

SAPSAPSAPSAP
®®®®
 .NET .NET .NET .NET

ConnectorConnectorConnectorConnector

Version 1.0Version 1.0Version 1.0Version 1.0

November 2002

© Copyright 2002 SAP AG. All rights reserved.

No part of this publication may be reproduced or transmitted in any
form or for any purpose without the express permission of SAP AG.
The information contained herein may be changed without prior
notice.

Some software products marketed by SAP AG and its distributors
contain proprietary software components of other software vendors.

Microsoft®, WINDOWS®, NT®, EXCEL®, Word®, PowerPoint® and
SQL Server® are registered trademarks of Microsoft Corporation.

IBM®, DB2®, DB2 Universal Database, OS/2®, Parallel Sysplex®,
MVS/ESA, AIX®, S/390®, AS/400®, OS/390®, OS/400®, iSeries,
pSeries, xSeries, zSeries, z/OS, AFP, Intelligent Miner, WebSphere®,
Netfinity®, Tivoli®, Informix and Informix® Dynamic Server

TM
 are

trademarks of IBM Corp. in USA and/or other countries.

ORACLE® is a registered trademark of ORACLE Corporation.

UNIX®, X/Open®, OSF/1®, and Motif ® are registered trademarks of
the Open Group.

LINUX is a registered trademark of Linus Torvalds and others.

Citrix®, the Citrix logo, ICA®, Program Neighborhood ®, MetaFrame®,
WinFrame®, VideoFrame®, MultiWin® and other Citrix product names
referenced herein are trademarks of Citrix Systems, Inc.

HTML, DHTML, XML, XHTML are trademarks or registered
trademarks of W3C®, World Wide Web Consortium, Massachusetts
Institute of Technology.

JAVA®
 is a registered trademark of Sun Microsystems, Inc.

J2EE™ is a registered trademark of Sun Microsystems, Inc.

JAVASCRIPT® is a registered trademark of Sun Microsystems, Inc.,
used under license for technology invented and implemented by
Netscape.

SAP, SAP Logo, R/2, RIVA, R/3, SAP ArchiveLink, SAP Business
Workflow, WebFlow, SAP EarlyWatch, BAPI, SAPPHIRE,
Management Cockpit, mySAP, mySAP.com, and other SAP products
and services mentioned herein as well as their respective logos are
trademarks or registered trademarks of SAP AG in Germany and in
several other countries all over the world. MarketSet and Enterprise
Buyer are jointly owned trademarks of SAP Markets and Commerce
One. All other product and service names mentioned are the
trademarks of their respective owners.

Disclaimer
Some components of this product are based on Java™. Any code
change in these components may cause unpredictable and severe
malfunctions and is therefore expressively prohibited, as is any
decompilation of these components.

Any Java™ Source Code delivered with this product is only to be used
by SAP’s Support Services and may not be modified or altered in any
way.

Documentation in the SAP Service Marketplace
You can find this documentation at the following address:
http://service.sap.com/connectorshttp://service.sap.com/connectorshttp://service.sap.com/connectorshttp://service.sap.com/connectors

SAP AGSAP AGSAP AGSAP AG
Neurottstraße 16
69190 Walldorf
Germany
T +49/18 05/34 34 24
F +49/18 05/34 34 20
www.sap.comwww.sap.comwww.sap.comwww.sap.com

Typographic Conventions

Type Style Represents

Example Text Words or characters that
appear on the screen. These
include field names, screen
titles, pushbuttons as well as
menu names, paths and
options.

Cross-references to other
documentation

Example text Emphasized words or phrases
in body text, titles of graphics
and tables

EXAMPLE TEXT Names of elements in the
system. These include report
names, program names,
transaction codes, table
names, and individual key
words of a programming
language, when surrounded by
body text, for example,
SELECT and INCLUDE.

Example text Screen output. This includes
file and directory names and
their paths, messages, names
of variables and parameters,
source code as well as names
of installation, upgrade and
database tools.

Example text Exact user entry. These are
words or characters that you
enter in the system exactly as
they appear in the
documentation.

<Example
text>

Variable user entry. Pointed
brackets indicate that you
replace these words and
characters with appropriate
entries.

EXAMPLE TEXT Keys on the keyboard, for
example, function keys (such
as F2) or the ENTER key.

Icons

Icon Meaning

Caution

Example

Note

Recommendation

Syntax

SAP .NET Connector

4 November 2002

Contents

SAP .NET Connector... 6
Part I SAP .NET Connector Overview.. 6

1 Features..8
2 Prerequisites..9
3 Creating an ASP .NET Web Application Using the SAP .NET
Connector..10
4 SAP Client Applications..13

4.1 Project Types ...13
4.2 RFC or SOAP...13
4.3 Connecting to the SAP System..13
4.4 Authentication...14
4.5 Asynchronous Methods..14
4.6 TRFC and QRFC Support..14
4.7 Monitoring and Debugging ...15
4.8 IDOC ..16

5 SAP .NET Server Applications ...17
5.1 Key Steps ...18
5.2 Authentication...18
5.3 Monitoring and Debugging ...18
5.4 TRFC and QRFC..18

Part II SAP .NET Connector Programmers’ Reference.................... 20
1 Overview of Classes..20
2 SAP Client Programming..22

2.1 SAPClient Class ...22
2.2 SAPClient Proxy Generation..23
2.3 Customizing SAP Proxies ..25
2.4 SAPClient Methods ..27
2.5 SAPClient Exceptions ..29

2.5.1 RfcCommunicationException Class ...31
2.5.2 RfcException Class ..32
2.5.3 RfcAbapException Class ..33
2.5.4 RfcLogonException Class ..34
2.5.5 RfcSystemException Class ..35

2.6 Debugging of SAPClient Proxies ...36
2.7 Authentication...37

2.7.1 User Name and Password..38
2.7.2 Single Sign-On..39

2.7.2.1 X.509 Certificates..40
2.7.2.2 Microsoft .NET Passport ...44
2.7.2.3 Kerberos and NTLM..45
2.7.2.4 Destination Class ..47
2.7.2.5 SAPLogonDestination Class...49
2.7.2.6 SAPLoginProvider Class...51
2.7.2.7 SAP Login Form..52

2.8 SAPIDocSender Class ...53
2.9 Asynchronous Methods..55

 SAP .NET Connector

November 2002 5

2.10 TRFC Client Programming...57
2.10.1 RfcTID Class...58

2.11 QRFC Client Programming ..59
2.11.1 RfcQueueItem Class ..60

2. 12 Connection Classes ..61
2.12.1 SAPConnection Class ..61
2.12.2 SAPConnectionPool Class ...63

2.13 Data Binding with SAPClient..64
3 SAP RFC Server Programming ..67

3.1 SAPServer Class..68
3.2 Calling our RFC .NET Server from SAP Programs..70
3.3 Monitoring and Debugging SAPServer Stubs..72
3.4 SAPServer and TRFC..73

4 Data Type Reference ...78
4.1 RFC To .NET Data Type Mapping ...78
4.2 SAPTable Class ...79
4.3 SAPStructure Class..80
4.4 RFC Parameter Mapping to C#..81

5 Samples..82
5.1 Windows Form Sample ..82
5.2 Webform Samples..83
5.3 Simple RFC Server ..84
5.4 IDOC Receiver as a Windows Service...85
5.5 IDOC Submitter Windows Form...86
5.6 Simple RFC Web Service ..87
5.7 Simple Visual Basic Windows Form...88
5.8 X.509 Certificate Sample ...89

6 November 2002

SAP .NET Connector

Part I SAP .NET Connector Overview
The SAP .NET Connector is a programming environment inside of Visual Studio .NET that
enables communication between the Microsoft .NET platform and SAP Systems. It supports
SAP Remote Function Calls (RFC) and Web services, and allows you to write various
applications, for example, Web form, Windows form, and console applications within
Microsoft Visual Studio .NET. You can use all Common Language Runtime (CLR)
programming languages such as Visual Basic .NET, C#, or Managed C++.

This documentation presents an overview of some key features of SAP .NET Connector and
its architecture.

The connector is composed of several parts. First, there is extensive integration with Visual
Studio .NET including a wizard for generating SAP proxies from the SAP data dictionary
directly or from a WSDL file contained in the SAP IFR or a standard WSDL file. Within Visual
Studio the connector includes several designer components to make developing SAP
applications easier including destination components and an SAP Table component. SAP
tables are a very important data type because they usually contain the results of the RFC call
(for example a table of customer address data or sales orders). The SAP table component
allows SAP table parameters to be data bound to most .NET data aware controls. Within
Visual Studio you have graphical interfaces for the SAP proxies and you can easily customize
your solution in a familiar way. This allows you to easily understand and work with the objects
involved in interfacing with your SAP system and Microsoft .NET.

The Visual Studio developers can work in their choice of programming language (for example
Visual Basic, C++, C#) to interact with the SAP proxies. The SAP proxies themselves are
generated in C#. The SAP.NET connector provides a custom tool in Visual Studio so that
SAP proxies can be automatically updated and customized instead of having to make these
changes manually or having to rerun the proxy generation wizard.

Common Language
Runtime

.NET
Connector
Runtime

Web
Services

VB C++ C# …

Visual Studio.NET

Microsoft .NET

Proxy
Class

Generator

SAP .NET
Connector

mySAP Technology

BOR
DDIC

Interface
repository

RFC

SOAP

RFC Layer

SOAP Layer

Application

Design
time

Run
time

.NET Connector
Component (generated)

Common Language
Runtime

.NET
Connector
Runtime

Web
Services

VB C++ C# …

Visual Studio.NET

Microsoft .NET

Proxy
Class

Generator

SAP .NET
Connector

mySAP Technology

BOR
DDIC

Interface
repository

RFC

SOAP

RFC Layer

SOAP Layer

Application

Design
time

Run-

.NET Connector
Component (generated)

November 2002 7

At runtime, the SAP proxies communicate with the SAP system by either the SAP RFC
protocol (librfc32.dll) or via SOAP. SAP systems up to release 46D do not have SOAP
support while SAP systems starting from 6.20 can use either SOAP or RFC. Non-SAP
systems can be connected using SOAP. The SAP client solution is derived from the Microsoft
SoapHttpClientProtocol class. The SoapHttpClientProtocol class is part of the
Microsoft .NET framework and specifies the class proxies derive from when using SOAP.
This base class for SAP clients provides .NET developers with a familiar way to use SAP
functionality.

Deployment of the connector is made easier by use of configuration files so that values need
not be hard coded in the application but instead updated in XML files. In addition, the
connector supports all SAP authentication options and can be used in any type of Visual
Studio .NET solution such as web services, ASP.NET web application, Windows forms, NT
Service and more.

Runtime Architecture

Generated Proxy Classes

SAP .NET Connector Class Library

LIBRFC32.DLL .NET SOAP Classes

SAP Server = 4.6D SAP Server with Web Server
 (> 620) or non SAP Server

RFC
 Protocol

 SOAP
 Protocol

.NET Business Application

Config file

1 Features

8 November 2002

1 Features

Using SAP .NET Connector and SAP .NET Proxy Wizard, you can:

• Easily write .NET Windows and Web form applications that access SAP remote enabled
functions (RFC)

• Write client applications for the SAP server using either RFCs or HTTP/SOAP/XML
(outside-in)

• Write RFC server applications that run in a .NET environment and can be implemented
from within the SAP System (inside-out)

You can develop entirely within Microsoft Visual Studio .NET:

• Use the Proxy Wizard integrated in Microsoft Visual Studio .NET to generate proxy
objects that are easy to use

• Use any common programming language that has full access to the Microsoft .NET
Framework

• Use IntelliSense help in Microsoft Visual Studio .NET through strongly typed data models
and method signatures

• Bind SAP tables and structures to Windows and Web form controls (DataBinding)

• Use security authentication methods such as Single Sign-on, Kerberos, and Microsoft
Passport

 2 Prerequisites

November 2002 9

2 Prerequisites
Development System Deployment System

• Windows 2000 or Windows XP

• Microsoft Visual Studio .NET

• Java Runtime Environment (JRE)
You can download JRE version 1.3 or later
from http://java.sun.com/j2se/1.3/jre

• SAP.Net.Setup.msi

Execute this file.

