repository (IFR)

— An SAP server
- Standard WSDL files
e. Select the client proxy object type and select beautify names option.
f. Select the Remote Function Modules (RFM) you want to use in your proxy object.

You can use search filters to look for the Remote Function Modules. In the example,
enter the search argument RFC_CUST* in Name-Filter and select
RFC_CUSTOMER_GET.

g. Add the modules to your proxy object and choose Next.

10 November 2002

w 3 Creating an ASP .NET Web Application Using the SAP .NET Connector

The proxy classes for the referenced table and structure types are automatically
created and added to the project.

6. Build the solution with Build - Build Solution.
7. Create an SAPLogin page to support user name and password authentication
a. Inthe Solution Explorer, right-click on your project.
b. Choose Add - Add New item.
c. Select Web Project Items - SAP Login Form
Leave the name as SAPLogi nl. aspx.

8. Set the system connection information in the destination object of the SAPLogi nl1. aspx
page:
a. Inthe Solution Explorer window find the item SAPLogi n1. aspx and double-click on
it to bring it up in the designer.

b. Look for the component dest i nati onl on the bottom of the form.

c. Click on the destination component and set the properties for connecting to your SAP
system (for example AppSer ver Host and Syst enNunber). The other properties
like client, Password and username will be set from the login page.

9. Databind the data grid to BRFCKNAL1Tabl e:

L
BRFCKNAL1Tabl e is the parameter of RFC_CUSTOVER_GET that contains the
list of customers.

a. Select SAP Table Wizard from the SAP proxy toolbox and Drag&Drop it to your
working area. In the dialog box, select BRFCKNA1Tabl e.

b. Select the data grid, and under Properties change DataSource to BRFCKNA1Tabl e
using the drop down list.

c. Customize the list of columns displayed on the data grid by modifying the Columns
collection property.

10. On the def aul t . aspx page, double-click the Button control you added earlier to create
an event handler for the control.

11. Add the connect code to your project:
a. Select Connect code from the SAP proxy toolbox.
b. Drag&Drop it in the source code of your event handler.

A fragment of sample code is then inserted. It connects to the SAP server using the
authorization settings from the Proxy Wizard. Normally, you must change these
settings.

The code should look something like this:
private void btnSearch_Cick(object sender, System EventArgs e)

/1 Declare paraneters here

SAPProxyl proxy = new SAPProxyl();

try

{

proxy. Connecti on =

SAP. Connect or . SAPLogi nPr ovi der . Get SAPConnect i on(thi s);
/[l Call nethods here

November 2002 11

3 Creating an ASP .NET Web Application Using the SAP .NET Connector w

proxy. Rfc_Custoner Get ("", txtCust.Text, ref brfcknAlTabl el);

/1 Now update Data Bindings. On WnForns this will be automatic, on
/1 \WebForns call the follow ng |ine

t hi s. Dat aBi nd() ;

}

cat ch(Excepti on ex)

{

/1 1f SAPLogi nProvi der. Get SAPConnection(this) cannot get a connecti on,
/[l we mght get an error.

/[l Normally this can be ignored as it will automatically will force a
/'l rel ogon.

}

}

12. Build and run the application.

The browser window opens and you are redirected to your SAPLogi nl. aspx login
page.
13. Enter connection data (for example user, password and client).

If you select Save this login information will be stored as an encrypted cookie
on your computer and will provide an alternative single sign-on capability the
next time you wish to access the site. If you do not select Save, the login
information will still be saved in the ASP .NET session state but will be lost
once the browser is closed.

14. Enter a search argument, for example A* in the TextBox field and choose Search.

Your application connects to the SAP System and displays the requested data in the
DataGrid.

12 November 2002

w 4 SAP Client Applications

4.1 Project Types

4 SAP Client Applications

The SAP client allows your .NET code to execute SAP functions that are remote-enabled
(RFC). Some typical uses for an SAP client application include:

« ASP .NET web application to access information on the SAP system (for example
sales orders status)

* Windows form application to provide a customized and highly interactive user
experience (for example to enter sales orders)

» Console application to access information from the SAP system as part of some NT
batch processing

* Web service to provide a SOAP interface to your SAP system prior to release 6.20,
which includes native SOAP interface.

In the SAP client solution, the SAP system is the server and the .NET application is the client
that interacts with the RFC. When you generate an SAP client application, a WSDL file is
added to your Visual Studio .NET project. This WSDL file in coordination with a custom tool in
Visual Studio creates several C# classes needed to communicate with the SAP system via
either RFC or SOAP. There is one class for the proxy itself, one for each export parameter
and two for each Table parameter in your RFC.

The SAP RFC is called as a method of the proxy object. There can be one or more RFC per
proxy. For example you could have a proxy with all customer-related RFCs in one library. The
parameters for each RFC can be customized within the Visual Studio designer so that
optional parameters can be removed, parameters can be renamed and default values
provided. You can also customize SAP structures by renaming or removing fields.

Visual Studio developers can work with the SAP proxies in their choice of programming
language. The proxies themselves are generated in C# so for projects written in other than
C# you have to add a new project of type SAP Connect or Cl ass to the Visual Studio
solution.

4.1 Project Types

We recommend using the SAP Connector Class project template for creating SAP .NET
Connector projects as you can reuse the proxy code. It is also worth considering placing the
SAP proxies in the global assembly cache if several applications are making use of them.

Alternatively you can add the SAP connector class directly to another type of project such as
a Windows Form, ASP .NET web application or ASP.NET web service. With other project
types you can generate the SAP proxy directly in the project or reference an existing SAP
Connector Library. When you select an existing SAP connector library you have to verify that
your project has a reference to the SAP .Connector library (sap. connector. dl |).

4.2 RFC or SOAP

The choice of whether to use RFC or SOAP depends on which release of the SAP system is
available (for example, releases before 6.20) and other issues such as whether the system is
available on your intranet or outside the firewall. Depending on the connection string used to
create the proxy (for example, if it begins with ht t p: / /), SOAP will be used to connect to
the SAP system otherwise RFC will be used to connect to the SAP system.

4.3 Connecting to the SAP System

The connection to SAP is managed within the proxy’s connection object. You do not have to
determine the status of the connection yourself as the connector manages this automatically.

November 2002 13

4 SAP Client Applications w

4.4 Authentication

Before an RFC can be executed, the connection must be opened. After the RFC has finished
executing the connection should be closed.

For applications that have many concurrent users, the connector provides a connection pool
object. It is possible to get the connection from the pool instead of creating one for each
client. In this way connections are reused and performance is improved.

4.4 Authentication

The SAP .NET Connector supports all SAP authentication options including user name,
password and various single sign-on options such as Kerberos, NTLM, X.509 certificates and
SAP Logon tickets. In addition, the connector makes it easy to perform SAP authentication in
your application with the SAPDest i nat i on and SAPLogonDest i nati on classes and in
ASP .NET applications with the SAPLogi n For m

We recommend you use the SAP logon classes rather than manually creating a connection
string with the logon information. The SAP logon classes support getting logon information at
runtime from a configuration file, SAPGUI or as another alternative, programmatically, for
example from Microsoft Active Directory.

4.5 Asynchronous Methods

Client applications support asynchronous method invocations. The main benefit of this is that
your SAP client application remains responsive even when the RFC call is taking some time.

Many areas of the .NET framework support asynchronous programming. SAP .NET
Connector classes are built in C# and take advantage of many .NET features including
asynchronous method invocations. Asynchronous programming techniques are important
with SAP RFC calls as some calls can take a long time to complete. During this time, a single
threaded client application seems to be unresponsive as the main thread of execution is
waiting for the SAP method call to complete. Many RFC calls happen very quickly and the
user may not notice, others may take some time and the application appears to be
unresponsive.

With .NET Connector, we can take advantage of many features of the Microsoft Common
Language Runtime (CLR) including support for easy asynchronous programming. This
powerful feature is not available on any other SAP connector at this time. In all other
connectors, BAPI and RFC calls are synchronous calls.

The Asynchronous method calls use the standard .NET delegate callback mechanism. It
provides the programmer with a familiar and powerful way of performing asynchronous calls
in the SAP Client application.

When we use asynchronous methods from the .NET Connector wizard, the proxy contains
two additional methods for each RFC: Begi n<RFC Nane> and End<RFC Nane> and three
additional variables to manage the asynchronous result.

When Begi n<RFC Namne> is called, CLR queues the request and returns immediately to the
caller. The target method will be on thread from the thread pool. The original thread is free to
continue executing in parallel to the target method. If a callback has been specified on

Begi n<RFC Nane>, it will be called when the target method returns. In the callback, the
End<RFC Nane> method is used to obtain the return value and the i n/ out parameters. If
the callback was not specified on Begi n<RFC Nanme>, then End<RFC Name> can be used
on the original thread that submitted a request.

4.6 TRFC and QRFC Support

Transactional RFC (TRFC) guarantees that a function module is executed in the target
system exactly once. Queued Transactional RFC (QRFC) is a type of TRFC that is executed
only once and in a particular order.

14 November 2002

w 4 SAP Client Applications

4.7 Monitoring and Debugging

Client applications can be used with normal synchronous RFC, TRFC and QRFC. Normal
Remote Function Calls (RFCs) are synchronous and are not guaranteed to execute only
once or to execute in any particular order. Normal RFC calls return some value to the calling
application, for example a list of customers. Transactional Remote Function Calls (TRFCs)
and Queued Remote Function Calls (QRFCs) do not return anything if the function was
successfully added to the SAP system. If the function was not added correctly, they throw an
exception.

In the connector there are separate method signatures generated for TRFC and QRFC
versus the normal synchronous RFC method. In the case of TRFC and QRFC, an additional
parameter called a transaction ID (Tl D) is used as a unique identifier within the SAP system
and when adding the function module execution request to the SAP system. A TID is similar
to a GUID. In fact, GUIDs can be mapped back and forth to SAP TID using helper functions
in the RFC library.

TRFC or QRFC should be used when information is added only once to the SAP system (for
example, when adding a sales order or submitting an IDOC). In the case where a client
application needs information from the SAP system, for example a list of customers, it makes
no sense to use TRFC as the SAP system will return nothing back to the application other
than an exception should something go wrong.

Queued RFC enforces the order of execution of the functions in the SAP system. To use
QRFC you must have the following:

« A name for the RFC queue to use on the SAP system. If the queue does not already exist
it will be automatically created.

« ATID

e A queue index to determine the sequence. The queue index begins with zero.

4.7 Monitoring and Debugging

The connector includes several exception classes so that error handling is robust and natural
for a Visual Studio developer. In addition to these exception classes, there is extensive
debugging and tracing support built into the connector.

You can debug from your C# proxy directly into the SAP function module by setting the
ABAP_DEBUGflag. Debugging through to the SAP system is useful when you are getting
unexpected results back from the SAP system. To use the ABAP_DEBUG option you must
have installed SAPGUI on your developer workstation. You cannot use the integrated ABAP
debug option with web applications because they run under another Windows context that is
invisible to the interactive user.

Detailed traces can be written using the tracing flag. Alternatively you can set the
environment variables RFC_TRACE and CPI C_TRACE to have trace files written to your
application directory.

During initial design and debugging it is often useful to run the SAP RFC function directly in
the SAP system using transaction SE37. Itis easier to isolate the problem once you are sure
that input values are valid. In addition, you should reference the SAP function module
documentation. The SAP data dictionary, which is integrated in the function editor, also gives
you information on valid input values.

In the SAP system, there are automatic formatting functions that are not available in the
connector, for example to add leading zeroes to a customer or invoice number. If the function
is working in the SAP system but not in your proxy, it could be that the SAP system has
applied one of these automatic-formatting routines but you did not.

The SAP system provides extensive tracing and monitoring capabilities inside of the system
as well, for example within the area Tools — Administration — Monitoring.

November 2002 15

4 SAP Client Applications w

4.8 IDOC

4.8 IDOC

SAP Intermediate Documents (IDOCS) are EDI like documents that are asynchronous in
nature. IDOCS are often used in sending business documents (for example sales orders)
from your SAP system to a trading partner or other system. The actual TRFC call to submit
the IDOC to SAP is performed synchronously and very quickly, but the actual business
processing can happen at some later time defined in the SAP system. The outbound result
(for example, sales order confirmation) can also happen at some later time. With RFC calls,
the business processing is done immediately albeit on a different thread if we make use of
the asynchronous methods described above. IDOCS offer additional queuing and retry
capabilities.

SAP .NET Connector supports both submitting and receiving SAP IDOCs. The
SAPI DOCSender class submits IDOCs and the SAPI DOCRecei ver class can be used with
a TRFC server to receive IDOCS.