• Windows 2000 or Windows XP

• Microsoft .NET Framework
Download this file from
http://msdn.microsoft.com/netframework

• LIBRFC32.dll, Release 6.20 or higher

• SAP.NET.Connector.dll

http://java.sun.com/j2se/1.3/jre
http://msdn.microsoft.com/netframework

3 Creating an ASP .NET Web Application Using the SAP .NET Connector

10 November 2002

3 Creating an ASP .NET Web Application Using
the SAP .NET Connector
The following example shows how to create a .NET project using Microsoft Visual Studio
.NET. In the example, a client application reads and displays customer data from an SAP
System using a search value and then displays it in a data grid.

The example uses the function module RFC_CUSTOMER_GET, which requires that customer
data exist in the target SAP System, for example, in IDES. Although it is possible to rename
all development objects and generated proxy classes, default names are used in this
example. This example is provided as part of the connector sample code (DNCWebApp).

Procedure
1. Open Microsoft Visual Studio .NET.

2. Create a new C# Web form project:

Choose New → New Project → Visual C# Projects → ASP .NET Web Application.

You can also create a project in any other common programming language
for .NET, for example, in Visual Basic .NET. In this case, you must add the
SAP .NET proxy classes as a separate project in the Microsoft Visual Studio
.NET solution.

3. Rename the form Webform1.aspx to Default.aspx.

4. Add Web controls to your Web form.

In our example, we add a TextBox, a Button and a DataGrid control.

5. Add proxy classes to connect the Web applications to your SAP server.

a. In the Solution Explorer, right-click on your project.

b. Choose Add → Add new item.

c. Select Web Project Items → SAP Connector Class and choose Open.

The SAP .NET Connector Wizard opens.

d. Decide from where you want to generate the proxy classes.

You can create proxies from:

− Web Services Description Language (WSDL) files that originate in an SAP
interface repository (IFR)

− An SAP server

− Standard WSDL files

e. Select the client proxy object type and select beautify names option.

f. Select the Remote Function Modules (RFM) you want to use in your proxy object.

You can use search filters to look for the Remote Function Modules. In the example,
enter the search argument RFC_CUST* in Name-Filter and select
RFC_CUSTOMER_GET.

g. Add the modules to your proxy object and choose Next.

 3 Creating an ASP .NET Web Application Using the SAP .NET Connector

November 2002 11

The proxy classes for the referenced table and structure types are automatically
created and added to the project.

6. Build the solution with Build → Build Solution.

7. Create an SAPLogin page to support user name and password authentication

a. In the Solution Explorer, right-click on your project.

b. Choose Add → Add New item.

c. Select Web Project Items → SAP Login Form

Leave the name as SAPLogin1.aspx.

8. Set the system connection information in the destination object of the SAPLogin1.aspx
page:

a. In the Solution Explorer window find the item SAPLogin1.aspx and double-click on
it to bring it up in the designer.

b. Look for the component destination1 on the bottom of the form.

c. Click on the destination component and set the properties for connecting to your SAP
system (for example AppServerHost and SystemNumber). The other properties
like client, Password and username will be set from the login page.

9. Databind the data grid to BRFCKNA1Table:

BRFCKNA1Table is the parameter of RFC_CUSTOMER_GET that contains the
list of customers.

a. Select SAP Table Wizard from the SAP proxy toolbox and Drag&Drop it to your
working area. In the dialog box, select BRFCKNA1Table.

b. Select the data grid, and under Properties change DataSource to BRFCKNA1Table
using the drop down list.

c. Customize the list of columns displayed on the data grid by modifying the Columns
collection property.

10. On the default.aspx page, double-click the Button control you added earlier to create
an event handler for the control.

11. Add the connect code to your project:

a. Select Connect code from the SAP proxy toolbox.

b. Drag&Drop it in the source code of your event handler.

A fragment of sample code is then inserted. It connects to the SAP server using the
authorization settings from the Proxy Wizard. Normally, you must change these
settings.

The code should look something like this:
private void btnSearch_Click(object sender, System.EventArgs e)

{
// Declare parameters here
SAPProxy1 proxy = new SAPProxy1();
try
{
proxy.Connection =
SAP.Connector.SAPLoginProvider.GetSAPConnection(this);
// Call methods here

3 Creating an ASP .NET Web Application Using the SAP .NET Connector

12 November 2002

proxy.Rfc_Customer_Get("", txtCust.Text, ref brfcknA1Table1);
// Now update Data Bindings. On WinForms this will be automatic, on
// WebForms call the following line
this.DataBind();
}
catch(Exception ex)
{

// If SAPLoginProvider.GetSAPConnection(this) cannot get a connection,
// we might get an error.
// Normally this can be ignored as it will automatically will force a
// relogon.
}
}

12. Build and run the application.

The browser window opens and you are redirected to your SAPLogin1.aspx login
page.

13. Enter connection data (for example user, password and client).

If you select Save this login information will be stored as an encrypted cookie
on your computer and will provide an alternative single sign-on capability the
next time you wish to access the site. If you do not select Save, the login
information will still be saved in the ASP .NET session state but will be lost
once the browser is closed.

14. Enter a search argument, for example A* in the TextBox field and choose Search.

Your application connects to the SAP System and displays the requested data in the
DataGrid.

 4 SAP Client Applications

 4.1 Project Types

November 2002 13

4 SAP Client Applications
The SAP client allows your .NET code to execute SAP functions that are remote-enabled
(RFC). Some typical uses for an SAP client application include:

• ASP .NET web application to access information on the SAP system (for example
sales orders status)

• Windows form application to provide a customized and highly interactive user
experience (for example to enter sales orders)

• Console application to access information from the SAP system as part of some NT
batch processing

• Web service to provide a SOAP interface to your SAP system prior to release 6.20,
which includes native SOAP interface.

In the SAP client solution, the SAP system is the server and the .NET application is the client
that interacts with the RFC. When you generate an SAP client application, a WSDL file is
added to your Visual Studio .NET project. This WSDL file in coordination with a custom tool in
Visual Studio creates several C# classes needed to communicate with the SAP system via
either RFC or SOAP. There is one class for the proxy itself, one for each export parameter
and two for each Table parameter in your RFC.

The SAP RFC is called as a method of the proxy object. There can be one or more RFC per
proxy. For example you could have a proxy with all customer-related RFCs in one library. The
parameters for each RFC can be customized within the Visual Studio designer so that
optional parameters can be removed, parameters can be renamed and default values
provided. You can also customize SAP structures by renaming or removing fields.

Visual Studio developers can work with the SAP proxies in their choice of programming
language. The proxies themselves are generated in C# so for projects written in other than
C# you have to add a new project of type SAP Connector Class to the Visual Studio
solution.

4.1 Project Types
We recommend using the SAP Connector Class project template for creating SAP .NET
Connector projects as you can reuse the proxy code. It is also worth considering placing the
SAP proxies in the global assembly cache if several applications are making use of them.

Alternatively you can add the SAP connector class directly to another type of project such as
a Windows Form, ASP .NET web application or ASP.NET web service. With other project
types you can generate the SAP proxy directly in the project or reference an existing SAP
Connector Library. When you select an existing SAP connector library you have to verify that
your project has a reference to the SAP .Connector library (sap.connector.dll).

4.2 RFC or SOAP
The choice of whether to use RFC or SOAP depends on which release of the SAP system is
available (for example, releases before 6.20) and other issues such as whether the system is
available on your intranet or outside the firewall. Depending on the connection string used to
create the proxy (for example, if it begins with http://), SOAP will be used to connect to
the SAP system otherwise RFC will be used to connect to the SAP system.

4.3 Connecting to the SAP System
The connection to SAP is managed within the proxy’s connection object. You do not have to
determine the status of the connection yourself as the connector manages this automatically.

4 SAP Client Applications

4.4 Authentication

14 November 2002

Before an RFC can be executed, the connection must be opened. After the RFC has finished
executing the connection should be closed.

For applications that have many concurrent users, the connector provides a connection pool
object. It is possible to get the connection from the pool instead of creating one for each
client. In this way connections are reused and performance is improved.

4.4 Authentication
The SAP .NET Connector supports all SAP authentication options including user name,
password and various single sign-on options such as Kerberos, NTLM, X.509 certificates and
SAP Logon tickets. In addition, the connector makes it easy to perform SAP authentication in
your application with the SAPDestination and SAPLogonDestination classes and in
ASP .NET applications with the SAPLogin Form.

We recommend you use the SAP logon classes rather than manually creating a connection
string with the logon information. The SAP logon classes support getting logon information at
runtime from a configuration file, SAPGUI or as another alternative, programmatically, for
example from Microsoft Active Directory.

4.5 Asynchronous Methods
Client applications support asynchronous method invocations. The main benefit of this is that
your SAP client application remains responsive even when the RFC call is taking some time.

Many areas of the .NET framework support asynchronous programming. SAP .NET
Connector classes are built in C# and take advantage of many .NET features including
asynchronous method invocations. Asynchronous programming techniques are important
with SAP RFC calls as some calls can take a long time to complete. During this time, a single
threaded client application seems to be unresponsive as the main thread of execution is
waiting for the SAP method call to complete. Many RFC calls happen very quickly and the
user may not notice, others may take some time and the application appears to be
unresponsive.

With .NET Connector, we can take advantage of many features of the Microsoft Common
Language Runtime (CLR) including support for easy asynchronous programming. This
powerful feature is not available on any other SAP connector at this time. In all other
connectors, BAPI and RFC calls are synchronous calls.

The Asynchronous method calls use the standard .NET delegate callback mechanism. It
provides the programmer with a familiar and powerful way of performing asynchronous calls
in the SAP Client application.

When we use asynchronous methods from the .NET Connector wizard, the proxy contains
two additional methods for each RFC: Begin<RFC Name> and End<RFC Name> and three
additional variables to manage the asynchronous result.

When Begin<RFC Name> is called, CLR queues the request and returns immediately to the
caller. The target method will be on thread from the thread pool. The original thread is free to
continue executing in parallel to the target method. If a callback has been specified on
Begin<RFC Name>, it will be called when the target method returns. In the callback, the
End<RFC Name> method is used to obtain the return value and the in/out parameters. If
the callback was not specified on Begin<RFC Name>, then End<RFC Name> can be used
on the original thread that submitted a request.

4.6 TRFC and QRFC Support
Transactional RFC (TRFC) guarantees that a function module is executed in the target
system exactly once. Queued Transactional RFC (QRFC) is a type of TRFC that is executed
only once and in a particular order.