To work with IDOCS you must use transactional RFC. In the SAPI DOCSender and
SAPI DOCRecei ver classes, SAP provides for you a TRFC client implementation that works
with the appropriate function modules in SAP.

16 November 2002

w 5 SAP .NET Server Applications

4.8 IDOC

5 SAP .NET Server Applications

The RFC server allows your SAP system to execute .NET code as if the .NET code were
another SAP system. The project type you choose for an SAP server project depends on
your specific requirements but typically you choose between a console application,
executable or Windows Service. With the server stub project you can use standard Visual
Studio .NET debugging.

With SAP .NET Connector you can easily write RFC server programs in C#. It allows you to
use functionality in .NET as easily as if it were in the SAP system.

You can use the SAP .NET Connector server stub for scenarios such as:

» Retrieving information from another system, for example additional customer or tax
information necessary to process a sales order

e Getting information such as maps, stock prices, shipping information, flight information or
weather from an external service to be used within an SAP report

* Sending emails from your SAP system
e Sending IDOCS from the SAP system to an external system

The following graphic shows the main processes of the .NET program and the SAP system.
In this type of application, the SAP system is the client and the C# proxy is the server. All
program logic is therefore done in the C# proxy and returned to the SAP system in an export,
changing or table parameter.

Overview of .NET Program as SAP RFC Server

Register program ID on

SAPGW
— —» | ——
— Call Function X Destination Y —
NET |« SAP i
Program Execute logic, return results system
| to SAP |

An RFC server application allows you to use .NET functionality within your SAP system. RFC
servers can be (normal) RFC, TRFC or QRFC servers.

November 2002 17

SAPd

5.1 Key Steps

5.1 Key Steps

When calling a .NET program from an SAP system, we distinguish the following key steps, as
shown above:

* The .NET program must register itself on the SAP gateway host

e The SAP system and the .NET program must implement the same method interface, for
example, the function module name and parameters from the SAP system.

e The SAP system initiates the call to the .NET program using the CALL FUNCTI ON
DESTI NATI ON keyword

e The .NET program must return the appropriate parameters to the SAP system

The SAP server code that is generated by the connector and provides the functionality
described above as well as a default implementation. This allows the Visual Studio developer
to focus on the implementation and not have to understand how RFC servers work in detail.

5.2 Authentication

Unlike client applications, no user name and password is required to register a server on the
SAP gateway. Instead, the program ID, gateway host, gateway service and code page must
be provided. Once the server is registered on the gateway inside the SAP system, it can be
accessed from SAP programs. The computer where the RFC server is running must grant
permissions to the SAP service user to use the necessary resources on that machine.

5.3 Monitoring and Debugging

After your program is running, use the SAP gateway monitor (transaction SMGW to verify that
your .NET program is registered. If the registration works properly, you can see on the logged
on clients screen the PROG D and the host machine.

The SAP Gateway offers detailed tracing capabilities from within the SAP system. On your
RFC server you can also enable tracing by setting the environment variable RFC_TRACE and
CPI C_TRACE. The traces can be quite large so should only be used when there is a problem.

For TRFC servers you also have the TRFC monitor (SMb8). For QRFC you have the SAP
Queue monitor (transaction SMQ®) to monitor QRFC calls.

Just as the SAP client solution offers integrated Abap/4 debugging for .NET clients, you can
set a breakpoint in your RFC server code, call the function from the SAP system and
examine the values sent to you from the SAP system in debugging mode within Visual Studio
NET.

5.4 TRFC and QRFC

A TRFC server makes sense when have to send information only once from the SAP system
to another application (for example, sending a purchase order). TRFC is required if you want
to write an application to receive SAP IDOCS. On your TRFC server, you must manage a
connection to a transactional store such as Microsoft SQL Server. You require a transaction
store to ensure you can keep track of and manage all Rf ¢TI D sent to you from the SAP
system so that you can create the TID and the function execution within a transaction. If the
transaction fails at any point, the SAP system tries to resubmit it. By default, the system
attempts to resubmit the transaction every 15 minutes up to a maximum of 30 attempts.
However, you can configure the resubmission parameters individually for each RFC
destination using transaction SM69. From the destination maintenance screen, choose

Destination - TRFC options.

18 November 2002

SAbd

5.4 TRFC and QRFC

To call our TRFC server, the SAP system uses the syntax: CALL FUNCTI ON xyz I N
BACKGROUND TASK DESTI NATI ONdest and then issues a COVM T WORK.

After the COMM T WORK, the SAP system makes several additional calls related to TRFC
against our .NET component. The first call is CheckTI D. This method is responsible for
checking whether we have already processed the TID. If we have processed the function,
nothing further is done. If not, the next step is to execute the function itself (for example,
function xyz) or queue the function for later execution. After successful completion of this
function, we let the SAP system know that the transaction worked by calling OnConmi t .
Once the SAP system receives the commit from us it knows that everything worked properly
and lets us know that we can clear the TID record from our database.

Although it is possible, we do not recommend writing a QRFC server with the connector. To
write a QRFC server, you have to implement the SAP queuing mechanism. For purposes
where you want queuing, we recommend to simply use Microsoft Message Queue in a TRFC
server.

November 2002 19

1 Overview of Classes w

Part I SAP .NET Connector Programmers’
Reference

1 Overview of Classes

Class Explanation

SAPC i ent Base class for all SAP client projects

SAPSer ver RFC server class that allows you to make use
of .NET functionality inside of your SAP Abap/4
programs

SAPConnecti on Manages a connection to the SAP system. It is

used by the SAPCl i ent classes

SAPConnect i onPool Allows you to manage a pool of connection
objects. This is important for applications
where multiple users access your proxy

Desti nation Base class for Dest i nat i on objects. Holds
login attributes as properties but does not
contain logic to retrieve these properties as
does SAPLogonDest i nat i on for example

SAPLogonDest i nati on Derived from Destination. In addition to holding
login attributes this class can retrieve login
information from the SAPGUI

SAPLogi nProvi der User name/password login support via ASP
.NET forms authentication. Also provides an
alternative single sign-on capability

Rf cExcepti on Base exception class for SAP .NET Connector
exceptions. Not raised by itself

Rf cAbapExcepti on Exception representing an Abap/4 exception
raised by the SAP RFC Abap/4 code

Rf cConmruni cati onExcepti on Exception representing a communication
failure of some type (for example, the SAP
system is unreachable)

Rf cLogonExcept i on Exception representing a logon failure (for
example, incorrect user name or password)

Rf cSyst enExcepti on Exception representing a system error (for
example, an SAP short dump has occurred)

Rf cQueuel tem Used for QRFC calls to contain the SAP Queue
information

Rf cTI D Used for TRFC and QRFC calls. ATID is

similar to a system guid

20 November 2002

SAbd

1 Overview of Classes

SAPTabl e

Very common data type used in RFC
programming. This class can be data bound to
most .NET data aware controls such as
datagrids and listboxes. A example of an
SAPTabl e might be a list of customers with
name and address data for each row.
SAPTabl e is a collection of SAPSt r uct ur e

SAPSt ruct ur e

Very common data type used in RFC
programming. For example, a BAPI return code
is an SAPSt r uct ur e. An individual row in a
table is a structure

SAPI DocSender

A class for submitting SAP intermediate
documents (IDOCS) from text files

SAPI DocRecei ver

A class for receiving SAP IDOCS from SAP.

November 2002

21

2 SAP Client Programming w

2.1 SAPClient Class

2 SAP Client Programming
2.1 SAPClient Class

SAPC i ent is the base class for .NET applications wishing to use SAP functionality. This
class is maintained by the SAPConnect or Gener at or custom tool and the SAPPr oxy
wsdl metadata file. It should not be necessary to manually update it. SAP client proxies are
instances of this class.

For a list of members of this type see SAP Client Methods [Page @_

[CH]
Public class SAPC i ent:
Syst em Web. Ser vi ces. Prot ocol s. SoapHtt pCl i ent Prot ocol

Remarks

In the SAP client solution, SAP is the server and the .NET application is the client that
interacts with the RFC. When you generate an SAP client application, a WSDL file is added
to your Visual Studio .NET project. This SAPWSDL file in coordination with a custom tool in
Visual Studio creates several C# classes needed to communicate with the SAP system via
either RFC or SOAP. There is one class for the proxy itself, one for each export parameter
and two for each Table parameter in your RFC.

The SAP RFC is called as a method of the proxy object. There can be one or more RFC per
proxy. For example you could have a proxy with all customer related RFCs in one library. The
parameters for each RFC can be customized within the Visual Studio designer so that
optional parameters can be removed, parameters can be renamed and default values
provided. You can also customize SAP structures by renaming or removing fields.

Visual Studio developers can work with the SAP proxies in their choice of programming
language. The proxies themselves are generated in C# so for projects written in other than
C# you have to add a new project of type SAP Connect or cl ass to the Visual Studio
solution.

22 November 2002

w 2 SAP Client Programming

2.2 SAPClient Proxy Generation

2.2 SAPClient Proxy Generation

To add the SAP Proxy to your Visual Studio project you have the following options:
» Create a new project of type SAP Connect or Cl ass

« Add the proxy to another project type (for example W nform ASP . NET proj ect,
webser vi ce)

Procedure
1. In Visual Studio .NET choose Project —» Add New Item.
2. Under templates select SAP Connector C ass

This brings up the connector wizard.

You can create proxies from one of these:

Proxies to Generate From Explanation

WEDL file from SAP | FR Web Services Description Language (WSDL)
files that originate in an SAP interface
repository (IFR). If you want to create proxies
from an SAP IFR, you must have a URL for
the WSDL file

In the near future, the SAP IFR will be the
central repository for SAP metadata including
WSDL files

SAP Server Generate the C# proxy by examining the
metadata stored in the data dictionary of the
SAP system. For most scenarios this is the
preferred option

Standard WsDL file You can use an existing WSDL file or create
your own WSDL file and import it

3. If you generate proxies from an SAP server, enter the following information in the Enter
Logon information screen:

Input Explanation

System SAP system name. If you have SAPGUI for
Windows installed, you can select an entry
from the drop down box

Host Application server host name

I D System ID (for example 0)

dient SAP client number (for example, 000 or 800)
User SAP user name

Passwor d Password for that user

hj ect type (client proxy) The wizard creates all necessary code for a

SAPC i ent project. The .NET application

November 2002 23

2 SAP Client Programming

SAPd

2.2 SAPClient Proxy Generation

Input

Explanation

which uses SAP system functions is called a
client proxy

bj ect type (server stub)

The wizard creates all necessary code for a
SAPServer project. The SAP system which
uses .NET functions is a server stub

Beauti fy nane

SAP function names are by default upper
case. This option makes the names more
readable

Creat e asynchronous net hods

This option is only for client applications. It
allows you to make your SAP function call on
a dedicated thread so that your application
remains responsive should the call take some
time

4. Select the Remote Function Modules (RFM) you want to use in your proxy object.

You can use the following search filters to look for the function modules:

Option Explanation

Name- Fil ter A search string for finding the proper SAP
function(s) by name

Group-Filter SAP functions are organized by groups. If

you know the group name you may use it
here

After the code has been generated, you can see an SAP proxy WSDL file added to your
project. This WSDL file in coordination with Visual Studio and the
SAPConnect or Gener at or custom tool allows you to manage the SAP proxies

automatically.

If you choose to generate the proxy from the SAP IFR you will be asked for the URL of the

IFR Server.

If you choose to generate a proxy from a Standard WSDL file you will be asked for the path

or URL to that WSDL file.

24

November 2002

w 2 SAP Client Programming

2.3 Customizing SAP Proxies

2.3 Customizing SAP Proxies

There is design time support for modifying and updating the generated proxies. To see the
design view, simply double click on the generated SAPProxy WSDL file in the Visual Studio
designer Solution Explorer.

The proxies should be customized from within Visual Studio designer. There is no need to
rerun the proxy generation wizard unless the RFC signature has changed.

Type of Object Example in Designer
RFC functi ons (shown as method icon) & RFC FUNCTION SEARCH
SAP t abl e cl ass (shown as SAP table B RFCFLINCTable

icon)

SAP structure cl ass (shown as class 3 RFCELNE

icon)

Solution Customizing

These options may be set on the SAPPr oxy sapwsdl file in the designer. Based on this
input the SAP proxy C# classes will be updated automatically.