 4 SAP Client Applications

 4.7 Monitoring and Debugging

November 2002 15

Client applications can be used with normal synchronous RFC, TRFC and QRFC. Normal
Remote Function Calls (RFCs) are synchronous and are not guaranteed to execute only
once or to execute in any particular order. Normal RFC calls return some value to the calling
application, for example a list of customers. Transactional Remote Function Calls (TRFCs)
and Queued Remote Function Calls (QRFCs) do not return anything if the function was
successfully added to the SAP system. If the function was not added correctly, they throw an
exception.

In the connector there are separate method signatures generated for TRFC and QRFC
versus the normal synchronous RFC method. In the case of TRFC and QRFC, an additional
parameter called a transaction ID (TID) is used as a unique identifier within the SAP system
and when adding the function module execution request to the SAP system. A TID is similar
to a GUID. In fact, GUIDs can be mapped back and forth to SAP TID using helper functions
in the RFC library.

TRFC or QRFC should be used when information is added only once to the SAP system (for
example, when adding a sales order or submitting an IDOC). In the case where a client
application needs information from the SAP system, for example a list of customers, it makes
no sense to use TRFC as the SAP system will return nothing back to the application other
than an exception should something go wrong.

Queued RFC enforces the order of execution of the functions in the SAP system. To use
QRFC you must have the following:

• A name for the RFC queue to use on the SAP system. If the queue does not already exist
it will be automatically created.

• A TID

• A queue index to determine the sequence. The queue index begins with zero.

4.7 Monitoring and Debugging
The connector includes several exception classes so that error handling is robust and natural
for a Visual Studio developer. In addition to these exception classes, there is extensive
debugging and tracing support built into the connector.

You can debug from your C# proxy directly into the SAP function module by setting the
ABAP_DEBUG flag. Debugging through to the SAP system is useful when you are getting
unexpected results back from the SAP system. To use the ABAP_DEBUG option you must
have installed SAPGUI on your developer workstation. You cannot use the integrated ABAP
debug option with web applications because they run under another Windows context that is
invisible to the interactive user.

Detailed traces can be written using the tracing flag. Alternatively you can set the
environment variables RFC_TRACE and CPIC_TRACE to have trace files written to your
application directory.

During initial design and debugging it is often useful to run the SAP RFC function directly in
the SAP system using transaction SE37. It is easier to isolate the problem once you are sure
that input values are valid. In addition, you should reference the SAP function module
documentation. The SAP data dictionary, which is integrated in the function editor, also gives
you information on valid input values.

In the SAP system, there are automatic formatting functions that are not available in the
connector, for example to add leading zeroes to a customer or invoice number. If the function
is working in the SAP system but not in your proxy, it could be that the SAP system has
applied one of these automatic-formatting routines but you did not.

The SAP system provides extensive tracing and monitoring capabilities inside of the system
as well, for example within the area Tools → Administration → Monitoring.

4 SAP Client Applications

4.8 IDOC

16 November 2002

4.8 IDOC
SAP Intermediate Documents (IDOCS) are EDI like documents that are asynchronous in
nature. IDOCS are often used in sending business documents (for example sales orders)
from your SAP system to a trading partner or other system. The actual TRFC call to submit
the IDOC to SAP is performed synchronously and very quickly, but the actual business
processing can happen at some later time defined in the SAP system. The outbound result
(for example, sales order confirmation) can also happen at some later time. With RFC calls,
the business processing is done immediately albeit on a different thread if we make use of
the asynchronous methods described above. IDOCS offer additional queuing and retry
capabilities.

SAP .NET Connector supports both submitting and receiving SAP IDOCs. The
SAPIDOCSender class submits IDOCs and the SAPIDOCReceiver class can be used with
a TRFC server to receive IDOCS.

To work with IDOCS you must use transactional RFC. In the SAPIDOCSender and
SAPIDOCReceiver classes, SAP provides for you a TRFC client implementation that works
with the appropriate function modules in SAP.

 5 SAP .NET Server Applications

 4.8 IDOC

November 2002 17

5 SAP .NET Server Applications

The RFC server allows your SAP system to execute .NET code as if the .NET code were
another SAP system. The project type you choose for an SAP server project depends on
your specific requirements but typically you choose between a console application,
executable or Windows Service. With the server stub project you can use standard Visual
Studio .NET debugging.

With SAP .NET Connector you can easily write RFC server programs in C#. It allows you to
use functionality in .NET as easily as if it were in the SAP system.

You can use the SAP .NET Connector server stub for scenarios such as:

• Retrieving information from another system, for example additional customer or tax
information necessary to process a sales order

• Getting information such as maps, stock prices, shipping information, flight information or
weather from an external service to be used within an SAP report

• Sending emails from your SAP system

• Sending IDOCS from the SAP system to an external system

The following graphic shows the main processes of the .NET program and the SAP system.
In this type of application, the SAP system is the client and the C# proxy is the server. All
program logic is therefore done in the C# proxy and returned to the SAP system in an export,
changing or table parameter.

Register program ID on
SAPGW

Call Function X Destination Y

Execute logic, return results
to SAP

.NET
Program

SAP
system

Overview of .NET Program as SAP RFC Server

An RFC server application allows you to use .NET functionality within your SAP system. RFC
servers can be (normal) RFC, TRFC or QRFC servers.

5.1 Key Steps

18 November 2002

5.1 Key Steps
When calling a .NET program from an SAP system, we distinguish the following key steps, as
shown above:

• The .NET program must register itself on the SAP gateway host

• The SAP system and the .NET program must implement the same method interface, for
example, the function module name and parameters from the SAP system.

• The SAP system initiates the call to the .NET program using the CALL FUNCTION
DESTINATION keyword

• The .NET program must return the appropriate parameters to the SAP system

The SAP server code that is generated by the connector and provides the functionality
described above as well as a default implementation. This allows the Visual Studio developer
to focus on the implementation and not have to understand how RFC servers work in detail.

5.2 Authentication
Unlike client applications, no user name and password is required to register a server on the
SAP gateway. Instead, the program ID, gateway host, gateway service and code page must
be provided. Once the server is registered on the gateway inside the SAP system, it can be
accessed from SAP programs. The computer where the RFC server is running must grant
permissions to the SAP service user to use the necessary resources on that machine.

5.3 Monitoring and Debugging
After your program is running, use the SAP gateway monitor (transaction SMGW) to verify that
your .NET program is registered. If the registration works properly, you can see on the logged
on clients screen the PROGID and the host machine.

The SAP Gateway offers detailed tracing capabilities from within the SAP system. On your
RFC server you can also enable tracing by setting the environment variable RFC_TRACE and
CPIC_TRACE. The traces can be quite large so should only be used when there is a problem.

For TRFC servers you also have the TRFC monitor (SM58). For QRFC you have the SAP
Queue monitor (transaction SMQ2) to monitor QRFC calls.

Just as the SAP client solution offers integrated Abap/4 debugging for .NET clients, you can
set a breakpoint in your RFC server code, call the function from the SAP system and
examine the values sent to you from the SAP system in debugging mode within Visual Studio
.NET.

5.4 TRFC and QRFC
A TRFC server makes sense when have to send information only once from the SAP system
to another application (for example, sending a purchase order). TRFC is required if you want
to write an application to receive SAP IDOCS. On your TRFC server, you must manage a
connection to a transactional store such as Microsoft SQL Server. You require a transaction
store to ensure you can keep track of and manage all RfcTID sent to you from the SAP
system so that you can create the TID and the function execution within a transaction. If the
transaction fails at any point, the SAP system tries to resubmit it. By default, the system
attempts to resubmit the transaction every 15 minutes up to a maximum of 30 attempts.
However, you can configure the resubmission parameters individually for each RFC
destination using transaction SM59. From the destination maintenance screen, choose
Destination → TRFC options.

 5.4 TRFC and QRFC

November 2002 19

To call our TRFC server, the SAP system uses the syntax: CALL FUNCTION xyz IN
BACKGROUND TASK DESTINATION dest and then issues a COMMIT WORK.

After the COMMIT WORK, the SAP system makes several additional calls related to TRFC
against our .NET component. The first call is CheckTID. This method is responsible for
checking whether we have already processed the TID. If we have processed the function,
nothing further is done. If not, the next step is to execute the function itself (for example,
function xyz) or queue the function for later execution. After successful completion of this
function, we let the SAP system know that the transaction worked by calling OnCommit.
Once the SAP system receives the commit from us it knows that everything worked properly
and lets us know that we can clear the TID record from our database.

Although it is possible, we do not recommend writing a QRFC server with the connector. To
write a QRFC server, you have to implement the SAP queuing mechanism. For purposes
where you want queuing, we recommend to simply use Microsoft Message Queue in a TRFC
server.

1 Overview of Classes

20 November 2002

Part II SAP .NET Connector Programmers’
Reference
1 Overview of Classes

Class Explanation
SAPClient Base class for all SAP client projects

SAPServer RFC server class that allows you to make use
of .NET functionality inside of your SAP Abap/4
programs

SAPConnection Manages a connection to the SAP system. It is
used by the SAPClient classes

SAPConnectionPool Allows you to manage a pool of connection
objects. This is important for applications
where multiple users access your proxy

Destination Base class for Destination objects. Holds
login attributes as properties but does not
contain logic to retrieve these properties as
does SAPLogonDestination for example

SAPLogonDestination Derived from Destination. In addition to holding
login attributes this class can retrieve login
information from the SAPGUI

SAPLoginProvider User name/password login support via ASP
.NET forms authentication. Also provides an
alternative single sign-on capability

RfcException Base exception class for SAP .NET Connector
exceptions. Not raised by itself

RfcAbapException Exception representing an Abap/4 exception
raised by the SAP RFC Abap/4 code

RfcCommunicationException Exception representing a communication
failure of some type (for example, the SAP
system is unreachable)

RfcLogonException Exception representing a logon failure (for
example, incorrect user name or password)

RfcSystemException Exception representing a system error (for
example, an SAP short dump has occurred)

RfcQueueItem Used for QRFC calls to contain the SAP Queue
information

RfcTID Used for TRFC and QRFC calls. A TID is
similar to a system guid

 1 Overview of Classes

November 2002 21

SAPTable Very common data type used in RFC
programming. This class can be data bound to
most .NET data aware controls such as
datagrids and listboxes. A example of an
SAPTable might be a list of customers with
name and address data for each row.
SAPTable is a collection of SAPStructure

SAPStructure Very common data type used in RFC
programming. For example, a BAPI return code
is an SAPStructure. An individual row in a
table is a structure

SAPIDocSender A class for submitting SAP intermediate
documents (IDOCS) from text files

SAPIDocReceiver A class for receiving SAP IDOCS from SAP.

2 SAP Client Programming

2.1 SAPClient Class

22 November 2002

2 SAP Client Programming
2.1 SAPClient Class
SAPClient is the base class for .NET applications wishing to use SAP functionality. This
class is maintained by the SAPConnectorGenerator custom tool and the SAPProxy
wsdl metadata file. It should not be necessary to manually update it. SAP client proxies are
instances of this class.

For a list of members of this type see SAP Client Methods [Page 27].

[C#]
Public class SAPClient:
System.Web.Services.Protocols.SoapHttpClientProtocol

Remarks
In the SAP client solution, SAP is the server and the .NET application is the client that
interacts with the RFC. When you generate an SAP client application, a WSDL file is added
to your Visual Studio .NET project. This SAPWSDL file in coordination with a custom tool in
Visual Studio creates several C# classes needed to communicate with the SAP system via
either RFC or SOAP. There is one class for the proxy itself, one for each export parameter
and two for each Table parameter in your RFC.