Beautify If turned on, all identifiers that do not have
custom names are “beautified” to mixed case

G assNane The name of the class that is generated

Cr eat eAsyncs Controls if the generator should create
Microsoft style asynchronous methods

Creat eTRFC Controls if the generator should create
methods for Transactional RFC

Creat eQRFC Controls if generator should create methods for
Queued RFC

Pr oxyType Whether the generator should create a client

proxy or server stub

Method Customizing

These options may be changed on the RFC function (proxy methods):

Nane The name used in the code to identify the RFC

Cust om Par anet er order In the parameters collection editor you can
customize the parameter order. If you do so,
this property is set to true. If you set it to false,
the parameter order is set back to default

Excepti ons Use the collection editor to see and customize
the ABAP exceptions that this method might
throw

Par anmet er s Use the collection editor to see and customize

the parameters of the method

November 2002 25

2 SAP Client Programming

SAPd

2.3 Customizing SAP Proxies

Usel OStructs

When turned on, the generator will create an
additional version of the method that takes an
input structure and returns an output structure
(similar to the SAP Java Connector). You
cannot have removed parameters with this
option

These parameters of the method are provided as informational:

AbapNane

Contains the original name of the object as it is
called in ABAP

Opti onal Paraneters

Shows you the number of optional parameters
in the function

RenovedPar anet er s

Shows you the number of parameters that
have been removed and will not be generated

Tot al Par anet er s

Shows you the total number of parameters of
the function

SAPStructure Customizing

These parameters may be changed on the SAP Structures:

Nane The name of the SAP structure

Fi el ds Uses the collection editor to customize the
fields in the structure

Fi | ename Specifies the filename that is used to create the

type into

These parameters are provided as informational:

AbapNane

Contains the original name of the object as it is
called in ABAP

SAPTable Customizing

These parameters may be changed on SAPTables:

BaseSt r uct

For implicitly defined tables, the property
contains the name of the structure that the
table is based on

Fi | enane

Specifies the filename that is used to create the
type into

These parameters are provided as informational:

AbapNane

Contains the original name of the object as it is
called in ABAP

26

November 2002

SAbd

2 SAP Client Programming

2.4 SAPClient Methods

Public Constructors

2.4 SAPClient Methods

public SAPd i ent
(SAP. Connect or. Desti nati on
destination)

Initializes a new instance of the SAPCl i ent
class with the connection information from a
SAP Destination object

public SAPC i ent
Connecti onStri ng)

(System String

Initializes a new instance of the SAPCl i ent
class with the connection information from a
connection string. The connection string can be
created manually or from one of the SAP logon
controls. If you want to create a connection
string manually, see the SAP Remote Function
Call API documentation (RFCOpenEX).

public SAPClient ()

Initializes a new instance of the SAPCl i ent
class without connection information. The
connection information has to be setin a
separate step before you can use the proxy

Public Methods

Public void <RFC Nane> (RFC
par anet er s)

Executes a normal RFC call for the function
specified in the SAP system. Typically out
parameters are passed by reference

Public void TRFC<RFC Name> (RFC
par anmet ers, RFCTI D)

Executes the RFC specified as TRFC and
therefore requires an RFCTI D parameter. You
must have selected Create TRFC for this
method to be available

Public void QRFC<RFC Name> (RFC
par anmeters, RFCQueuelten)

Executes the RFC specified as QRFC and
therefore requires a RFCQueuel t em
parameter. You must have selected Create
QRFC for this method to be available

Public System | AsynchResul t

Begi n<RFC Nane> (RFC par anet ers,
System AsynchCal | back, obj ect
asynchsSt at e)

Executes the RFC specified using a Microsoft
style asynchronous method invocation

Public void End<RFC
Name>(system i asycresult
asyncresult, ref paraneters)

Used to reattach to the result from the
Asynchronous method invocation

public System Bool ean Conmmi t Work (
)

Used for stateful BAPI calls to commit the
logical unit of work to the system

public void ConfirnTlD
(SAP. Connector. RfcTID tid)

When using TRFC or QRFC programming you
can use this method to confirm the TID after
successfully passing the TRFC call to the SAP
system

public System Bool ean Rol | backWork
()

Used for stateful BAPI calls to commit the
logical unit of work to the system

November 2002

27

2 SAP Client Programming

SAPd

2.4 SAPClient Methods

Public Properties

publ i ¢ SAP. Connect or. SAPConnecti on
Connection [get, set]

The connection object for connecting to the
SAP system. Can be either SOAP or RFC
connection. Should be created from one of the
SAP logon controls

public System | nt32
Rf cTotal M | i Seconds

The execution time in milliseconds

Private Methods

protected System | AsyncResul t

Begi nSAPI nvoke (System String

nmet hod , object[] methodParanslin ,
System AsyncCal | back cal | back ,
System Obj ect asyncSt at e)

Used internally to start the asynchronous
method invocation

protected object[] EndSAPI nvoke
(System | AsyncResult ar)

Used internally to receive the results of the
asynchronous method invocation

protected object[] SAPInvoke

Used to submit a normal RFC for execution

(System String nethod , object[]

nmet hodPar ansl n)

public void tRfclnvoke Used to submit a TRFC for execution
(System String nethod , object[]

nmet hodPar ansl n
SAP. Connector. RfcTID tid)

public void gRfclnvoke
(System String nethod ,
net hodPar ansl n ,

SAP. Connect or. Rf cQueueltem gl tem

obj ect[]

Used to submit a QRFC for execution

public void ActivateQueue
(System String QueueNane)

Used with QRFC processing

public void DeativateQueue
(System String QueueNane)

Used with QRFC processing

28

November 2002

w 2 SAP Client Programming

2.5 SAPClient Exceptions

2.5 SAPClient Exceptions

Errors in the .NET Connector are thrown as .NET exceptions. An exception is the preferred
method to handle errors because exceptions are harder to ignore than are return codes. They
also provide you detailed information to create more robust applications.

The SAP .NET Connector has the following exception classes:
e RfcCommunicationException

» RfcLogonException

» RfcSystemException

» RfcAbapException

» RfcException

» RfcMarshalException

Coding Recommendations for RFC Exceptions

We recommend you to have at least two cat ch blocks. The first catch statement is for SAP
exceptions (specific) and the second for others (generic), for example errors from the runtime
or other resources.

We recommend you to close the proxy connection in the fi nal | y programming block.

SAP .NET Connector closes connections eventually. However, to achieve better
performance, we recommend you to close the connection in the fi nal | y clause of your
class. We also recommend that you close any external resources such as open files or
database connections here as well.

Instead of providing a status of the SAP RFC connection, we recommend that you simply
invoke the method and deal with the exception. The SAP .NET Connector will maintain the
status of the connection internally.

L
The Pr oxy. Connecti on. Open() method causes an RFC ping. This allows

you to see if the system is up. Subsequent Pr oxy. Connect i on. open()
methods will be ignored until there is a Connecti on. Cl ose().

November 2002 29

2 SAP Client Programming w

2.5 SAPClient Exceptions

Example

30 November 2002

w 2 SAP Client Programming

2.5 SAPClient Exceptions

2.5.1 RfcCommunicationException Class

[C#]
public class RfcCommuni cati onException : SAP. Connect or. Rf cExcepti on

This exception class represents an application exception when an RFC communication error
occurs. This happens, for example when the .NET Connector cannot connect to an SAP
system. Possible reasons are:

« Incorrect server or instance specified in the logon string
» Server is not accessible:

— SAP Service is not started on that server

— Clientis offline

— Network problems

This exception is typically thrown at the pr oxy. Connect i on. Qpen() ; method. It may also
occur on any subsequent method invocation, for example an RFC invoke, if the connection is
broken.

When this exception occurs, the RFC handle is not created or is no longer valid by the
connector. Therefore there is no need to call pr oxy. Connecti on. C ose();

The following example shows an Rf cConmruni cat i onExcepti on:

SAP. NET. Connect or . Rf cCommuni cat i onExcepti on: Connect to SAP gat eway
failed

Connect PM GWHOST=I wdf 901, GWBERV=sapgw00, ASHOST=I wdf 901, SYSNR=00
LOCATI ON CPIC (TCP/1P) on |ocal host

ERROR host nane ' | wdf 901' unknown
TI VE Mon Apr 29 15:11:51 2002
REL EASE 620

COVPONENT NI (network interface)
VERSI ON 36

RC -2

MODULE ninti.c

LI NE 382

DETAI L Ni PHost ToAddr

SYSTEM CALL get host bynanme

COUNTER 15

RFCConmmuni cat i onExcept i on derives from RFCExcept i on and therefore implements
the same properties.

November 2002 31

2 SAP Client Programming w

2.5 SAPClient Exceptions

2.5.2 RfcException Class

Rf cExcept i on is the base class for the other SAP RFC Except i on classes. This
exception will not be raised by the connector under normal conditions.

oj ect, |Serializable
System Exception

System Appl i cati onExcepti on
SAP. Connect or . Rf cExcepti on

[CH]
public class RfcException : System Applicati onException

Properties of this class

Er r or Code The error code from the SAP application.
Derived from RFCExcept i on

Error G oup The error group from the SAP application.
Derived from RFCExcept i on

32 November 2002

w 2 SAP Client Programming

2.5 SAPClient Exceptions

2.5.3 RfcAbapException Class

This class represents an exception raised by the ABAP program in the SAP system.
Exceptions are a type of parameter for each SAP RFC. The connector provides strongly
typed support for each RFC’s ABAP exceptions in the proxy.

[CH]
public class Rf cAbapException : SAP. Connect or. Rf cExcepti on

In addition to the properties provided from Rf cExcept i on. Rf cAbapExcept i on provides
the following property:

AbapExcepti on A string containing the ABAP exception from
the RFC

Example

In the SAP system you can navigate to the Function Builder (transaction code se37) and
examine the exceptions for the function you wish to call. For RFC_FUNCTI ON_SEARCH you
see the following exceptions:

— NOTHI NG_SPECI FI ED - this occurs when no input is specified.
— NO_FUNCTI ON_FOUND - this occurs when no function matches the search selection.

Depending on what the ABAP exception is we might do different things. Therefore a switch
statement is a good idea to deal with this exception.

catch (RfcAbapException ex)

{
switch (ex.AbapExcepti on)

{
case (SAPProxyl. No_ Function_Found):
MessageBox. Show "no function found");
br eak;
case(SAPPr oxy1. Not hi ng_Speci fi ed):
MessageBox. Show(" Not hi ng speci fied");
br eak;
defaul t:
MessageBox. Show(" Some unknown abap error occurred");
br eak;
} //switch

November 2002 33

2 SAP Client Programming w

2.5 SAPClient Exceptions

2.5.4 RfcLogonException Class

This exception is thrown when the SAP service is available but the user name or password is
not accepted by the SAP system.

[CH
public class Rf cLogonException : SAP. Connector. Rf cExcepti on

Remarks

The most typical causes for this are:
* Incorrect user name or password specified by the user
» License has expired on the SAP system

e The user's account is locked or expired.

Example

SAP. NET. Connect or . Rf cLogonExcept i on:

Nane or password is incorrect. Please re-enter

34 November 2002

w 2 SAP Client Programming

2.5 SAPClient Exceptions

2.5.5 RfcSystemException Class

This exception is not as typical as the others but may occur from time to time. This exception
class is thrown when a short dump related to the current context has occurred in the SAP
system. This might be due to a program error in the SAP system or some other exceptional
error that occurred on the SAP system.

[CH]
public class RfcSystenException : SAP. Connect or. Rf cExcepti on

November 2002 35

2 SAP Client Programming w

2.6 Debugging of SAPClient Proxies

2.6 Debugging of SAPClient Proxies

With the SAP .NET Connector you can debug from your C# proxy directly into the SAP
function module by setting the ABAP_DEBUG flag in the connection string. The best way to do
this is to set the AbapDebug and Tr ace flags on the SAPLogonDest i nati on object.
Debugging through to the SAP system is useful when you are getting unexpected results
back from the SAP system. To use the ABAP_DEBUG option you must have installed SAPGUI
on your developer workstation. You cannot use the integrated ABAP debug option with web
applications because they run under another Windows context that is invisible to the
interactive user. For that reason it is often useful to test your proxy first against a Windows
form or Console application in case integrated debugging is required.

It is often useful to run the SAP RFC function directly in the SAP system using transaction
SE37. ltis easier to isolate the problem once you are sure that input values are valid. In

addition, you can use the SAP function module documentation. The SAP data dictionary,
which is integrated in the function editor, also gives you information on valid input values.

In the SAP system, there are automatic formatting functions that are not available in the
connector, for example to add leading zeroes to a customer or invoice number. If the function
is working in the SAP system but not in your proxy, it could be that the SAP system has
applied one of these automatic formatting routines but you did not.

To see what values the SAP function module is using, proceed as follows:
1. Execute transaction SE37.

2. Enter the function name and select Single test (F8) .

3. Enter valid parameters and select Debugging (Ctr | F7).
4

Use Single Step (F5) to examine the code execution and variable values in the SAP
function debugger window, part of the Abap/4 developer workbench.

You can turn on tracing in the SAP system by setting the environment variable CPI C_TRACE
and RFC_TRACE. For more information on RFC tracing, refer to SAP Note 65325.

L
CPI C_TRACE writes out detailed trace files to the application directory so it is
not advisable to leave tracing on any longer than you need it.

You can do advanced tracing within the SAP system, for example from transaction code

SMB0 and by examining the work process trace files (for example, dev_wO0 in the SAP work
directory).

We recommend developers to use the SAP .NET Connector exception classes in their code
to determine why an error has occurred and to use as a starting point for debugging.

TRFC applications can be monitored from the TRFC monitor (transaction SM68). QRFC
applications can be monitored from QRFC monitor (transaction SMR).

36 November 2002

w 2 SAP Client Programming

2.7 Authentication

2.7 Authentication

The SAP Connector can support all SAP authentication mechanisms including:
* User Name and Password
* X.509 Certificates
« External authentication (for example Microsoft Passport)
» Secure Network Communications (for example, Kerberos and NTLM)

And in addition the SAP login form uses standard ASP .NET forms authentication to provide
an alternative single sign-on capability.

The following logon controls are available to manage the SAP authentication in your project.

Desti nation The base class that holds connection
information as properties but does not
implement logic to retrieve the connection
information

SAPLogonDest i nati on A Desti nat i on component that retrieves
information from the SAPGUI
(SAPLOGON. | NI'). Derived from Dest i nati on

SAPLogi nProvi der Used with ASP .NET applications to provide
forms based logon and an alternative single
sign-on mechanism with session state and
ASP .NET cookies

SAP Login Form Used with ASP .NET applications to provide
forms based logon and an alternative single
sign-on mechanism

November 2002 37

2 SAP Client Programming w

2.7 Authentication

2.7.1 User Name and Password

The SAP system can make use of various single sign-on options. However, many customers
still use a separate user name and password for logging on to SAP. When designing SAP
.NET Connector applications, we recommend to avoid scenarios where a single user ID is
used to connect to the SAP system. In general, all users of the SAP system whether through
SAPGUI or the SAP. NET Connector must be licensed. For that reason, it is preferable to ask
the user for their SAP user name and password as part of your application or to make use of
one of the single sign-on options.

A very good option for user name and password authentication is the SAP Login form. If you
are writing an ASP .NET application this provides you with a forms-based authentication and
the necessary plumbing for both session and cookie based single sign-on after the first time
visiting the form.

38 November 2002

SAbd

2 SAP Client Programming

2.7.2 Single Sign-On

2.7 Authentication

Single Sign-On (SSO) is a simplified method of logging on to the SAP system without
reducing security. When a system has been configured for Single Sign-On, an authorized
user who has logged on to the operating system can access the SAP system simply by
selecting it in the SAP logon window or clicking on the shortcut. The user is authenticated by
Windows or some other trusted authority so no SAP password is required. All SAP supported
single sign-on options are also supported by the connector.

Single Sign-On Technology

Scenario to Use

Ker ber os When client has SNC Kerberos library.
Use with rich client applications to provide
single sign in same way as SAPGUI. Can
also be used with ASP .NET impersonation

NTLM When client has SNC NTLM library. Use

with rich client applications to provide
single sign in same way as SAPGUI. Can
not be used with ASP .NET impersonation

X. 509 Certificates

Web scenarios — especially internet
scenarios where client is not inside the
firewall

M crosoft Passport

Same as X.509 certificates

SAPSSC2

With Enterprise Portal

SAPLogi nFor m

User name and password authentication in
an ASP .NET web form can be used for all
web scenarios

SAPSSC1L

With older ITS scenarios

November 2002

39

2 SAP Client Programming w

2.7 Authentication

2.7.2.1 X.509 Certificates

In this scenario you must first configure a working SSO account for the logged-on user (for
example ASPNET or other Windows user that your application runs under). The SAP system
examines the X509 certificate to determine an external user ID. This external user is logged
on to the SAP system. This allows you to only have to setup an SSO connection between the
web server and the SAP system and then using the certificate field to map from the X509
certificate to the SAP user.

Alternatively, you can use Active Directory or [IS mapping and impersonate the user. This
method is discussed in part in the section on Kerberos or NTLM SSO with impersonation
above.

In the connector, the SAPLogonDest i nati on X509Certi fi cat e property should contain
the value of the X509 certificate BASE64 encoded. This should be set at runtime after
reading the contents of the X509 certificate from the user’s browser.

Certificate Field Returns

Request.ClientCertificate. Subject The subject that is mapped to SAP external
user ID in table VUSREXTI D. For example:
CN=SAPDot Net

Request.CientCertificate.Certifica | Abyte array containing the binary stream of the
te entire certificate content. You must use the
Convert. ToBase64Stri ng function to
format it for sending to SAP system

The following example shows code for using the browser certificate in
SapLogonDesti nati on:

sapLogonDesti nati onl. X509Certificate =
Convert . ToBase64Stri ng(Request. ClientCertificate, O,
Request. Client Certificate.Length);

JAN

Do not use USER parameter in your Destination component with
X.509certificate logon.

Setting Up Certificate Mapping to SAP User in the SAP System
The procedure consists of the following steps:

* You enable an SNC connection between IIS and the SAP system with transaction
SNCO.

* You map the certificate to SAP table VSUSREXTI D.

40 November 2002

SAbd

2 SAP Client Programming

Input for Setting Up Certificate

2.7 Authentication

Step Option Explanation
Enable an SNC System I D Enter your SAP system ID.
connection between -
IS and the SAP SNC nane Enter the Secure Network Communications (SNC)
system. user name.
Use transaction SNCO For example for Kerberos enter:
to update the Access p: <SAPSer vi ce_User @DOVAI N_NAVE>
Control List (ACL) . .
For more information on SNC names refer to the
SNC User Guide at the SAP Service Marketplace
athttp://service.sap.com
Entry for Activate all entries for RFC, CPI C, DI AG,
RFC certificate, ext. ID
Entry for
ext. ID
Map the certificate to External ID |a. Maintain table VUSREXTI D
the SAP user with type

transaction SM30

b. EnterDN for External ID type

November 2002

41

2 SAP Client Programming

SAPd

2.7 Authentication

Step Option Explanation
External ID | Enterthe | Dexactly as stated in the certificate, for
example CN=SAPDot Net
To find out the Subj ect name (Ext ernal |D)
you have the following options:
* Using the Internet Explorer
a. Inthe Internet Explorer, choose Tools -
Internet Options — Content — Certificates.
b. Select the certificate and choose View.
c. On the Certificate screen, choose Details.
d. Go to Subject to see the name.
e Using SAP Process Tracing
a. Use transaction SMb0.
b. Turn on tracing for the component
SECURI TY and use trace level 2:
— Choose Process - Trace -
Display settings — Display
Components and select SECURI TY.
- Choose Process - Trace -
Dispatcher —» Change Trace Level
and enter 2 for the trace level.
Now tracing is enabled on the SAP
application server.
c. Runthe .NET Connector application that is
using the x.509 certificate to connect to the
SAP system.
d. Onthe SAP application server search for a
file named
dev_wp<wor kprocess_nunber > (for
example, dev_wO0) that contains the text
string Cer t Get | nf 0. The subject name is
next to the text string.
User Enter your SAP user name.

42

November 2002

w 2 SAP Client Programming

2.7 Authentication

Setting Up Certificates in IIS:
For certificates to work you have to configure IIS to use HTTPS.

Here is an example for an ASPX page code to test whether certificates are working in IIS:

User (from Context): <% Context.User.ldentity. Name% <P>

User (from Thread):

<%Syst em Thr eadi ng. Thread. Current Pri nci pal . | denti ty. Name%<P>
Certifcate: <%Request.ClientCertificate.Subject%

For more information about using X.509 certificates in Windows 2000, refer to the Step-by-
Step Guide to Mapping Certificates to User Accounts at
http://www.microsoft.com/windows2000/techninfo/planning/security/mappingcerts.asp)|

November 2002 43

http://www.microsoft.com/windows2000/techninfo/planning/security/mappingcerts.asp

2 SAP Client Programming w

2.7 Authentication

2.7.2.2 Microsoft .NET Passport

You can use external authentication mechanisms such as Microsoft .NET Passport to
determine which user to log on to the SAP system. This mechanism is similar to using X.509
certificates as discussed above. Instead of asking the SAP system to examine the certificate,
we determine the user identity through some other means (for example the Passport API).
Over a trusted SNC connection to the SAP system we tell the SAP system which user to log
on. It is important that the 1IS service user is a trusted SNC user in the SAP system. For more
information, see to the section on establishing an SNC connection between IIS and the SAP
system above.

The EXTI DDATA tag is the external user ID as defined in view VUSREXTI D for type | D.

The tag EXTI DTYPE should be equal to | D as that is the generic external user type. Other
external user types, for example type DN (certificates) do not work in this scenario.

/1l Exanpl e connection string for passport type authentication
string ConnStr = "ashost=pcintel 11 sysnr=0 client=0 snc_node=1
snc_part ner name=\"p: SAPSer vi ceCS2@nt 5. sap- ag. de\" type=3

EXT| DDATA=<passport _i d> EXTI DTYPE=I D";

To verify that the external user really has logged on, set abap_debug = 1 in the connection
string. Then examine the list of logged on users in the SAP users overview screen, which you
can access in the SAP menu under System Monitoring. Alternatively, use transaction SM)4.

In the future, both SAP and Microsoft will offer more direct support for Passport
authentication. For more information, refer to Microsoft's Federated Security and Identity
Roadmap at: htt p: // nmedn. mi crosoft.com

44 November 2002

w 2 SAP Client Programming

2.7 Authentication

2.7.2.3 Kerberos and NTLM

In the Windows environment it is possible to use Kerberos, NTLM and X509 certificates as
single sign-on options. The client where the proxy is running must have the appropriate GSS
library (for example gsskr b5. dl |) and the correct environment variables set. For more
information, see the SNC Users guide and the SAP Web AS Inst. on Windows: MS SQL
Server at the SAP Service Marketplace at: htt p: / / servi ce. sap. com

Before configuring the SAP .NET Connector proxies to use SSO we recommend you to test
the connection with SAPGUI to be sure single sign-on is working. For technical reasons you
must still provide the SAP user name in the connection string. In many companies mapping
of the SAP user to the Windows NT user is quite easy, as for example they use the same
name or apply a logical naming process. The exception to this is with X509 certificates where
no USER parameter should be provided.

To connect to the SAP system with the SNC parameters, you can use one of the SAP
Destination components. You can also construct your own connection string; however, due to
deployment problems we do not recommend hard coding correction strings.

Here is an example of a connection string using Kerberos to show what parameters to set on
your destination component.

/1 connection string with SNC paraneters and debug

string ConnStr = "ashost=pcintel 11 client=000 snc_node=1 sysnr=00
type=3 user =SAPDOTNET snc_part ner nane=\"p: SAPSer vi ceCS2@t 5. sap-
ag. de\";

The disadvantage of SSO is that you may have to configure additionally each client machine.
However, you can use Active Directory to distribute the SSO configuration to users. For more
information, see the installation guide SAP Web AS Inst. on Windows:MS SQL Server on the
SAP Service Marketplace at: htt p: / / servi ce. sap. com

An alternative to configuring all user machines for SSO is to use a web application,
impersonate the user, and then perform SSO as that user. In this case, you only have to
configure the web server. You also have to configure your 1S application for impersonation.
For more information about ASP .NET impersonation, refer to the .NET Framework
Developer's Guide: ASP .NET Impersonation at:
http://msdn.microsoft.com/library/default.asp?url=/library/en-

lis/cpguide/html/cpconaspnetimpersonation.asp

When Using ASP .NET Impersonation

Be sure to set these values in the authentication section of the Web. conf i g file:

<identity inpersonate="true” />
<aut henti cati on node = “W ndows” />

In IIS Administration turn off Anonymous access under the directory security tab
A simple ASPX page to test if impersonation is working is:

User Name: <% System Environment. User Nanme />
Domai n: <%System Envi r onnment . User Domai nName/ >

November 2002 45

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconaspnetimpersonation.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconaspnetimpersonation.asp

2 SAP Client Programming w

2.7 Authentication

When you access this test web page and if impersonation is working, you can see the
logged-on NT user but not the IS anonymous user.

=

ol

&

There is currently technical limitation in the Kerberos implementation from
SAP. You can only use Kerberos with the client machine at this time.