The SAP RFC is called as a method of the proxy object. There can be one or more RFC per
proxy. For example you could have a proxy with all customer related RFCs in one library. The
parameters for each RFC can be customized within the Visual Studio designer so that
optional parameters can be removed, parameters can be renamed and default values
provided. You can also customize SAP structures by renaming or removing fields.

Visual Studio developers can work with the SAP proxies in their choice of programming
language. The proxies themselves are generated in C# so for projects written in other than
C# you have to add a new project of type SAP Connector class to the Visual Studio
solution.

 2 SAP Client Programming

 2.2 SAPClient Proxy Generation

November 2002 23

2.2 SAPClient Proxy Generation
To add the SAP Proxy to your Visual Studio project you have the following options:

• Create a new project of type SAP Connector Class

• Add the proxy to another project type (for example Winform, ASP .NET project,
webservice)

Procedure
1. In Visual Studio .NET choose Project → Add New Item.

2. Under templates select SAP Connector Class

This brings up the connector wizard.

You can create proxies from one of these:

Proxies to Generate From Explanation
WSDL file from SAP IFR Web Services Description Language (WSDL)

files that originate in an SAP interface
repository (IFR). If you want to create proxies
from an SAP IFR, you must have a URL for
the WSDL file

In the near future, the SAP IFR will be the
central repository for SAP metadata including
WSDL files

SAP Server Generate the C# proxy by examining the
metadata stored in the data dictionary of the
SAP system. For most scenarios this is the
preferred option

Standard WSDL file You can use an existing WSDL file or create
your own WSDL file and import it

3. If you generate proxies from an SAP server, enter the following information in the Enter
Logon information screen:

Input Explanation
System SAP system name. If you have SAPGUI for

Windows installed, you can select an entry
from the drop down box

Host Application server host name

ID System ID (for example 0)

Client SAP client number (for example, 000 or 800)

User SAP user name

Password Password for that user

Object type (client proxy) The wizard creates all necessary code for a
SAPClient project. The .NET application

2 SAP Client Programming

2.2 SAPClient Proxy Generation

24 November 2002

Input Explanation
which uses SAP system functions is called a
client proxy

Object type (server stub) The wizard creates all necessary code for a
SAPServer project. The SAP system which
uses .NET functions is a server stub

Beautify name SAP function names are by default upper
case. This option makes the names more
readable

Create asynchronous methods This option is only for client applications. It
allows you to make your SAP function call on
a dedicated thread so that your application
remains responsive should the call take some
time

4. Select the Remote Function Modules (RFM) you want to use in your proxy object.

You can use the following search filters to look for the function modules:

Option Explanation
Name-Filter A search string for finding the proper SAP

function(s) by name

Group-Filter SAP functions are organized by groups. If
you know the group name you may use it
here

After the code has been generated, you can see an SAP proxy WSDL file added to your
project. This WSDL file in coordination with Visual Studio and the
SAPConnectorGenerator custom tool allows you to manage the SAP proxies
automatically.

If you choose to generate the proxy from the SAP IFR you will be asked for the URL of the
IFR Server.

If you choose to generate a proxy from a Standard WSDL file you will be asked for the path
or URL to that WSDL file.

 2 SAP Client Programming

 2.3 Customizing SAP Proxies

November 2002 25

2.3 Customizing SAP Proxies
There is design time support for modifying and updating the generated proxies. To see the
design view, simply double click on the generated SAPProxy WSDL file in the Visual Studio
designer Solution Explorer.

The proxies should be customized from within Visual Studio designer. There is no need to
rerun the proxy generation wizard unless the RFC signature has changed.

Type of Object Example in Designer

RFC functions (shown as method icon)

SAP table class (shown as SAP table
icon)
SAP structure class (shown as class
icon)

Solution Customizing
These options may be set on the SAPProxy sapwsdl file in the designer. Based on this
input the SAP proxy C# classes will be updated automatically.

Beautify If turned on, all identifiers that do not have
custom names are “beautified” to mixed case

ClassName The name of the class that is generated

CreateAsyncs Controls if the generator should create
Microsoft style asynchronous methods

CreateTRFC Controls if the generator should create
methods for Transactional RFC

CreateQRFC Controls if generator should create methods for
Queued RFC

ProxyType Whether the generator should create a client
proxy or server stub

Method Customizing
These options may be changed on the RFC function (proxy methods):

Name The name used in the code to identify the RFC

Custom Parameter order In the parameters collection editor you can
customize the parameter order. If you do so,
this property is set to true. If you set it to false,
the parameter order is set back to default

Exceptions Use the collection editor to see and customize
the ABAP exceptions that this method might
throw

Parameters Use the collection editor to see and customize
the parameters of the method

2 SAP Client Programming

2.3 Customizing SAP Proxies

26 November 2002

UseIOStructs When turned on, the generator will create an
additional version of the method that takes an
input structure and returns an output structure
(similar to the SAP Java Connector). You
cannot have removed parameters with this
option

These parameters of the method are provided as informational:

AbapName Contains the original name of the object as it is
called in ABAP

OptionalParameters Shows you the number of optional parameters
in the function

RemovedParameters Shows you the number of parameters that
have been removed and will not be generated

TotalParameters Shows you the total number of parameters of
the function

SAPStructure Customizing
These parameters may be changed on the SAP Structures:

Name The name of the SAP structure

Fields Uses the collection editor to customize the
fields in the structure

Filename Specifies the filename that is used to create the
type into

These parameters are provided as informational:

AbapName Contains the original name of the object as it is
called in ABAP

SAPTable Customizing
These parameters may be changed on SAPTables:

BaseStruct For implicitly defined tables, the property
contains the name of the structure that the
table is based on

Filename Specifies the filename that is used to create the
type into

These parameters are provided as informational:

AbapName Contains the original name of the object as it is
called in ABAP

 2 SAP Client Programming

 2.4 SAPClient Methods

November 2002 27

2.4 SAPClient Methods

Public Constructors
public SAPClient
(SAP.Connector.Destination
destination)

Initializes a new instance of the SAPClient
class with the connection information from a
SAP Destination object

public SAPClient (System.String
ConnectionString)

Initializes a new instance of the SAPClient
class with the connection information from a
connection string. The connection string can be
created manually or from one of the SAP logon
controls. If you want to create a connection
string manually, see the SAP Remote Function
Call API documentation (RFCOpenEX).

public SAPClient () Initializes a new instance of the SAPClient
class without connection information. The
connection information has to be set in a
separate step before you can use the proxy

Public Methods
Public void <RFC Name> (RFC
parameters)

Executes a normal RFC call for the function
specified in the SAP system. Typically out
parameters are passed by reference

Public void TRFC<RFC Name> (RFC
parameters, RFCTID)

Executes the RFC specified as TRFC and
therefore requires an RFCTID parameter. You
must have selected Create TRFC for this
method to be available

Public void QRFC<RFC Name> (RFC
parameters, RFCQueueItem)

Executes the RFC specified as QRFC and
therefore requires a RFCQueueItem
parameter. You must have selected Create
QRFC for this method to be available

Public System.IAsynchResult
Begin<RFC Name> (RFC parameters,
System.AsynchCallback, object
asynchState)

Executes the RFC specified using a Microsoft
style asynchronous method invocation

Public void End<RFC
Name>(system.iasycresult
asyncresult, ref parameters)

Used to reattach to the result from the
Asynchronous method invocation

public System.Boolean CommitWork (
)

Used for stateful BAPI calls to commit the
logical unit of work to the system

public void ConfirmTID
(SAP.Connector.RfcTID tid)

When using TRFC or QRFC programming you
can use this method to confirm the TID after
successfully passing the TRFC call to the SAP
system

public System.Boolean RollbackWork
()

Used for stateful BAPI calls to commit the
logical unit of work to the system

2 SAP Client Programming

2.4 SAPClient Methods

28 November 2002

Public Properties
public SAP.Connector.SAPConnection
Connection [get, set]

The connection object for connecting to the
SAP system. Can be either SOAP or RFC
connection. Should be created from one of the
SAP logon controls

public System.Int32
RfcTotalMiliSeconds

The execution time in milliseconds

Private Methods
protected System.IAsyncResult
BeginSAPInvoke (System.String
method , object[] methodParamsIn ,
System.AsyncCallback callback ,
System.Object asyncState)

Used internally to start the asynchronous
method invocation

protected object[] EndSAPInvoke
(System.IAsyncResult ar)

Used internally to receive the results of the
asynchronous method invocation

protected object[] SAPInvoke
(System.String method , object[]
methodParamsIn)

Used to submit a normal RFC for execution

public void tRfcInvoke
(System.String method , object[]
methodParamsIn ,
SAP.Connector.RfcTID tid)

Used to submit a TRFC for execution

public void qRfcInvoke
(System.String method , object[]
methodParamsIn ,
SAP.Connector.RfcQueueItem qItem)

Used to submit a QRFC for execution

public void ActivateQueue
(System.String QueueName)

Used with QRFC processing

public void DeativateQueue
(System.String QueueName)

Used with QRFC processing

 2 SAP Client Programming

 2.5 SAPClient Exceptions

November 2002 29

2.5 SAPClient Exceptions
Errors in the .NET Connector are thrown as .NET exceptions. An exception is the preferred
method to handle errors because exceptions are harder to ignore than are return codes. They
also provide you detailed information to create more robust applications.

The SAP .NET Connector has the following exception classes:

• RfcCommunicationException

• RfcLogonException

• RfcSystemException

• RfcAbapException

• RfcException

• RfcMarshalException

Coding Recommendations for RFC Exceptions
We recommend you to have at least two catch blocks. The first catch statement is for SAP
exceptions (specific) and the second for others (generic), for example errors from the runtime
or other resources.

We recommend you to close the proxy connection in the finally programming block.

SAP .NET Connector closes connections eventually. However, to achieve better
performance, we recommend you to close the connection in the finally clause of your
class. We also recommend that you close any external resources such as open files or
database connections here as well.

Instead of providing a status of the SAP RFC connection, we recommend that you simply
invoke the method and deal with the exception. The SAP .NET Connector will maintain the
status of the connection internally.

The Proxy.Connection.Open() method causes an RFC ping. This allows
you to see if the system is up. Subsequent Proxy.Connection.open()
methods will be ignored until there is a Connection.Close().

2 SAP Client Programming

2.5 SAPClient Exceptions

30 November 2002

Example

try

{
// Call methods here
proxy.Connection.Open();
proxy.Rfc_Function_Search(txtRFC.Text,"EN", ref tblRFC);

}
catch (RfcCommunicationException ex)

{
MessageBox.Show(ex.ToString());
return;

}
catch (RfcLogonException ex)

{
MessageBox.Show(ex.ToString());
return;

}
catch (RfcAbapException ex)

{
switch (ex.AbapException)

{
case (SAPProxy1.No_Function_Found):

MessageBox.Show("no function found");
break;

case(SAPProxy1.Nothing_Specified):
MessageBox.Show("Nothing specified");
break;

default:
MessageBox.Show("Some unknown abap error occurred");
break;

} //switch
}

catch (Exception ex)
{

MessageBox.Show(ex.ToString());
return;

}
finally {proxy.Connection.Close();}

 2 SAP Client Programming

 2.5 SAPClient Exceptions

November 2002 31

2.5.1 RfcCommunicationException Class
[C#]
public class RfcCommunicationException : SAP.Connector.RfcException

This exception class represents an application exception when an RFC communication error
occurs. This happens, for example when the .NET Connector cannot connect to an SAP
system. Possible reasons are:

• Incorrect server or instance specified in the logon string

• Server is not accessible:

− SAP Service is not started on that server

− Client is offline

− Network problems

This exception is typically thrown at the proxy.Connection.Open(); method. It may also
occur on any subsequent method invocation, for example an RFC invoke, if the connection is
broken.