Kerberos is case sensitive so make sure that you get SNC_PARTNERNAME correct. The SAP
user name is not case sensitive. This is only needed due to a limitation in the RFC library and
not because of SSO considerations.

NTLM is not supported in this web scenario because it does not provide impersonation
capabilities.

46 November 2002

SAbd

2 SAP Client Programming

2.7.2.4 Destination Class

2.7 Authentication

This is the base SAP Destination component that can be used to set connection and
authentication properties. This class does not contain any logic to retrieve the login properties
but other classes that derive from it do (for example SAPLogonDest i nati on).

[C#]

public class Destination :

Public Properties

Syst em Conponent Model . Conponent

AbapDebug Set to true to use integrated ABAP debugging
AppSer ver Host The name of the SAP application server
dient The number of the SAP client you are

connecting to

ConnectionString

Read only property containing the connection
string data used to connect to the SAP system

Extl dentificati onDat a

Used with external authentication scenarios
(for example, Microsoft Passport)

ExtldentificationType

Used with external authentication scenarios
(for example, Microsoft Passport)

Language

Optional

LogonG oup

If LogonGroups are used enter it here

MsgSer ver Host

If a message server is required to connect to
the SAP system enter it here

My SAP_SSO The older style SAP single sign-on cookie used
by the Internet Transaction Server.

My SAP_SSQ2 The newer SAP Logon ticket used by the
Enterprise Portal

Passwor d If not using SSO enter the password here

SAPSyst emName

Read only property showing the three digit
system SID

SNCLi b If using Kerberos or other SNC library enter the
path here or alternatively use an environment
variable as described in the SNC User Guide
on the SAP Service Marketplace

SNCMode If set to true SNC is used

SNCMy Nane Not required

SNCPar t ner Name

The SNC name of the application server
service user (for example,
p: SAPSer vi ceCS2@t 5. sap- ag. de)

SNCQoP

Optional. See SNC User Guide for more
information about QOP with SNC

Syst emNunber

The SAP system number (for example 00)

November 2002

47

2 SAP Client Programming

SAPd

2.7 Authentication

Trace If true, detailed trace files are written to the
application directory

Type A string showing the data type of the
destination object

User Narme The SAP user name

X509Certificate

The base64 encoded contents of the x509
certificate

Remarks

The destination object is used within the SAP Login Form for forms-based authentication.

48

November 2002

SAbd

2 SAP Client Programming

2.7.2.5 SAPLogonDestination Class

2.7 Authentication

The SAPLogonDest i nati on class is a design time component derived from the
Destination class. Connection information can be retrieved from the SAPGUI at runtime,
specifically from SAPLOGON.INI on the machine hosting the application.

[CH]
public class SAPLogonDesti nation :

Public Properties

SAP. Connect or . Desti nati on

public string DestinationName |
get, set]

Provides a drop down list of the destinations
stored in the SAPGUI. This is the same list the
user would see when starting SAP Logon for
example

Private Properties (Retrieved from SAPGUI)

public string AppServerHost |
set]

get,

The application server host

public
System Col | ections. | Dictionary
Avai | abl eDestinations [get]

The list of available destinations in a
name/value pair

public string

Desti nati onDescription [get, set]

A description of each destination

public string LogonGroup [get, set
]

Logon group if configured

public string MsgServerHost [get, Message server host if configured

set]

public string SAPSystemName [get, SAP System name (for example CS2)

set |

public bool SNCMWbde [get, set] Whether SNC is used

public string SNCPartnerNanme [get, | The SNC name of the SAP application server

set] as stored in SAPGUI. See SNC User Guide for
details

public short SystemNumber [get, The system number. For example 00.

set]

public string Type [get, set] The data type.

Public Methods

public System String
Get Dest i nat i onNameFr onPr i nt Name
(System String printNanme)

Retrieves the destination name from the print
name

November 2002

49

2 SAP Client Programming w

2.7 Authentication

Remarks

This component is designed to simplify the SAP Logon process for both client applications
where the user already has a SAPGUI and for web applications where administrators wish to
store connection information in the SAPGUI instead of in the destination object or dynamic
property in the webconfi g. xml file.

Use of SAPLogonDestination with SAP Router

If your SAPGUI destination has a router, carry out the following steps to use this component:
1. Create a new destination in SAP Logon.

2. Onthe Application server field put the SAP router string first, then the application server.
3. Leave the SAP Router String blank.
4

Test it in SAPLogon before using with the connector.

For example, if you have the following:

Descri pti on: MySystem

Application Server: |WF9387. WDF. SAP. CORP

SAP Router String: /H SAPGATEA. WDF. SAP- AG. DE/ S/ 3291/ H

In your new destination, the properties should be:

Descri pti on: My/Syst em DNC

Application Server:

| H SAPGATEA. \DF. SAP- AG. DE/ S/ 3291/ H | WDF9387. WDF. SAP. CORP
SAP Rout er String:

50 November 2002

w 2 SAP Client Programming

2.7 Authentication

2.7.2.6 SAPLoginProvider Class

The SAPLogonPr ovi der class can be used with ASP .NET applications to retrieve a
connection to the SAP system from the SAPLogin form or if available from either the session
state or an ASP .NET cookie if the user had already visited the site. See SAP Login Form
[Page E:] for details. The SAPLogi nProvi der is a static object of the SAP .Connector.

[CH]
public class SAPLogonProvi der : System bj ect

Public Properties

Connecti on Not yet implemented

Public Methods

public static void Used internally to close the SAP Connection
Cl oseSAPConnect i on

(System Web. Ul . Page p)

public static This method is used to get the connection from
SAP. Connect or . SAPConnect i on a SAPLogi nFor min your project. It is part of
Get SAPConnecti on the SAP Connection code provided in the SAP
(System Veb. Ul . Page p) Proxy toolbox

public static void Used internally to open the SAP Connection

OpenSAPConnect i on

(System Web. Ul . Page p ,
System String connstr
Syst em Bool ean persi st)

Example

pr oxy. Connecti on =
SAP. Connect or . SAPLogi nPr ovi der . Get SAPConnect i on(t hi s);

November 2002 51

2 SAP Client Programming w

2.7 Authentication

2.7.2.7 SAP Login Form

This ASP .NET web form can be added to your project with Project - Add New Item. Look
for the Web Project Items and select SAP Login Form.

For technical reasons it is better to leave the name of this form as SAPLogi nl. aspx. The
design of this form can be changed in the designer to suit your requirements. The purpose of
this form is to provide SAP user name and password authentication for ASP .NET
applications built with the connector.

[CH]
Public class SAPLogi nl. aspx : System Wb. Ul . Page

Remarks
When you select Save, a cookie is written to the hard disk with a name like User@server.txt|

The login information is stored in an encrypted format in the ASP .NET cookie. When the
user logs on the next time, the ASP .NET application will look in this cookie to retrieve the
logon information for the SAP system.

The SAPLogin form has a built-in destination component to store connection information and
when the login information is entered it will be stored here as well. Default connection
settings are stored here based on what values were used in the proxy generation wizard.

The destination component uses the web config file to store connection information as
dynamic properties. A blue icon next to the property in the Destination control object shows
that the property is synchronized with the web config file.

We recommend that the main page of your application be called def aul t . aspx as this is
the default redirect for the SAP Login page. For technical reasons, the SAP Login page
should always be called SAPLogi n1. aspx. It is possible to change this but you must then
also update the web. conf i g file Authentication mode section which by default points to a
| ogi nUrl of SAPLogi nl. aspx.

After successfully logging in for the first time on this page, the login form does a redirect back
to the original page (for example, def aul t . aspx). If the login page is called directly instead
of as a redirect

If reached without original form then it navigates to def aul t . aspx. Therefore, you should
have a def aul t . aspx page in your application.

When the SAPLogi nl1. aspx form is called, it executes the following logic:

First, it looks in the session state and cookies to find out if this session connection information
is already known. If so, it tries to open SAP connection using the static openConnect i on
method. If this is not successful it tells the ASP .NET provider it’s not working by raising an
exception.

After successful login it stores the active connection object in session state with special
name. What is stored in the session state is the actual connection.

If you selected the Save option, a cookie is stored to your hard disk that has encrypted
complete connection string.

In this way, the SAP Login form provides an alternative connection pooling and single sign-on
where many distinct SAP accounts are hitting the site.

When multiple sessions use the same user ID, the connector provides a dedicated
connection pool object.

52 November 2002

mailto:user@server.txt

SAbd

2 SAP Client Programming

2.8 SAPIDocSender Class

2.8 SAPIDocSender Class

The SAPI DocSender class is a TRFC client used to submit SAP intermediate documents to
an SAP system for later processing. An example of an IDOC might be a customer sales order
or a material master record. IDOC records are typically used in EDI scenarios. See the

IdocSubmit sample for example code.

[CH]
public class SAPI DocSender

SAP. Connect or . SAPC i ent

Public Constructors

publ i ¢ SAPI DocSender
ConnectionString)

(System String

Creates a new instance of SAPI DocSender
with a connection string

publ i c SAPI DocSender ()

Creates a new instance of SAPI Doc Sender
and set the connection in a later step

Public Methods

public void Submtl Doc
(System String i DocPath
SAP. Connector. RfcTI D tid)

Submits an IDOC from an IDOC stored as a file
on the operating system

public void Submtl Doc
(System | O Text Reader i Doc |,
SAP. Connector. RfcTID tid)

Submits an IDOC from an IDOC as a
textreader object. Perhaps from another
application or built dynamically

public void

TRf cl Docl nBoundAsynchr onous

(SAP. Connect or. EDI _DC40_BLOCKLI st
i DocCont r ol Rec40

SAP. Connect or. EDI _DD40_BLOCKLI st

i DocDat aRec40

SAP. Connector. RfcTID tid)

Offers more granular control over the different
pieces of the IDOC (EDIDC and EDIDD) for
example when you are creating an IDOC
manually or changing something in the header
but otherwise want to keep the body of the
IDOC

Remarks

An IDOC will consist of three segments, the header (EDIDC), the body (EDIDD) and the
status (EDIDS). The EDIDC record can contain two formats (EDIDC or EDIDC40) depending
on the version of the IDOC. The body of the IDOC will differ depending on what IDOC type
and release it is. The status record is only maintained inside of the SAP system and is not

relevant to submit an IDOC.

Example

privat e SAP. Connect or. SAPI DocSender sapi DocSender 1;

private void Subnitldoc()

{
// submt to SAP via trfc
RfcTID nyTid = RfcTl D. NewTl IX) ;

try

sapi DocSender 1. Connecti onString = destinati onl. ConnectionStri ng;

November 2002

53

2 SAP Client Programming w

54 November 2002

w 2 SAP Client Programming

2.9 Asynchronous Methods

2.9 Asynchronous Methods

With .NET Connector, we can take advantage of many features of the CLR including support
for easy asynchronous programming. This powerful feature is not available on any other SAP
connector at this time. In all other connectors, BAPI and RFC calls are synchronous calls.

When we use asynchronous methods from the .NET Connector wizard, the proxy contains
two additional methods Begi n<RFC nane> and End<RFC Nane>.

When Begi n<RFC nane> is called, CLR queues the request and returns immediately to the
caller. The target method will be on thread from the thread pool. The original thread is free to
continue executing in parallel to the target method. If a callback has been specified on the
Begi n<RFC nane>, it will be called when the target method returns. In the callback, the
End<RFC nane> method is used to obtain the return value and the i n/ out parameters. If
the callback was not specified on the Begi n<RFC nane>, then End<RFC nane> can be
used on the original thread that submitted a request.

When working with asynchronous calls, we need three additional variables compared to a
synchronous RFC call.

Variable What It Does

System | AsyncResul t asyncresul t A return of | AsyncResul t is required to

implement Asynchronous Method signatures.
The result of the call (I AsyncResul t)is
returned from the begin operations, and can be
used to obtain status on whether the
asynchronous begin operations has completed.
The result object is passed to the end
operation, which returns the final return value
of the call

System AsyncCal | back cal | back A delegate class that is called when the

operation has completed. If null, no delegate is
called. We can either use a callback delegate
as shown below or pass the AsyncCal | back
delegate as null. In that case, no delegate will
be called and we have to check the status
ourselves. To check the status we can check
the AsyncResul t. | sConpl et ed property or
if we are using a callback, this delegate will be
called automatically when the method has
completed

obj ect asyncState Extra information supplied by the caller

November 2002 55

2 SAP Client Programming w

2.9 Asynchronous Methods

Example

The following Winform sample shows the code for asynchronous method call
(SAPAsyncSearch method).

See also:

.NET Framework Developer’s Guide: Asynchronous Programming Overview
.NET Framework Developer’s Guide: Including Asynchronous Calls

.NET Framework Developer’s Guide: Asynchronous Delegates

.NET Framework Developer’s Guide: Asynchronous Method Signatures
.NET Framework Class Library: SoapHttpClientProtocol Class

56 November 2002

w 2 SAP Client Programming

2.10 TRFC Client Programming

2.10 TRFC Client Programming

When calling an RFC as a transactional RFC (TRFC) there are no return values. If the
submission for some reason does not work, an exception will be raised. The TRFC method
requires an additional Rf ¢TI D parameter. You should let the SAP system know to confirm
this TID if the submission is successful. TRFC submissions are used when you require
guaranteed one time only execution of a function but do not require any return information
beyond that the call was accepted by SAP. Therefore TRFC is best for submitting data but
not for retrieving data.

Example

The Winform SAPUpdat e TRFC method gives an example of TRFC coding.

November 2002 57

2 SAP Client Programming w

2.10 TRFC Client Programming

2.10.1 RfcTID Class

The RfcTID class is used with QRFC and TRFC processing. A transaction ID (TID) is a 24
character long unique identifier used in the SAP system. It can be mapped back and forth to
a system GUID using the functions described below.

[CH]
public class RfcTID : System Obj ect

Public Constructors

public static SAP. Connector.RfcTID | Create a new TID from the SAP .Connector

NewTI D () static NewT| D method

public RfcTID (System Guid guid) Create a new TID from an existing
System Gui d

Public Methods

public System Guid ToGuid () Convert from a TID to a GUID
public virtual System String Convert the TID to a string
ToString ()

58 November 2002

w 2 SAP Client Programming

2.11 QRFC Client Programming

2.11 QRFC Client Programming

QRFC is a type of TRFC programming that guarantees the function will be run in a certain
order (if and when it is selected to run by the system administrator).

Example

November 2002 59

2 SAP Client Programming

2.11.1 RfcQueueltem Class

The Rf cQueuel t emclass is used to submit an RFC via QRFC.

[CH]
public class RfcQueueltem :

Public Constructors

Syst em Obj ect

public RfcQueueltem (System String
nane , System|nt32 index ,
SAP. Connector. RfcTI D tid)

Creates an instance of an Rf cQueuel t em
from a queue name, queue index and RFC tid.
If a queue already exists in SAP, the function
will be added at that index. If not, a queue will
be created

Public Properties

Queuel ndex

The index to which the function will be added to
the SAP queue

QueueNane The name of the SAP queue to add to or to
create if it does not already exist
TID The TID used to submit the RFC to the SAP

system

60

November 2002

SAbd

2 SAP Client Programming

2.12 Connection Classes
2.12.1 SAPConnection Class

2.12 Connection Classes

The SAPConnect i on class is used to manage the connection to the SAP system. Some
basis information about the system you are connected to can also be determined from this

class.

[CH]
public class SAPConnection :

Public Constructors

Syst em Obj ect

publ i ¢ SAPConnecti on
(SAP. Connect or . Desti nati on dest)

Creates an SAP connection from a destination
class

publ i ¢ SAPConnection (System String
connStri ng)

Creates an instance of the SAP connection
from a connection string. For example from the
SAPI ogonDest i nati on or a manually
created connection string

Public Methods

Accept

C ose The d ose method should be called after the
RFC is completed

Di spose

Fi nalize

Open The Open method must be called before the

RFC can be executed

Public Properties

Appl i cati onServer

Reads only property showing basis information
about the SAP system

CodePageEncodi ng

Reads only property showing basis information
about the SAP system

ConnectionString

Reads only property showing basis information
about the SAP system

Ker nel Rel ease

Reads only property showing basis information
about the SAP system

OwnCodePage

Reads only property showing basis information
about the SAP system

Par t ner CodePage

Reads only property showing basis information
about the SAP system

Systen D

Reads only property showing basis information
about the SAP system

November 2002

61

2 SAP Client Programming w

2.12 Connection Classes

Syst emNunber Reads only property showing basis information
about the SAP system

Syst enRel ease Reads only property showing basis information
about the SAP system

62 November 2002

w 2 SAP Client Programming

2.12 Connection Classes

2.12.2 SAPConnectionPool Class

Connection pooling is a more sophisticated way of managing SAP Connections. In a two-tier
deployment we do not recommend to use this as each client has its own connection. In an n-
tier deployment where multiple users are using the same connection attributes (for example a
web site that is accessed by many users) it may make sense to use connection pooling.
Alternatively, consider using the SAPLogi n Provi der and SAPLogi n Form

[CH]
public class SAPConnecti onPool : System bj ect

Public Constructor

publ i ¢ SAPConnecti onPool () Static object of the SAP .Connector

Public Methods

public static Gets a connection from the connection pool by
SAP. Connect or . SAPConnect i on passing in the connection string
Get Connection (System String
connectionString)

public static void ReturnConnection | Returns the connection to the connection pool
(SAP. Connect or . SAPConnecti on
connecti on)

Example

The sample application DNCWebSer vi ceSanpl e uses connection pooling.

usi ng(proxy. Connecti on =
SAP. Connect or . SAPConnect i onPool . Get Connecti on(t hi s. desti nati onl. Connect
i onString))

November 2002 63

2 SAP Client Programming w

2.13 Data Binding with SAPTable

2.13 Data Binding with SAPTable

SAPTables implement the proper .NET interfaces that allow them to be data-bound to any
.NET data aware control such as a data grid, combo-box or list control. To databind to a .NET
control set the dat asour ce property to the name of the SAP table.

dat aGri d1. Dat aSour ce = BRFCKNA1Tabl el;

In Windows forms there is no need to call t hi s. Dat abi nd() but you must do so in ASP
.NET datagrid to update the datagrid.

Coding Recommendations for SAPTable Parameters in Your Code
e Pass OUTPUT Tables uninitialized

If you do not need all TABLE parameters you can remove them from the RFC signature in
the Visual Studio .NET designer. This only works when the table is also OPTI ONAL.

For example, to call RFC_CUSTOVER GET which has an OQUTPUT table of customer
records, the table variable t bl Cust is passed unitialized.

SAPProxyl proxy = new SAPProxyl();

/I create an SAP table but as it's an in parameter don't need to instantiate it for the rfc call
BRFCKNAZ1Table tbICust = new BRFCKNA1Table();

using(proxy.Connection =
SAP.Connector.SAPConnectionPool.GetConnection(this.destination1.ConnectionString))

{

/I call the RFC with the signature defined by SAP
proxy.Rfc_Customer_Get(CustNo, CustName, ref tblCust);

}

« Fill INPUT TABLES With Values

A TABLE is always passed by REF and is therefore both an I N and QUT parameter.
Since a table is a collection you can fill it in a loop for example:

for(int i = 0; i < nunber_of_lines; i++)
{
| DRANGE nySel ecti on = new | DRANGE() ;
| DRANGE. Sign = "I"
| DRANGE. Opti on = " BT"
| DRANGE. Low= "0000001000"
| DRANGETabl e. Add(mySel ecti on) ;

Alternatively you can create an additional constructor with the parameters you want to fill.

for(int i = 0; i < nunmber_of lines; i++)

64 November 2002

SAbd

2.13 Data Binding with SAPTable

| DRANGETabl e. Add(new | DRANGE(“1 ", " BT”, " 0000001000")) ;

For TABLES that are input parameters you have to populate the values yourself before
calling the SAP RFC. For TABLES that are output parameters the SAP marshalling code
populates the values for you automatically.

* Clearing Values From the Table

When an exception is returned, the TABLE object is not reinitialized. If you had made a
previously successful method call and the TABLE contains values, these will not be
reinitialized after an exception has occurred. In this case you can keep the last (good)
results. You can use the table’s clear() method to initialize the values yourself.

e Getting Runtime Information About the RFC TABLES

SAP Tables are built on the . NET Col | ect i onBase class. Therefore they support
indexers and other array operations to allow for easy management of the members in the
array.

Field metadata information can be determined from the structure using the static method:
Get SAPFi el dsSchenma(System Type t).

The type parameter is the data type of SAPSt r uct ur e (in this case the type of
BAPI CUSTOMER _| DRANGE).

SAPFi el d[] nyFields =
BAPI CUSTOVER | DRANGE. Get Fi el dsSchema(t ypeof (BAPI CUSTOVER | DRANGE)) ;

You can get metadata information about each field either with a f or each statement or using
the | engt h property of the SAPFi el d array.

November 2002

65

2.14 Programming with Visual Basic .NET w

2.13 Data Binding with SAPTable

2.14 Programming with Visual Basic .NET

SAP Connector proxies are generated in Microsoft Visual C# but you can access them in any
common language runtime language (Visual Basic, Smalltalk, Python, Managed C++, etc.).
The proxy itself must still be created as a C# project and added as a reference to your
project. Within C# projects, you can add the proxy code to the same project. While the
samples provided with the connector include the SAP proxy code in each project we do not
recommend this approach except to illustrate the concepts of the connector. Normally, you
create and compile the proxy class separately from the solutions that use the proxy. For
example, it is often a good idea to put both the SAP. Connect or. dl | and the generated
proxy into the global assembly cache so that it can be accessed by all projects that require
these SAP objects and minimizes the number of proxy components to maintain. Therefore,
you can choose which language to use with the SAP .NET Connector.

The SAP toolbox designer components work with both C# and Visual Basic .NET projects.
For other languages you may have to add a variable to these classes yourself. The exception
to this is the connect code template code. This code is designed to work with C# projects
so it will not produce syntactically correct Visual Basic .NET code for connecting and calling
the proxy functions. To reproduce the template code manually, is very simple. It involves the
following steps:

» Declare parameters for the call (for example, a proxy object and a connection)
» Call the RFC method(s)
* Adding error handling (for example, Try/ Cat ch/ fi nal | y)

Example in Visual Basic. NET

Private Sub btnSearch_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnSearch.Click

' Declare parameters here
Dim proxy As New CompiledProxy.CompiledProxy()
' note: compiled proxy is a SAP connector class project in this solution or

‘ could be the proxy in the GAC

‘ get the connection from SAP destination component (added from toolbox)

proxy.Connection = New SAP.Connector.SAPConnection(Me.Destinationl)

' Call methods here
proxy.Rfc_Customer_Get("", txtSelection.Text, BrfcknAlTablel)

End Sub
End Class

66 November 2002

w 3 SAP RFC Server Programming

3 SAP RFC Server Programming

To create an RFC server with the SAP .NET Connector, create a new project using SAP
Connector Class. Select the object type Server Stub.

Within the proxy you have to provide the implementation for the function. The SAP system
acts as the client, calling your implementation of the function. For example, if you had an
RFC server that implemented BAPI _CUSTOVER_GETLI ST you have to populate the
customer address list and special data tables in the BAPI _CUSTOVER GETLI ST method of
your generated server stub.

The generated server code has methods for calling the function as RFC or TRFC. The
methods for TRFC processing are generated for you, for example

CheckTransacti on(Rf cTlI D), Conmit Transacti on(Rf cTI D),
Confirmlransacti on(Rf cTl D), Rol | backTransacti on(Rf cTl D).

The SAP Server object has a “host” container to manage one or many RFC Servers. Each
RFC server can contain different connection properties (for example, system, gateway,
program ID). In the case where the connection information is the same (for example, same
program ID), the SAP system calls each RFC Server in a round-robin approach.

This makes it easy to create and manage a multi-threaded, highly responsive RFC server
application. When your RFC server application is done, it often makes sense to deploy it as a
Windows Service. The SAPSer ver Host object maps very closely to how Windows services
are managed, for example, there is a st art, st op and pause functionality provided in the
SAPSer ver Host or alternatively on each individual server.

November 2002

67

3 SAP RFC Server Programming

SAPd

3.1 SAPServer Class

3.1 SAPServer Class

The SAPSer ver class is generated for you by the SAPWSDL file and the

SAPConnect or Gener at or custom tool in Visual Studio. In addition to the classes which are
maintained by the custom tool an additional class SAPPr oxy 1l npl . cs is created as an
example and starting point for the server implementation. You can overwrite and modify it as

required.

The SAPSer ver class should be used together with the SAPSer ver Host class.