When this exception occurs, the RFC handle is not created or is no longer valid by the
connector. Therefore there is no need to call proxy.Connection.Close();

The following example shows an RfcCommunicationException:

SAP.NET.Connector.RfcCommunicationException: Connect to SAP gateway
failed
Connect_PM GWHOST=Iwdf901, GWSERV=sapgw00, ASHOST=Iwdf901, SYSNR=00
LOCATION CPIC (TCP/IP) on local host
ERROR hostname 'Iwdf901' unknown
TIME Mon Apr 29 15:11:51 2002
RELEASE 620
COMPONENT NI (network interface)
VERSION 36
RC -2
MODULE ninti.c
LINE 382
DETAIL NiPHostToAddr
SYSTEM CALL gethostbyname
COUNTER 15

RFCCommunicationException derives from RFCException and therefore implements
the same properties.

2 SAP Client Programming

2.5 SAPClient Exceptions

32 November 2002

2.5.2 RfcException Class
RfcException is the base class for the other SAP RFC Exception classes. This
exception will not be raised by the connector under normal conditions.
Object, ISerializable

System.Exception

System.ApplicationException

SAP.Connector.RfcException

[C#]
public class RfcException : System.ApplicationException

Properties of this class

ErrorCode The error code from the SAP application.
Derived from RFCException

ErrorGroup The error group from the SAP application.
Derived from RFCException

 2 SAP Client Programming

 2.5 SAPClient Exceptions

November 2002 33

2.5.3 RfcAbapException Class
This class represents an exception raised by the ABAP program in the SAP system.
Exceptions are a type of parameter for each SAP RFC. The connector provides strongly
typed support for each RFC’s ABAP exceptions in the proxy.

[C#]
public class RfcAbapException : SAP.Connector.RfcException

In addition to the properties provided from RfcException. RfcAbapException provides
the following property:

AbapException A string containing the ABAP exception from
the RFC

Example
In the SAP system you can navigate to the Function Builder (transaction code se37) and
examine the exceptions for the function you wish to call. For RFC_FUNCTION_SEARCH you
see the following exceptions:

− NOTHING_SPECIFIED – this occurs when no input is specified.

− NO_FUNCTION_FOUND – this occurs when no function matches the search selection.

Depending on what the ABAP exception is we might do different things. Therefore a switch
statement is a good idea to deal with this exception.

catch (RfcAbapException ex)

{
switch (ex.AbapException)

{
case (SAPProxy1.No_Function_Found):

MessageBox.Show("no function found");
break;

case(SAPProxy1.Nothing_Specified):
MessageBox.Show("Nothing specified");
break;

default:
MessageBox.Show("Some unknown abap error occurred");
break;

} //switch
}

2 SAP Client Programming

2.5 SAPClient Exceptions

34 November 2002

2.5.4 RfcLogonException Class
This exception is thrown when the SAP service is available but the user name or password is
not accepted by the SAP system.

[C#
public class RfcLogonException : SAP.Connector.RfcException

Remarks
The most typical causes for this are:

• Incorrect user name or password specified by the user

• License has expired on the SAP system

• The user's account is locked or expired.

Example

SAP.NET.Connector.RfcLogonException:

Name or password is incorrect. Please re-enter

 2 SAP Client Programming

 2.5 SAPClient Exceptions

November 2002 35

2.5.5 RfcSystemException Class
This exception is not as typical as the others but may occur from time to time. This exception
class is thrown when a short dump related to the current context has occurred in the SAP
system. This might be due to a program error in the SAP system or some other exceptional
error that occurred on the SAP system.

[C#]
public class RfcSystemException : SAP.Connector.RfcException

2 SAP Client Programming

2.6 Debugging of SAPClient Proxies

36 November 2002

2.6 Debugging of SAPClient Proxies
With the SAP .NET Connector you can debug from your C# proxy directly into the SAP
function module by setting the ABAP_DEBUG flag in the connection string. The best way to do
this is to set the AbapDebug and Trace flags on the SAPLogonDestination object.
Debugging through to the SAP system is useful when you are getting unexpected results
back from the SAP system. To use the ABAP_DEBUG option you must have installed SAPGUI
on your developer workstation. You cannot use the integrated ABAP debug option with web
applications because they run under another Windows context that is invisible to the
interactive user. For that reason it is often useful to test your proxy first against a Windows
form or Console application in case integrated debugging is required.

It is often useful to run the SAP RFC function directly in the SAP system using transaction
SE37. It is easier to isolate the problem once you are sure that input values are valid. In
addition, you can use the SAP function module documentation. The SAP data dictionary,
which is integrated in the function editor, also gives you information on valid input values.

In the SAP system, there are automatic formatting functions that are not available in the
connector, for example to add leading zeroes to a customer or invoice number. If the function
is working in the SAP system but not in your proxy, it could be that the SAP system has
applied one of these automatic formatting routines but you did not.

To see what values the SAP function module is using, proceed as follows:

1. Execute transaction SE37.

2. Enter the function name and select Single test (F8).

3. Enter valid parameters and select Debugging (Ctrl F7).

4. Use Single Step (F5) to examine the code execution and variable values in the SAP
function debugger window, part of the Abap/4 developer workbench.

You can turn on tracing in the SAP system by setting the environment variable CPIC_TRACE
and RFC_TRACE. For more information on RFC tracing, refer to SAP Note 65325.

CPIC_TRACE writes out detailed trace files to the application directory so it is
not advisable to leave tracing on any longer than you need it.

You can do advanced tracing within the SAP system, for example from transaction code
SM50 and by examining the work process trace files (for example, dev_w0 in the SAP work
directory).

We recommend developers to use the SAP .NET Connector exception classes in their code
to determine why an error has occurred and to use as a starting point for debugging.

TRFC applications can be monitored from the TRFC monitor (transaction SM58). QRFC
applications can be monitored from QRFC monitor (transaction SMQ2).

 2 SAP Client Programming

 2.7 Authentication

November 2002 37

2.7 Authentication
The SAP Connector can support all SAP authentication mechanisms including:

• User Name and Password

• X.509 Certificates

• External authentication (for example Microsoft Passport)

• Secure Network Communications (for example, Kerberos and NTLM)

And in addition the SAP login form uses standard ASP .NET forms authentication to provide
an alternative single sign-on capability.

The following logon controls are available to manage the SAP authentication in your project.

Destination The base class that holds connection
information as properties but does not
implement logic to retrieve the connection
information

SAPLogonDestination A Destination component that retrieves
information from the SAPGUI
(SAPLOGON.INI). Derived from Destination

SAPLoginProvider Used with ASP .NET applications to provide
forms based logon and an alternative single
sign-on mechanism with session state and
ASP .NET cookies

SAP Login Form Used with ASP .NET applications to provide
forms based logon and an alternative single
sign-on mechanism

2 SAP Client Programming

2.7 Authentication

38 November 2002

2.7.1 User Name and Password
The SAP system can make use of various single sign-on options. However, many customers
still use a separate user name and password for logging on to SAP. When designing SAP
.NET Connector applications, we recommend to avoid scenarios where a single user ID is
used to connect to the SAP system. In general, all users of the SAP system whether through
SAPGUI or the SAP. NET Connector must be licensed. For that reason, it is preferable to ask
the user for their SAP user name and password as part of your application or to make use of
one of the single sign-on options.

A very good option for user name and password authentication is the SAP Login form. If you
are writing an ASP .NET application this provides you with a forms-based authentication and
the necessary plumbing for both session and cookie based single sign-on after the first time
visiting the form.

 2 SAP Client Programming

 2.7 Authentication

November 2002 39

2.7.2 Single Sign-On
Single Sign-On (SSO) is a simplified method of logging on to the SAP system without
reducing security. When a system has been configured for Single Sign-On, an authorized
user who has logged on to the operating system can access the SAP system simply by
selecting it in the SAP logon window or clicking on the shortcut. The user is authenticated by
Windows or some other trusted authority so no SAP password is required. All SAP supported
single sign-on options are also supported by the connector.

Single Sign-On Technology Scenario to Use
Kerberos When client has SNC Kerberos library.

Use with rich client applications to provide
single sign in same way as SAPGUI. Can
also be used with ASP .NET impersonation

NTLM When client has SNC NTLM library. Use
with rich client applications to provide
single sign in same way as SAPGUI. Can
not be used with ASP .NET impersonation

X.509 Certificates Web scenarios – especially internet
scenarios where client is not inside the
firewall

Microsoft Passport Same as X.509 certificates

SAPSSO2 With Enterprise Portal

SAPLoginForm User name and password authentication in
an ASP .NET web form can be used for all
web scenarios

SAPSSO1 With older ITS scenarios

2 SAP Client Programming

2.7 Authentication

40 November 2002

2.7.2.1 X.509 Certificates
In this scenario you must first configure a working SSO account for the logged-on user (for
example ASPNET or other Windows user that your application runs under). The SAP system
examines the X509 certificate to determine an external user ID. This external user is logged
on to the SAP system. This allows you to only have to setup an SSO connection between the
web server and the SAP system and then using the certificate field to map from the X509
certificate to the SAP user.

Alternatively, you can use Active Directory or IIS mapping and impersonate the user. This
method is discussed in part in the section on Kerberos or NTLM SSO with impersonation
above.

In the connector, the SAPLogonDestination X509Certificate property should contain
the value of the X509 certificate BASE64 encoded. This should be set at runtime after
reading the contents of the X509 certificate from the user’s browser.

Certificate Field Returns
Request.ClientCertificate.Subject The subject that is mapped to SAP external

user ID in table VUSREXTID. For example:
CN=SAPDotNet

Request.ClientCertificate.Certifica
te

A byte array containing the binary stream of the
entire certificate content. You must use the
Convert.ToBase64String function to
format it for sending to SAP system

The following example shows code for using the browser certificate in
SapLogonDestination:

sapLogonDestination1.X509Certificate =
Convert.ToBase64String(Request.ClientCertificate, 0,
Request.ClientCertificate.Length);

Do not use USER parameter in your Destination component with
X.509certificate logon.

Setting Up Certificate Mapping to SAP User in the SAP System
The procedure consists of the following steps:

• You enable an SNC connection between IIS and the SAP system with transaction
SNC0.

• You map the certificate to SAP table VSUSREXTID.

 2 SAP Client Programming

 2.7 Authentication

November 2002 41

Input for Setting Up Certificate
Step Option Explanation

System ID Enter your SAP system ID.

SNC name Enter the Secure Network Communications (SNC)
user name.

For example for Kerberos enter:
p:<SAPService_User@<DOMAIN_NAME>

For more information on SNC names refer to the
SNC User Guide at the SAP Service Marketplace
at http://service.sap.com

Enable an SNC
connection between
IIS and the SAP
system.
Use transaction SNC0
to update the Access
Control List (ACL)

Entry for
RFC

...