[C#

public class SAPServer

Public Constructors

Syst em Conponent Model . Conponent

publ i c SAPServer

(System String
programd , System String gwhost
System String sapgwxx ,

System String codepage |,

Creates an instance of SAPSer ver and adds it
to the SAPSer ver Host instance you specify.
You specify the connection parameters
individually

SAP. Connect or . SAPSer ver Host host)

public SAPServer (string[] args , Creates an instance of SAPSer ver and adds it

SAP. Connect or . SAPSer ver Host host) to the SAPSer ver Host instance you specify.
You specify the connection parameters in the
command line arguments array (ar gs)

public SAPServer (string[] args) Same as above except it does not add the

server to the SAPSer ver Host

publ i c SAPServer
connectionString

SAP. Connect or . SAPSer ver Host

(System String

host)

Creates an instance of SAPSer ver and adds it
to the SAPSer ver Host instance you specify.
You specify the connection parameters
individually

publ i c SAPServer

(System String
program d , System String gwhost
System String sapgwxx ,
System String codepage)

Same as above except it does not add the
server to the SAPSer ver Host

publ i c SAPServer
connectionString)

(System String

Creates an instance of SAPSer ver with a
connection string (for example, —a<PROQ D> -
g<gw host server> -x<gat eway
service> (optional —-c<codepage#>).
Does not add the server to a host

publ i c SAPServer

()

Creates an instance of SAPSer ver but does
nothing else. You have to set connection
properties and optionally a host in a separate
step

68

November 2002

SAbd

3 SAP RFC Server Programming

Public Methods

3.1 SAPServer Class

public virtual SystemInt32
CheckTransacti on
(SAP. Connector. RfcTID tid)

See SAPServer and TRFC [Paqe

public virtual SystemInt32
Commi t Tr ansacti on
(SAP. Connector. RfcTID tid)

See SAPServer and TRFC [Paqeﬁl

public virtual SystemInt32
Confi rmlransacti on
(SAP. Connector. RfcTID tid)

See SAPServer and TRFC [Paqe

public void Continue ()

Resumes the server after being paused.

public void Pause ()

Pauses the server

public virtual void
Rol | backTr ansacti on
(SAP. Connector. RfcTID tid)

See SAPServer and TRFC [Page[73]

public void Start ()

Starts the server. This is normally the first step
after creating the server(s).

public void Stop ()

Stops the server

Public Properties

public string Program D [get, set
]

The program ID as registered on the
SAPGat eway and in the TRFC destination
(transaction SMb9). For example nyPr ogl D.
This is case sensitive!

public string SAPCodepage [get,
set]

Optional - the codepage to use (for example .
4103). Code page 4103 is Unicode (UTF16). If
the SAP system you are communicating with is
not Unicode (for example release 4.6 Kaniji)
you may need to change this value

public string SAPGat ewayHost
set]

[get,

The name of the SAP Gateway host (for
example PClI NTEL11)

public string SAPGat ewayService |
get, set]

The name of the SAP Gateway service (for
example sapgw00)

Example

See the sample RFCSer ver Consol e for an RFC server implementation of

RFC_CUSTOVER GET.

November 2002

69

3 SAP RFC Server Programming w
3.2. Calling our RFC .NET Server from SAP Programs

3.2. Calling our RFC .NET Server from SAP Programs

To execute our .NET server stub application from the SAP system we need to execute the
ABAP command Cal I function X Destination Y. This report calls our proxy and
writes the results to screen. Alternatively, you can use the SAP function module’s single test
capability with the TRFC destination for your .NET server stub.

To create a TRFC destination for the SAP .NET server stub create a destination of type T
(TRFC) in transaction code SM69. The program ID in your server stub is case sensitive.

Example

70 November 2002

3 SAP RFC Server Programming
3.2. Calling our RFC .NET Server from SAP Programs

&

The entry point in the C# method is the method with the function module
name being called from the SAP system (for example, RFC_CUSTOVER_GET).
In Microsoft Visual Studio, you can set a breakpoint here and examine the
input values from the SAP system. This provides a similar idea to the
ABAP_DEBUG functionality that is provided in the client proxy.

November 2002 71

3 SAP RFC Server Programming w

3.3 Monitoring and Debugging SAPServer Stubs

3.3 Monitoring and Debugging SAPServer Stubs

In RFC server code you can set a breakpoint directly in the C# class and see when the
function is called by the SAP system. You can monitor TRFC calls to your server from the
TRFC monitor in the SAP system with transaction SM68. From here you can also resend the
function call to your server. Use the SAP queue monitor (transaction SMQR) to monitor QRFC
calls.

You can do advanced tracing within the SAP system, for example from transaction code
SMb0 and by examining the work process trace files (for example, dev_wO0 in the SAP work
directory).

72 November 2002

w 3 SAP RFC Server Programming

3.4 SAPServer and TRFC

3.4 SAPServer and TRFC

An RFC server application allows you to use .NET functionality within your SAP system. RFC
servers can be (hormal) RFC, TRFC or QRFC servers.

To write a QRFC server, you have to implement the SAP queuing mechanism. For purposes
where you want queuing, we recommend to use Microsoft Message Queue in a TRFC server.

A TRFC server makes sense when have to send information only once from the SAP system
to another application (for example, sending a purchase order) . TRFC is required if you want
to write an application to receive SAP IDOCS. On your TRFC server, you must manage a
connection to a transactional store such as Microsoft SQL Server. You require a transaction
store to ensure you can keep track of and manage all Rf cTI D sent to you from the SAP
system so that you can create the TI D and the function execution within a transaction. You
should therefore override the base class CheckTr ansacti on and Commi t Tr ansact i on
methods. The base method returns 0 indicating success.

For TRFC, you must implement the following methods:

Method Explanation

1. CheckTransacti on When this method is called you should search your TI D
database to determine if this transaction ID exists or not.
If it exists it means that we have already received the
request to execute the function. If not, this is the first time
and we should log the TI D with a status that indicates the
method is not yet executed. It should return the following:

0 —Itis a new TI D. Begin transaction and insert Tl D into
our database

1 - TI Dalready exists in our database, but is not yet
confirmed in SAP system (client). SAP will confirm on its
end. No further action is required

Other — there is an error (for example database
connection is down. This tells the SAP system to try
again later)

2. Met hod itself (void) In the transaction, execute the function.

If there is a problem, throw an exception

3. Commi t Tr ansacti on This method is called if you do not throw an exception
during the actual method execution (step 2).

When the method is called, you should commit the
transaction and return the following:

0 — committed successfully

Other — Failure

4, Rol | backTr ansacti on This function is called after the method execution failed
because you raised an exception. You can rollback the
transaction at this point or in the method.

5. Confi rmiransacti on This method is simply an opportunity for you to clean up
your TI D database by removing Tl D values that have
been fully executed

0 —means it is ok

Other values — means it is not ok.

November 2002 73

3 SAP RFC Server Programming w

3.4 SAPServer and TRFC

If the transaction fails at any point, the SAP system tries to resubmit it. By default, the system
attempts to resubmit the transaction every 15 minutes up to a maximum of 30 attempts.
However, you can configure the resubmission parameters individually for each RFC
destination using transaction SM69. From the destination maintenance screen, choose
Destination - TRFC options.

Graphically this process looks like this:

SAP System Windows 2000/XP
ABAP programm
prog .NET component
CALL FUNCTI ON
, XYZ' | N BACKGROUND Transaction TID
— TASK. . . Mgmt
DESTI NATI ON dest .NET Connector
» Begin L p] Insert
COW T WORK B CheckTIl D OnCheckTl D—p] TS D
Functi on »| Funct i on
XYZ < XYZ
Commi t P oncommi t __,| Commit
@ < Trans
Confirm P nConfirm) Delete
™ TID
tRFC admin

74 November 2002

w 3 SAP RFC Server Programming

3.5 RFC Server Exceptions

3.5 RFC Server Exceptions

If an exception is thrown while the SAPSer ver is executing, this exception will be passed to
the SAPServerHost on which the SAPSer ver instance is hosted by calling the

SAPSer ver Host 's OnSer ver Except i on function. This is a virtual function and can be
overridden in the derived class.

SAP ABAP exceptions can be returned from your RFC Server component by throwing an
RFCAbapExcept i on. The Rf cAbapExcept i on contains two strings: err or code and
nessage.

Error code is the name of the exception in ABAP/4 (for example, NOTHI NG_SPECI FI ED)
and is referenced inside the ABAP/4 program as a SY- SUBRC code. Message is mapped to
SY- M5GV1 and can be examined for additional detail.

Example:

For a complete RFC Server example with exception handling, see the RFCSer ver Consol e
sample.

November 2002 75

3 SAP RFC Server Programming

SAPd

3.6 SAPIDocReceiver

3.6 SAPIDocReceiver

The SAPI DocRecei ver class is a TRFC server implementation used to receive SAP
intermediate documents from an SAP system. An example of an IDOC might be a customer
sales order or a material master record. IDOC records are typically used in EDI scenarios.
See the | docRecei ver Servi ce sample for example code.

[CH] _
public class SAPI DocRecei ver

SAP. Connect or . SAPSer ver

Public Constructors

publ i c SAPI DocRecei ver (string[]
args , SAP. Connect or. SAPSer ver Host
host)

Creates a new SAPI DocRecei ver and
attaches to a SAPSer ver host . Gets the
connection information from args.

publ i ¢ SAPI DocRecei ver
args)

(string[]

Creates a new SAPI DocRecei ver and does
not attach to a SAPSer ver host . Gets the
connection information from args.

publ i c SAPI DocRecei ver (
System String ConnectionString ,
SAP. Connect or . SAPSer ver Host host)

Creates a new SAPI DocRecei ver and
attaches to a SAPSer ver host . Gets the
connection information from a connection
string.

publ i ¢ SAPI DocRecei ver (
System String ConnectionString)

Creates a new SAPI DocRecei ver and does
not attach to a SAPSer ver host . Gets the
connection information from args.

publ i c SAPI DocReceiver ()

Creates a new SAPI DocRecei ver without
connection information. Does not attach to a
SAPSer ver host .

Public Events

public event
SAP. Connect or . SAPI DocRecei ver. Recei
veEvent Handl er Begi nRecei ve

Raised when the IDOC transmission from SAP
is first received. You must define an event
handler for this event in your code.

public event
SAP. Connect or . SAPI DocRecei ver . Recei
veEvent Handl er EndRecei ve

Called at the end of the transmission. You must
define an event handler for this event in your
code.

Remarks

SAPI DocRecei ver is based on SAPSer ver and can be managed just like other

SAPSer ver classes (added to hosts, started and stopped, etc.) The SAPI DocRecei ver
adds the Begi nRecei ve and EndRecei ve events to the base implementation. These
events are called when an IDOC transmission is first received and after the transmission is
completed respectively. The complexity of working with IDOCs is in large part managed by

the component’s internal implementation details.

Example

For a complete example see the sample | docRecei ver Servi ce.

76

November 2002

SAbd

3.6 SAPIDocReceiver

Creating the variables for IDOC receiver and registering the event handlers

Example: BeginReceive event handler

Example: EndReceive event handler

November 2002 77

4 Data Type Reference

4.1 RFC To .NET Data Type Mapping

4 Data Type Reference

4.1 RFC To .NET Data Type Mapping

Simple Data Types

The following data types are mapped directly to .NET base data types in the main C# proxy

class.

ABAP Type NET CLS
C (String) String

| (integer) Int32

F (Float) Double
D (Date) String
T (Time) String

P (BCD Packed, Currency, Decimal, Qty) Decimal
N (Numc) String

X (Binary and Raw) Byte []
RFC String String
XString String

Comments on Simple Data Types

« ABAP type N (numeric) data is mapped to a STRI NG data type in the C# proxy. It
contains numeric data such as invoice numbers. Some type N fields like invoice number
or customer number require you to enter the string with leading zeroes. If in your
application the customer number field is numeric, be sure to convert your entry back to
the appropriately formatted string before using it in the proxy.

« Date / Time fields are mapped to .NET STRING data types in the C# proxy. The format of
the string is the same as the SAP internal storage of the date and time. Specifically for
date this is YYYYMVDD and for time it is HHMVBS. The SAP .NET connector provides
functions specifically to help you convert from SAP Date/Time fields stored as string to a

.NET date or time field.
Complex Data Types

SAP Data Type

.NET Data Type

Structure

C# class derived from SAPSt r uct ur e

Tabl e (1 TAB)

C# class derived from SAPTabl e

(New) Hierarchical Table (type Il
| TAB)

Not supported in this version

78

November 2002

SAbd

4 Data Type Reference

4.2 SAPTable Class

4.2 SAPTable Class

The SAPTabl e class represents a very common data type in the SAP system and is
frequently used to hold the results of the RFC call. It is occasionally used to pass in selection
variables to the RFC call. A SAPTabl e is made of SAPSt r uct ur es of a single type. For
example a SAPTabl e called RFCFuncTabl e would be made up of RFCFunc structures

(rows).

[CH]
public class SAPTabl e :

Public Constructors

System Col | ecti ons. Col | ecti onBase

protected SAPTable ()

Creates a new instance of SAP Table. You should use
the SAP table control to reference SAP Tables in your
code. The SAP table will be created automatically by
the connector.

Public Methods

Add (SAPSt ruct ure)

Adds a new row (SAPSt r uct ur e) to the table

Cont ai ns(SAPSt ruct ure)

Returns true if the SAPTabl e contains that row

CopyTo(SAPSt ructure[],int)

Copies into a SAPStructure array up to the given
index

Cr eat eNewRow()

Creates a new blank row in the SAPTabl e

Get El emrent Type()

Returns the type of the particular SAPSt r uct ur e (for
example, RFCFunc or other SAP structure)

| ndexOF (SAPSt ruct ur e)

Returns the current index ID

Insert(int, SAPStructure)

Inserts at the index given a SAP structure

Rermove(SAPSt r uct ur e)

Removes the SAP structure specified from the table

SortBy(string fiel dnane,
string direction)

The SAP table now supports sorting, for example in a
datagrid.

ToADODat aTabl e

Creates a new ADO .NET DataTable from the SAP
Table.

Fr omADODat aTabl e

Creates the SAP Table from an ADO .NET DataTable.
Note that the schemas must be IDENTICAL.

Public Properties

Thi s[int]

An indexer to get access to the current SAP
structure

Example

See the Winform sample for examples of using the SAPTabl e class.

November 2002

79

4 Data Type Reference w

4.3 SAPStructure Class

4.3 SAPStructure Class

The SAPSt ruct ur e class represents a very common data type in the SAP system and is
frequently used to hold the results of the RFC call as part of a SAPTabl e or as a BAPI error
return. A structure is made up of several simple data types and can be thought of as a row of
a table. The SAPSt r uct ur e is generated for you by the SAP .NET Connector and should
not be modified outside of the SAPConnectorGenerator tool.

[CH]
public class SAPStructure : System (Object

Public Constructors

protected SAPStructure () The SAPst r uct ur e is the base class for a
specific type of SAP Structure. For example a
structure containing customer address data
(customer, city, state, phone, etc.)

Example

See the Winform sample application for example code dealing with SAP Structures.

80 November 2002

w 4 Data Type Reference

4.4 RFC Parameter Mapping to C#

4.4 RFC Parameter Mapping to C#

RFC parameters fall into these categories:
« | MPORT

Always pass values from the calling program to the function module unless this is marked
as an optional parameter.

* CHANG NG

These are passed to the function module from the calling program and are then passed
back to the program.

« EXPORT

These are passed from the function module to the calling program unless marked as an
optional parameter.

» TABLES

These represent an array of SAP structure instances. They can be | Nor OQUT
parameters.

« | MPORT, EXPORT, CHANG NG

These parameter types cannot be tables. They can be structures or other simple data
types.

+ OPTI ONAL
Parameters can also be defined as optional.

A simple mapping of RFC parameter types to C# parameter types follows:

RFC Parameter Type C# Parameter Type
| MPORT I'N

EXPORT aur

CHANG NG REF (I n/Qut)
TABLES REF (1 n/CQut)

November 2002 81

5 Samples w

5.1 Windows Form Sample

5 Samples

Several samples are provided with the connector to help you understand how the proxies
work and to illustrate the topics discussed in this reference. They are provided without
warranty or support.

The samples are designed to work against the Mini SAP Web Application Server 6.20 or any
system supporting RFC_CUSTOVER_GET and RFC_CUSTOMER _UPDATE. For the IDOC
samples you need a system than can accept IDOCs. An Exchange_r at e01 IDOC type is
provided as a sample that should work with the mini SAP system. All samples are written in
Microsoft C#, except for the Visual Basic windows form sample. Before using the samples, be
sure to verify the login parameters in the SAP destination component. The samples are in the
folder Sanpl es. To launch the samples in Visual Studio .NET double-click on

Sanpl es. sl n.

5.1 Windows Form Sample

This sample is a Windows form and illustrates the following concepts:
e SAPClient programming
* Dealing with exceptions
» Asynchronous method calls
« Debugging and tracing
e Working with SAP Tables (sorting, converting to ADO .NET, data binding)
* Synchronous, transactional and Queued RFC updates

The Windows form sample uses the RFC_CUSTOVER _GET function module. It accepts as
input a customer name string (for example, A*) and returns in a datagrid all customers that
match that selection.

To use the sample, you have to enter an SAP customer search selection criteria. All functions
are available from the sample’s application menu.

To use the option Save Results to SQL Server you must set the SQL logon parameters in the
component Sgl Connecti onl on forml. To do this, click on the property

Connecti onStri ng and use the drop down box. Let the Wizard construct the connection
string for you. You also need a table named cust in the Northwind database, and a stored
procedure called | nsert _cust . The SQL script to create both of these objects is located in
the subfolder SQL.

82 November 2002

w 5 Samples

5.2 Webform Sample

5.2 Webform Sample

The web form sample is the simple ASP .NET web form shown in the guide and illustrates
the following:

* SAPClient programming
e Using ASP .NET with the connector
e Databinding in web form

* Use of the SAPIlogin form

Before using this sample, you have to share the folder DNCWebApp.

November 2002 83

5 Samples w

5.3 Simple RFC Server

5.3 Simple RFC Server

This console application is a simple RFC server implementing the SAP function
RFC _CUSTOVER GET. Our .NET implementation, returns two customers back to the SAP
system and prints out the parameters sent to us by the SAP call.

This sample illustrates:
e Use of a Windows Console application with the connector
* Asimple RFC Server
e Calling a .NET server from SAP
e« Command line parameters for connecting to SAP gateway

» Using the RFC Server host with the same connection information for each server

This sample uses command line arguments to connect to the SAP gateway (for example,
—aMYPROG D —gLOCALHOST —xSAPGWMDO0), where —a is the program ID used in your
TCP/IP destination, - g is the gateway host and —x is the gateway service.

You can set the command line arguments in the Visual Studio .NET debugger by right-
clicking on the project RFCSer ver Consol e and selecting Properties — Configuration
properties - Debugging — Command Line Arguments.

Before calling this RFC server in the SAP system, you must have setup a TCP/IP destination
in your SAP system (type registration). You can call this sample RFC server by running
RFC_CUSTOMER _GET in single test from the RFC function builder (transaction SE37) inside of
the SAP system, with the destination of your TCP/IP destination. Alternatively, you can write
an Abap/4 program as described in Calling our RFC .NET Server from SAP Programs [Page

An example ABAP/4 program is provided in this sample’s “ABAP” directory.

84 November 2002

w 5 Samples

5.4 IDOC Receiver as a Windows Service

5.4 IDOC Receiver as a Windows Service

The windows service sample takes the SAP IDOC Receiver component and deploys it as a
Windows Service. You can see:

» How RFC servers and Windows Services are similar
* How to install a Windows Service that is also an SAP RFC . NET server
* Basic functions of the IDOC Receiver

« How to manage the connection parameters in the Windows Service properties

Before running this sample, you must install it using the Visual Studio utility
Installutil.exe.

Using the Visual Studio .NET command line, navigate to the folder containing I nstal | uti |
| docRecei ver Servi ce. exe (for example,
SAP . NET Connect or\ Sanpl es\ | docRecei ver Ser vi ce\ bi n\ Debug).

Run the command I nstal l util | docRecei ver Servi ce. exe. This should install the
Windows Service. You can verify this by looking at the Services manager in the
Administrative Tools. The Service name is .Net connect or |doc Servi ce.

&
To uninstall the Windows service run the command
Installutil -u |IdocReceiverService. exe.

You set the SAP connection string in this service’'s St art par anmet er s property. For
example if your TCP/IP destination used the program ID of nyPr ogl D and your SAP system
ran on your local machine, then the start parameters would be:

-anmyProgl D —gl ocal host —xSAPGWDO.

Messages are logged to the Windows Application Event Viewer. When received, SAP IDOCs
are appended to the following file: C: \ t enp\ i doc. t xt .

To enable your system to send IDOCS you must have a TCP/IP destination (type
registration), a configured partner profile (WE20) and a configured TRFC Port (WE21). The
Mini SAP Web Application Server 6.20 supports the IDOC type EXCHANGE RATEOL. For
convenience, you can find a sample IDOC file in the IDOC submitter sample’s Sanpl el doc
folder. If you have no IDOCs on your system you can submit this IDOC using the

| docSubmi t sample application. Then use the IDOC test utility (WE19), change the IDOC
header and submit it as an outbound IDOC to the TRFC Port representing this

| docRecei ver sample.

November 2002 85

5 Samples w

5.5 IDOC Submitter Windows Form

5.5 IDOC Submitter Windows Form

This application is a Windows form that loads an IDOC file and displays it on the form. You
can then submit the IDOC using the .NET connector’s | docSender component. For
convenience, an EXCHANGE_RATEO1 | DOC (ANSI encoded) file is provided in the folder
“Sanpl el doc”. This sample illustrates the following:

» Sending an IDOC file to SAP system
e Creating and confirming SAP Transaction ID (TID)

* Working with a stream reader to open IDOC file and display on Windows form.

86 November 2002

w 5 Samples

5.6 Simple RFC Web Service

5.6 Simple RFC Web Service

This application is an ASP .NET web service interface to RFC_CUSTOVER _GET. The web
method signature can be the same method signature as the SAP RFC method or it can be a
simplified method signature. However, since SAP Tables are complex data types you must
write a client to execute the web method. In other words, you cannot run the web service
using the default Web Services test harness provided by Visual Studio .NET. To allow you to
run the web service with the least effort, the method signature was slightly modified.

Before running this application you have to share the folder DNCWebSer vi ceSanpl e.

This sample illustrates a simple web service wrapper for RFC_CUSTOVER_GET.

November 2002 87

5 Samples w

5.7 Simple Visual Basic Windows Form

5.7 Simple Visual Basic Windows Form

The VBWinform project shows how to use a compiled SAP Proxy which was generated in C#
within your Visual Basic .NET project. To use Visual Basic or other CLR language with the
connector you simply have to set a reference to an existing or a new proxy. The proxy could
be in the global assembly cache (recommended) or within the same solution as your VB.NET
project (shown in this sample).

88 November 2002

w 5 Samples

5.8 X.509 Certificate Sample

5.8 X.509 Certificate Sample

Before using this sample, share the folder

\ SAP . NET Connect or\ Sanpl es\ DNCX509Cer t \ . This sample shows how to use X.509
certificates with the connector. Note that you must run this sample in HTTPS to get the X.509
certificate from IIS.

November 2002 89

	SAP .NET Connector
	Part I SAP .NET Connector Overview
	1 Features
	2 Prerequisites
	3 Creating an ASP .NET Web Application Using the SAP .NET Connector
	4 SAP Client Applications
	4.1 Project Types
	4.2 RFC or SOAP
	4.3 Connecting to the SAP System
	4.4 Authentication
	4.5 Asynchronous Methods
	4.6 TRFC and QRFC Support
	4.7 Monitoring and Debugging
	4.8 IDOC

	5 SAP .NET Server Applications
	5.1 Key Steps
	5.2 Authentication
	5.3 Monitoring and Debugging
	5.4 TRFC and QRFC

	Part II SAP .NET Connector Programmers’ Reference
	1 Overview of Classes
	2 SAP Client Programming
	2.1 SAPClient Class
	2.2 SAPClient Proxy Generation
	2.3 Customizing SAP Proxies
	2.4 SAPClient Methods
	2.5 SAPClient Exceptions
	2.6 Debugging of SAPClient Proxies
	2.7 Authentication
	2.8 SAPIDocSender Class
	2.9 Asynchronous Methods
	2.10 TRFC Client Programming
	2.11 QRFC Client Programming
	2.12 Connection Classes
	2.13 Data Binding with SAPTable
	2.14 Programming with Visual Basic .NET

	3 SAP RFC Server Programming
	3.1 SAPServer Class
	3.2. Calling our RFC .NET Server from SAP Programs
	3.3 Monitoring and Debugging SAPServer Stubs
	3.4 SAPServer and TRFC
	3.5 RFC Server Exceptions
	3.6 SAPIDocReceiver

	4 Data Type Reference
	4.1 RFC To .NET Data Type Mapping
	4.2 SAPTable Class
	4.3 SAPStructure Class
	4.4 RFC Parameter Mapping to C#

	5 Samples
	5.1 Windows Form Sample
	5.2 Webform Sample
	5.3 Simple RFC Server
	5.4 IDOC Receiver as a Windows Service
	5.5 IDOC Submitter Windows Form
	5.6 Simple RFC Web Service
	5.7 Simple Visual Basic Windows Form
	5.8 X.509 Certificate Sample