Entry for
ext. ID

Activate all entries for RFC, CPIC, DIAG,
certificate, ext. ID

Map the certificate to
the SAP user with
transaction SM30

External ID
type

a. Maintain table VUSREXTID

b. Enter DN for External ID type

2 SAP Client Programming

2.7 Authentication

42 November 2002

Step Option Explanation
External ID Enter the ID exactly as stated in the certificate, for

example CN=SAPDotNet

To find out the Subject name (External ID)
you have the following options:

• Using the Internet Explorer

a. In the Internet Explorer, choose Tools →
Internet Options → Content → Certificates.

b. Select the certificate and choose View.

c. On the Certificate screen, choose Details.

d. Go to Subject to see the name.

• Using SAP Process Tracing

a. Use transaction SM50.

b. Turn on tracing for the component
SECURITY and use trace level 2:

− Choose Process → Trace →
Display settings → Display
Components and select SECURITY.

− Choose Process → Trace →
Dispatcher → Change Trace Level
and enter 2 for the trace level.

Now tracing is enabled on the SAP
application server.

c. Run the .NET Connector application that is
using the x.509 certificate to connect to the
SAP system.

d. On the SAP application server search for a
file named
dev_wp<workprocess_number> (for
example, dev_w0) that contains the text
string CertGetInfo. The subject name is
next to the text string.

User Enter your SAP user name.

 2 SAP Client Programming

 2.7 Authentication

November 2002 43

Setting Up Certificates in IIS:
For certificates to work you have to configure IIS to use HTTPS.

Here is an example for an ASPX page code to test whether certificates are working in IIS:

User (from Context): <%=Context.User.Identity.Name%> <P>

User (from Thread):

<%=System.Threading.Thread.CurrentPrincipal.Identity.Name%><P>

Certifcate: <%=Request.ClientCertificate.Subject%>

For more information about using X.509 certificates in Windows 2000, refer to the Step-by-
Step Guide to Mapping Certificates to User Accounts at
http://www.microsoft.com/windows2000/techninfo/planning/security/mappingcerts.asp

http://www.microsoft.com/windows2000/techninfo/planning/security/mappingcerts.asp

2 SAP Client Programming

2.7 Authentication

44 November 2002

2.7.2.2 Microsoft .NET Passport
You can use external authentication mechanisms such as Microsoft .NET Passport to
determine which user to log on to the SAP system. This mechanism is similar to using X.509
certificates as discussed above. Instead of asking the SAP system to examine the certificate,
we determine the user identity through some other means (for example the Passport API).
Over a trusted SNC connection to the SAP system we tell the SAP system which user to log
on. It is important that the IIS service user is a trusted SNC user in the SAP system. For more
information, see to the section on establishing an SNC connection between IIS and the SAP
system above.

The EXTIDDATA tag is the external user ID as defined in view VUSREXTID for type ID.

The tag EXTIDTYPE should be equal to ID as that is the generic external user type. Other
external user types, for example type DN (certificates) do not work in this scenario.

// Example connection string for passport type authentication
string ConnStr = "ashost=pcintel11 sysnr=0 client=0 snc_mode=1
snc_partnername=\"p:SAPServiceCS2@nt5.sap-ag.de\" type=3
EXTIDDATA=<passport_id> EXTIDTYPE=ID";

To verify that the external user really has logged on, set abap_debug = 1 in the connection
string. Then examine the list of logged on users in the SAP users overview screen, which you
can access in the SAP menu under System Monitoring. Alternatively, use transaction SM04.

In the future, both SAP and Microsoft will offer more direct support for Passport
authentication. For more information, refer to Microsoft’s Federated Security and Identity
Roadmap at: http://msdn.microsoft.com

 2 SAP Client Programming

 2.7 Authentication

November 2002 45

2.7.2.3 Kerberos and NTLM
In the Windows environment it is possible to use Kerberos, NTLM and X509 certificates as
single sign-on options. The client where the proxy is running must have the appropriate GSS
library (for example gsskrb5.dll) and the correct environment variables set. For more
information, see the SNC Users guide and the SAP Web AS Inst. on Windows: MS SQL
Server at the SAP Service Marketplace at: http://service.sap.com.

Before configuring the SAP .NET Connector proxies to use SSO we recommend you to test
the connection with SAPGUI to be sure single sign-on is working. For technical reasons you
must still provide the SAP user name in the connection string. In many companies mapping
of the SAP user to the Windows NT user is quite easy, as for example they use the same
name or apply a logical naming process. The exception to this is with X509 certificates where
no USER parameter should be provided.

To connect to the SAP system with the SNC parameters, you can use one of the SAP
Destination components. You can also construct your own connection string; however, due to
deployment problems we do not recommend hard coding correction strings.

Here is an example of a connection string using Kerberos to show what parameters to set on
your destination component.

// connection string with SNC parameters and debug
string ConnStr = "ashost=pcintel11 client=000 snc_mode=1 sysnr=00
type=3 user=SAPDOTNET snc_partnername=\"p:SAPServiceCS2@nt5.sap-
ag.de\";

The disadvantage of SSO is that you may have to configure additionally each client machine.
However, you can use Active Directory to distribute the SSO configuration to users. For more
information, see the installation guide SAP Web AS Inst. on Windows:MS SQL Server on the
SAP Service Marketplace at: http://service.sap.com.

An alternative to configuring all user machines for SSO is to use a web application,
impersonate the user, and then perform SSO as that user. In this case, you only have to
configure the web server. You also have to configure your IIS application for impersonation.
For more information about ASP .NET impersonation, refer to the .NET Framework
Developer's Guide: ASP .NET Impersonation at:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpguide/html/cpconaspnetimpersonation.asp

When Using ASP .NET Impersonation
Be sure to set these values in the authentication section of the Web.config file:

<identity impersonate=”true” />
<authentication mode = “Windows” />

In IIS Administration turn off Anonymous access under the directory security tab

A simple ASPX page to test if impersonation is working is:

User Name: <%=System.Environment.UserName />
Domain: <%=System.Environment.UserDomainName/>

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconaspnetimpersonation.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconaspnetimpersonation.asp

2 SAP Client Programming

2.7 Authentication

46 November 2002

When you access this test web page and if impersonation is working, you can see the
logged-on NT user but not the IIS anonymous user.

There is currently technical limitation in the Kerberos implementation from
SAP. You can only use Kerberos with the client machine at this time.

Kerberos is case sensitive so make sure that you get SNC_PARTNERNAME correct. The SAP
user name is not case sensitive. This is only needed due to a limitation in the RFC library and
not because of SSO considerations.

NTLM is not supported in this web scenario because it does not provide impersonation
capabilities.

 2 SAP Client Programming

 2.7 Authentication

November 2002 47

2.7.2.4 Destination Class
This is the base SAP Destination component that can be used to set connection and
authentication properties. This class does not contain any logic to retrieve the login properties
but other classes that derive from it do (for example SAPLogonDestination).

[C#]
public class Destination : System.ComponentModel.Component

Public Properties
AbapDebug Set to true to use integrated ABAP debugging

AppServerHost The name of the SAP application server

Client The number of the SAP client you are
connecting to

ConnectionString Read only property containing the connection
string data used to connect to the SAP system

ExtIdentificationData Used with external authentication scenarios
(for example, Microsoft Passport)

ExtIdentificationType Used with external authentication scenarios
(for example, Microsoft Passport)

Language Optional

LogonGroup If LogonGroups are used enter it here

MsgServerHost If a message server is required to connect to
the SAP system enter it here

MySAP_SSO The older style SAP single sign-on cookie used
by the Internet Transaction Server.

MySAP_SSO2 The newer SAP Logon ticket used by the
Enterprise Portal

Password If not using SSO enter the password here

SAPSystemName Read only property showing the three digit
system SID

SNCLib If using Kerberos or other SNC library enter the
path here or alternatively use an environment
variable as described in the SNC User Guide
on the SAP Service Marketplace

SNCMode If set to true SNC is used

SNCMyName Not required

SNCPartnerName The SNC name of the application server
service user (for example,
p:SAPServiceCS2@nt5.sap-ag.de)

SNCQoP Optional. See SNC User Guide for more
information about QOP with SNC

SystemNumber The SAP system number (for example 00)

2 SAP Client Programming

2.7 Authentication

48 November 2002

Trace If true, detailed trace files are written to the
application directory

Type A string showing the data type of the
destination object

UserName The SAP user name

X509Certificate The base64 encoded contents of the x509
certificate

Remarks
The destination object is used within the SAP Login Form for forms-based authentication.

 2 SAP Client Programming

 2.7 Authentication

November 2002 49

2.7.2.5 SAPLogonDestination Class
The SAPLogonDestination class is a design time component derived from the
Destination class. Connection information can be retrieved from the SAPGUI at runtime,
specifically from SAPLOGON.INI on the machine hosting the application.

[C#]
public class SAPLogonDestination : SAP.Connector.Destination

Public Properties
public string DestinationName [
get, set]

Provides a drop down list of the destinations
stored in the SAPGUI. This is the same list the
user would see when starting SAP Logon for
example

Private Properties (Retrieved from SAPGUI)
public string AppServerHost [get,
set]

The application server host

public
System.Collections.IDictionary
AvailableDestinations [get]

The list of available destinations in a
name/value pair

public string
DestinationDescription [get, set]

A description of each destination

public string LogonGroup [get, set
]

Logon group if configured

public string MsgServerHost [get,
set]

Message server host if configured

public string SAPSystemName [get,
set]

SAP System name (for example CS2)

public bool SNCMode [get, set] Whether SNC is used

public string SNCPartnerName [get,
set]

The SNC name of the SAP application server
as stored in SAPGUI. See SNC User Guide for
details

public short SystemNumber [get,
set]

The system number. For example 00.

public string Type [get, set] The data type.

Public Methods
public System.String
GetDestinationNameFromPrintName
(System.String printName)

Retrieves the destination name from the print
name

2 SAP Client Programming

2.7 Authentication

50 November 2002

Remarks
This component is designed to simplify the SAP Logon process for both client applications
where the user already has a SAPGUI and for web applications where administrators wish to
store connection information in the SAPGUI instead of in the destination object or dynamic
property in the webconfig.xml file.

Use of SAPLogonDestination with SAP Router
If your SAPGUI destination has a router, carry out the following steps to use this component:

1. Create a new destination in SAP Logon.

2. On the Application server field put the SAP router string first, then the application server.

3. Leave the SAP Router String blank.

4. Test it in SAPLogon before using with the connector.

For example, if you have the following:
Description: MySystem
Application Server: IWDF9387.WDF.SAP.CORP
SAP Router String: /H/SAPGATEA.WDF.SAP-AG.DE/S/3291/H/

In your new destination, the properties should be:

Description: MySystem_DNC
Application Server:
/H/SAPGATEA.WDF.SAP-AG.DE/S/3291/H/IWDF9387.WDF.SAP.CORP
SAP Router String:

 2 SAP Client Programming

 2.7 Authentication

November 2002 51

2.7.2.6 SAPLoginProvider Class
The SAPLogonProvider class can be used with ASP .NET applications to retrieve a
connection to the SAP system from the SAPLogin form or if available from either the session
state or an ASP .NET cookie if the user had already visited the site. See SAP Login Form
[Page 52] for details. The SAPLoginProvider is a static object of the SAP .Connector.

[C#]
public class SAPLogonProvider : System.Object

Public Properties
Connection Not yet implemented

Public Methods
public static void
CloseSAPConnection
(System.Web.UI.Page p)

Used internally to close the SAP Connection

public static
SAP.Connector.SAPConnection
GetSAPConnection
(System.Web.UI.Page p)

This method is used to get the connection from
a SAPLoginForm in your project. It is part of
the SAP Connection code provided in the SAP
Proxy toolbox

public static void
OpenSAPConnection
(System.Web.UI.Page p ,
System.String connstr ,
System.Boolean persist)

Used internally to open the SAP Connection

Example

proxy.Connection =
SAP.Connector.SAPLoginProvider.GetSAPConnection(this);

2 SAP Client Programming

2.7 Authentication

52 November 2002

2.7.2.7 SAP Login Form
This ASP .NET web form can be added to your project with Project → Add New Item. Look
for the Web Project Items and select SAP Login Form.

For technical reasons it is better to leave the name of this form as SAPLogin1.aspx. The
design of this form can be changed in the designer to suit your requirements. The purpose of
this form is to provide SAP user name and password authentication for ASP .NET
applications built with the connector.

[C#]
Public class SAPLogin1.aspx : System.Web.UI.Page

Remarks
When you select Save, a cookie is written to the hard disk with a name like user@server.txt

The login information is stored in an encrypted format in the ASP .NET cookie. When the
user logs on the next time, the ASP .NET application will look in this cookie to retrieve the
logon information for the SAP system.

The SAPLogin form has a built-in destination component to store connection information and
when the login information is entered it will be stored here as well. Default connection
settings are stored here based on what values were used in the proxy generation wizard.

The destination component uses the web config file to store connection information as
dynamic properties. A blue icon next to the property in the Destination control object shows
that the property is synchronized with the web config file.

We recommend that the main page of your application be called default.aspx as this is
the default redirect for the SAP Login page. For technical reasons, the SAP Login page
should always be called SAPLogin1.aspx. It is possible to change this but you must then
also update the web.config file Authentication mode section which by default points to a
loginUrl of SAPLogin1.aspx.

After successfully logging in for the first time on this page, the login form does a redirect back
to the original page (for example, default.aspx). If the login page is called directly instead
of as a redirect

If reached without original form then it navigates to default.aspx. Therefore, you should
have a default.aspx page in your application.

When the SAPLogin1.aspx form is called, it executes the following logic:

First, it looks in the session state and cookies to find out if this session connection information
is already known. If so, it tries to open SAP connection using the static openConnection
method. If this is not successful it tells the ASP .NET provider it´s not working by raising an
exception.

After successful login it stores the active connection object in session state with special
name. What is stored in the session state is the actual connection.

If you selected the Save option, a cookie is stored to your hard disk that has encrypted
complete connection string.

In this way, the SAP Login form provides an alternative connection pooling and single sign-on
where many distinct SAP accounts are hitting the site.

When multiple sessions use the same user ID, the connector provides a dedicated
connection pool object.

mailto:user@server.txt

 2 SAP Client Programming

 2.8 SAPIDocSender Class

November 2002 53

2.8 SAPIDocSender Class
The SAPIDocSender class is a TRFC client used to submit SAP intermediate documents to
an SAP system for later processing. An example of an IDOC might be a customer sales order
or a material master record. IDOC records are typically used in EDI scenarios. See the
IdocSubmit sample for example code.

[C#]
public class SAPIDocSender : SAP.Connector.SAPClient

Public Constructors
public SAPIDocSender (System.String
ConnectionString)

Creates a new instance of SAPIDocSender
with a connection string

public SAPIDocSender () Creates a new instance of SAPIDocSender
and set the connection in a later step

Public Methods
public void SubmitIDoc
(System.String iDocPath ,
SAP.Connector.RfcTID tid)

Submits an IDOC from an IDOC stored as a file
on the operating system

public void SubmitIDoc
(System.IO.TextReader iDoc ,
SAP.Connector.RfcTID tid)

Submits an IDOC from an IDOC as a
textreader object. Perhaps from another
application or built dynamically

public void
TRfcIDocInBoundAsynchronous
(SAP.Connector.EDI_DC40_BLOCKList
iDocControlRec40 ,
SAP.Connector.EDI_DD40_BLOCKList
iDocDataRec40 ,
SAP.Connector.RfcTID tid)

Offers more granular control over the different
pieces of the IDOC (EDIDC and EDIDD) for
example when you are creating an IDOC
manually or changing something in the header
but otherwise want to keep the body of the
IDOC

Remarks
An IDOC will consist of three segments, the header (EDIDC), the body (EDIDD) and the
status (EDIDS). The EDIDC record can contain two formats (EDIDC or EDIDC40) depending
on the version of the IDOC. The body of the IDOC will differ depending on what IDOC type
and release it is. The status record is only maintained inside of the SAP system and is not
relevant to submit an IDOC.

Example

private SAP.Connector.SAPIDocSender sapiDocSender1;
private void SubmitIdoc()
{
// submit to SAP via trfc
RfcTID myTid = RfcTID.NewTID();
try
{
sapiDocSender1.ConnectionString = destination1.ConnectionString;

2 SAP Client Programming

54 November 2002

sapiDocSender1.SubmitIDoc(@”C:\temp\idoc.txt”,myTid);
sapiDocSender1.ConfirmTID(myTid);
MessageBox.Show("Idoc was submitted to SAP, look at transaction WE02 in
SAP","idoc status");
}
catch (Exception ex)

{
MessageBox.Show("Problem submitting IDOC to SAP\n" +

ex.ToString());
}

} //submitIdoc()

 2 SAP Client Programming

 2.9 Asynchronous Methods

November 2002 55

2.9 Asynchronous Methods
With .NET Connector, we can take advantage of many features of the CLR including support
for easy asynchronous programming. This powerful feature is not available on any other SAP
connector at this time. In all other connectors, BAPI and RFC calls are synchronous calls.

When we use asynchronous methods from the .NET Connector wizard, the proxy contains
two additional methods Begin<RFC name> and End<RFC Name>.

When Begin<RFC name> is called, CLR queues the request and returns immediately to the
caller. The target method will be on thread from the thread pool. The original thread is free to
continue executing in parallel to the target method. If a callback has been specified on the
Begin<RFC name>, it will be called when the target method returns. In the callback, the
End<RFC name> method is used to obtain the return value and the in/out parameters. If
the callback was not specified on the Begin<RFC name>, then End<RFC name> can be
used on the original thread that submitted a request.

When working with asynchronous calls, we need three additional variables compared to a
synchronous RFC call.

Variable What It Does
System.IAsyncResult asyncresult A return of IAsyncResult is required to

implement Asynchronous Method signatures.
The result of the call (IAsyncResult) is
returned from the begin operations, and can be
used to obtain status on whether the
asynchronous begin operations has completed.
The result object is passed to the end
operation, which returns the final return value
of the call

System.AsyncCallback callback A delegate class that is called when the
operation has completed. If null, no delegate is
called. We can either use a callback delegate
as shown below or pass the AsyncCallback
delegate as null. In that case, no delegate will
be called and we have to check the status
ourselves. To check the status we can check
the AsyncResult.IsCompleted property or
if we are using a callback, this delegate will be
called automatically when the method has
completed

object asyncState Extra information supplied by the caller

2 SAP Client Programming

2.9 Asynchronous Methods

56 November 2002

Example
The following Winform sample shows the code for asynchronous method call
(SAPAsyncSearch method).

private void SAPAsyncSearch()
/* this routine calls RFC_CUSTOMER_GET using .NET asynchronous
* method invocation. When the function is completed asynchronously

in SAP,
* the function "myfunction" is called. */

SAPConnect();
myAsyncState = null;
myCallback = new System.AsyncCallback(myFunction);
asyncresult = null;
try
{
asyncresult = proxy.BeginRfc_Customer_Get(g_custNo, g_custName, ref
brfcknA1Table1, myCallback, myAsyncState);
}
catch (Exception ex)
{
MessageBox.Show("Error returned in Async search\n" + ex.ToString(),
"SAP Async Search problem");
return;
}
}

See also:
.NET Framework Developer’s Guide: Asynchronous Programming Overview

.NET Framework Developer’s Guide: Including Asynchronous Calls

.NET Framework Developer’s Guide: Asynchronous Delegates

.NET Framework Developer’s Guide: Asynchronous Method Signatures

.NET Framework Class Library: SoapHttpClientProtocol Class

 2 SAP Client Programming

 2.10 TRFC Client Programming

November 2002 57

2.10 TRFC Client Programming
When calling an RFC as a transactional RFC (TRFC) there are no return values. If the
submission for some reason does not work, an exception will be raised. The TRFC method
requires an additional RfcTID parameter. You should let the SAP system know to confirm
this TID if the submission is successful. TRFC submissions are used when you require
guaranteed one time only execution of a function but do not require any return information
beyond that the call was accepted by SAP. Therefore TRFC is best for submitting data but
not for retrieving data.

Example
The Winform SAPUpdateTRFC method gives an example of TRFC coding.
private bool SAPUpdateTRFC()

{
/* this routine updates the customer list to SAP using (T)RFC */
RfcTID myTid = SAP.Connector.RfcTID.NewTID();
Debug.WriteLine("RFC tid is " + myTid.ToString());

try
{

proxy.TRfcRfc_Customer_Update(ref brfcknA1Table1, myTid);
}
catch (Exception ex)
{

Debug.WriteLine(ex.ToString());
return false;

}
// if you don't confirm the TID, the update is rolled back in SAP.
proxy.ConfirmTID(myTid);
return true;

} //SAPUpdateTRFC

2 SAP Client Programming

2.10 TRFC Client Programming

58 November 2002

2.10.1 RfcTID Class
The RfcTID class is used with QRFC and TRFC processing. A transaction ID (TID) is a 24
character long unique identifier used in the SAP system. It can be mapped back and forth to
a system GUID using the functions described below.

[C#]
public class RfcTID : System.Object

Public Constructors
public static SAP.Connector.RfcTID
NewTID ()

Create a new TID from the SAP .Connector
static NewTID method

public RfcTID (System.Guid guid) Create a new TID from an existing
System.Guid

Public Methods
public System.Guid ToGuid () Convert from a TID to a GUID

public virtual System.String
ToString ()

Convert the TID to a string

 2 SAP Client Programming

 2.11 QRFC Client Programming

November 2002 59

2.11 QRFC Client Programming
QRFC is a type of TRFC programming that guarantees the function will be run in a certain
order (if and when it is selected to run by the system administrator).

Example

private bool SAPUpdateQRFC()
{
/* this routine updates the customer list using (Q)RFC
* use SMQ2 to see results in SAP */

RfcQueueItem mySAPQueue = new RfcQueueItem("DNCQueue", g_queIndex,
RfcTID.NewTID());
try

{
proxy.QRfcRfc_Customer_Update(ref brfcknA1Table1, mySAPQueue);
}

catch (Exception ex)
{
Debug.WriteLine(ex.ToString());
return false;
}
g_queIndex ++; //increment the queue index for next time
return true;

} //SAPUpdateQRFC

2 SAP Client Programming

60 November 2002

2.11.1 RfcQueueItem Class
The RfcQueueItem class is used to submit an RFC via QRFC.

[C#]
public class RfcQueueItem : System.Object

Public Constructors
public RfcQueueItem (System.String
name , System.Int32 index ,
SAP.Connector.RfcTID tid)

Creates an instance of an RfcQueueItem
from a queue name, queue index and RFC tid.
If a queue already exists in SAP, the function
will be added at that index. If not, a queue will
be created

Public Properties
QueueIndex The index to which the function will be added to

the SAP queue

QueueName The name of the SAP queue to add to or to
create if it does not already exist

TID The TID used to submit the RFC to the SAP
system

 2 SAP Client Programming

 2.12 Connection Classes

November 2002 61

2.12 Connection Classes
2.12.1 SAPConnection Class
The SAPConnection class is used to manage the connection to the SAP system. Some
basis information about the system you are connected to can also be determined from this
class.

[C#]
public class SAPConnection : System.Object

Public Constructors
public SAPConnection
(SAP.Connector.Destination dest)

Creates an SAP connection from a destination
class

public SAPConnection (System.String
connString)

Creates an instance of the SAP connection
from a connection string. For example from the
SAPlogonDestination or a manually
created connection string

Public Methods
Accept

Close The Close method should be called after the
RFC is completed

Dispose

Finalize

Open The Open method must be called before the
RFC can be executed

Public Properties
ApplicationServer Reads only property showing basis information

about the SAP system

CodePageEncoding Reads only property showing basis information
about the SAP system

ConnectionString Reads only property showing basis information
about the SAP system

KernelRelease Reads only property showing basis information
about the SAP system

OwnCodePage Reads only property showing basis information
about the SAP system

PartnerCodePage Reads only property showing basis information
about the SAP system

SystemID Reads only property showing basis information
about the SAP system

2 SAP Client Programming

2.12 Connection Classes

62 November 2002

SystemNumber Reads only property showing basis information
about the SAP system

SystemRelease Reads only property showing basis information
about the SAP system

 2 SAP Client Programming

 2.12 Connection Classes

November 2002 63

2.12.2 SAPConnectionPool Class
Connection pooling is a more sophisticated way of managing SAP Connections. In a two-tier
deployment we do not recommend to use this as each client has its own connection. In an n-
tier deployment where multiple users are using the same connection attributes (for example a
web site that is accessed by many users) it may make sense to use connection pooling.
Alternatively, consider using the SAPLogin Provider and SAPLogin Form.

[C#]
public class SAPConnectionPool : System.Object

Public Constructor
public SAPConnectionPool () Static object of the SAP .Connector

Public Methods
public static
SAP.Connector.SAPConnection
GetConnection (System.String
connectionString)

Gets a connection from the connection pool by
passing in the connection string

public static void ReturnConnection
(SAP.Connector.SAPConnection
connection)

Returns the connection to the connection pool

Example
The sample application DNCWebServiceSample uses connection pooling.
using(proxy.Connection =
SAP.Connector.SAPConnectionPool.GetConnection(this.destination1.Connect
ionString))

2 SAP Client Programming

2.13 Data Binding with SAPTable

64 November 2002

2.13 Data Binding with SAPTable
SAPTables implement the proper .NET interfaces that allow them to be data-bound to any
.NET data aware control such as a data grid, combo-box or list control. To databind to a .NET
control set the datasource property to the name of the SAP table.

dataGrid1.DataSource = BRFCKNA1Table1;

In Windows forms there is no need to call this.Databind() but you must do so in ASP
.NET datagrid to update the datagrid.

Coding Recommendations for SAPTable Parameters in Your Code
• Pass OUTPUT Tables uninitialized

If you do not need all TABLE parameters you can remove them from the RFC signature in
the Visual Studio .NET designer. This only works when the table is also OPTIONAL.

For example, to call RFC_CUSTOMER_GET which has an OUTPUT table of customer
records, the table variable tblCust is passed unitialized.

SAPProxy1 proxy = new SAPProxy1();

// create an SAP table but as it's an in parameter don't need to instantiate it for the rfc call
BRFCKNA1Table tblCust = new BRFCKNA1Table();

using(proxy.Connection =
SAP.Connector.SAPConnectionPool.GetConnection(this.destination1.ConnectionString))
 {

 // call the RFC with the signature defined by SAP
 proxy.Rfc_Customer_Get(CustNo, CustName, ref tblCust);

 }

• Fill INPUT TABLES With Values

A TABLE is always passed by REF and is therefore both an IN and OUT parameter.
Since a table is a collection you can fill it in a loop for example:

for(int i = 0; i < number_of_lines; i++)
{

IDRANGE mySelection = new IDRANGE();
IDRANGE.Sign = "I"
IDRANGE.Option = "BT"
IDRANGE.Low= "0000001000"
IDRANGETable.Add(mySelection);

}

Alternatively you can create an additional constructor with the parameters you want to fill.

for(int i = 0; i < number_of_lines; i++)

 2.13 Data Binding with SAPTable

November 2002 65

{
IDRANGETable.Add(new IDRANGE(“I”,”BT”,”0000001000”));

}

For TABLES that are input parameters you have to populate the values yourself before
calling the SAP RFC. For TABLES that are output parameters the SAP marshalling code
populates the values for you automatically.

• Clearing Values From the Table
When an exception is returned, the TABLE object is not reinitialized. If you had made a
previously successful method call and the TABLE contains values, these will not be
reinitialized after an exception has occurred. In this case you can keep the last (good)
results. You can use the table’s clear() method to initialize the values yourself.

• Getting Runtime Information About the RFC TABLES

SAP Tables are built on the .NET CollectionBase class. Therefore they support
indexers and other array operations to allow for easy management of the members in the
array.

Field metadata information can be determined from the structure using the static method:
GetSAPFieldsSchema(System.Type t).

The type parameter is the data type of SAPStructure (in this case the type of
BAPICUSTOMER_IDRANGE).

SAPField[] myFields =
BAPICUSTOMER_IDRANGE.GetFieldsSchema(typeof(BAPICUSTOMER_IDRANGE));

You can get metadata information about each field either with a foreach statement or using
the length property of the SAPField array.

2.14 Programming with Visual Basic .NET

2.13 Data Binding with SAPTable

66 November 2002

2.14 Programming with Visual Basic .NET

SAP Connector proxies are generated in Microsoft Visual C# but you can access them in any
common language runtime language (Visual Basic, Smalltalk, Python, Managed C++, etc.).
The proxy itself must still be created as a C# project and added as a reference to your
project. Within C# projects, you can add the proxy code to the same project. While the
samples provided with the connector include the SAP proxy code in each project we do not
recommend this approach except to illustrate the concepts of the connector. Normally, you
create and compile the proxy class separately from the solutions that use the proxy. For
example, it is often a good idea to put both the SAP.Connector.dll and the generated
proxy into the global assembly cache so that it can be accessed by all projects that require
these SAP objects and minimizes the number of proxy components to maintain. Therefore,
you can choose which language to use with the SAP .NET Connector.

The SAP toolbox designer components work with both C# and Visual Basic .NET projects.
For other languages you may have to add a variable to these classes yourself. The exception
to this is the connect code template code. This code is designed to work with C# projects
so it will not produce syntactically correct Visual Basic .NET code for connecting and calling
the proxy functions. To reproduce the template code manually, is very simple. It involves the
following steps:

• Declare parameters for the call (for example, a proxy object and a connection)

• Call the RFC method(s)

• Adding error handling (for example, Try/Catch/finally)

Example in Visual Basic. NET
Private Sub btnSearch_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnSearch.Click

 ' Declare parameters here

 Dim proxy As New CompiledProxy.CompiledProxy()
 ' note: compiled proxy is a SAP connector class project in this solution or

 ‘ could be the proxy in the GAC

 ‘ get the connection from SAP destination component (added from toolbox)

 proxy.Connection = New SAP.Connector.SAPConnection(Me.Destination1)

 ' Call methods here

 proxy.Rfc_Customer_Get("", txtSelection.Text, BrfcknA1Table1)

 End Sub

End Class

 3 SAP RFC Server Programming

November 2002 67

3 SAP RFC Server Programming

To create an RFC server with the SAP .NET Connector, create a new project using SAP
Connector Class. Select the object type Server Stub.

Within the proxy you have to provide the implementation for the function. The SAP system
acts as the client, calling your implementation of the function. For example, if you had an
RFC server that implemented BAPI_CUSTOMER_GETLIST you have to populate the
customer address list and special data tables in the BAPI_CUSTOMER_GETLIST method of
your generated server stub.

The generated server code has methods for calling the function as RFC or TRFC. The
methods for TRFC processing are generated for you, for example
CheckTransaction(RfcTID), CommitTransaction(RfcTID),
ConfirmTransaction(RfcTID), RollbackTransaction(RfcTID).

The SAP Server object has a “host” container to manage one or many RFC Servers. Each
RFC server can contain different connection properties (for example, system, gateway,
program ID). In the case where the connection information is the same (for example, same
program ID), the SAP system calls each RFC Server in a round-robin approach.

This makes it easy to create and manage a multi-threaded, highly responsive RFC server
application. When your RFC server application is done, it often makes sense to deploy it as a
Windows Service. The SAPServerHost object maps very closely to how Windows services
are managed, for example, there is a start, stop and pause functionality provided in the
SAPServerHost or alternatively on each individual server.

3 SAP RFC Server Programming

3.1 SAPServer Class

68 November 2002

3.1 SAPServer Class
The SAPServer class is generated for you by the SAPWSDL file and the
SAPConnectorGenerator custom tool in Visual Studio. In addition to the classes which are
maintained by the custom tool an additional class SAPProxy1Impl.cs is created as an
example and starting point for the server implementation. You can overwrite and modify it as
required.

The SAPServer class should be used together with the SAPServerHost class.

[C#]
public class SAPServer : System.ComponentModel.Component

Public Constructors
public SAPServer (System.String
programId , System.String gwhost ,
System.String sapgwxx ,
System.String codepage ,
SAP.Connector.SAPServerHost host)

Creates an instance of SAPServer and adds it
to the SAPServerHost instance you specify.
You specify the connection parameters
individually

public SAPServer (string[] args ,
SAP.Connector.SAPServerHost host)

Creates an instance of SAPServer and adds it
to the SAPServerHost instance you specify.
You specify the connection parameters in the
command line arguments array (args)

public SAPServer (string[] args) Same as above except it does not add the
server to the SAPServerHost

public SAPServer (System.String
connectionString ,
SAP.Connector.SAPServerHost host)

Creates an instance of SAPServer and adds it
to the SAPServerHost instance you specify.
You specify the connection parameters
individually

public SAPServer (System.String
programId , System.String gwhost ,
System.String sapgwxx ,
System.String codepage)

Same as above except it does not add the
server to the SAPServerHost

public SAPServer (System.String
connectionString)

Creates an instance of SAPServer with a
connection string (for example, –a<PROGID> -
g<gw host server> -x<gateway
service> (optional –c<codepage#>).
Does not add the server to a host

public SAPServer () Creates an instance of SAPServer but does
nothing else. You have to set connection
properties and optionally a host in a separate
step

 3 SAP RFC Server Programming

 3.1 SAPServer Class

November 2002 69

Public Methods
public virtual System.Int32
CheckTransaction
(SAP.Connector.RfcTID tid)

See SAPServer and TRFC [Page 73]

public virtual System.Int32
CommitTransaction
(SAP.Connector.RfcTID tid)

See SAPServer and TRFC [Page 73]

public virtual System.Int32
ConfirmTransaction
(SAP.Connector.RfcTID tid)

See SAPServer and TRFC [Page 73]

public void Continue () Resumes the server after being paused.

public void Pause () Pauses the server

public virtual void
RollbackTransaction
(SAP.Connector.RfcTID tid)

See SAPServer and TRFC [Page 73]

public void Start () Starts the server. This is normally the first step
after creating the server(s).

public void Stop () Stops the server

Public Properties
public string ProgramID [get, set
]

The program ID as registered on the
SAPGateway and in the TRFC destination
(transaction SM59). For example myProgID.
This is case sensitive!

public string SAPCodepage [get,
set]

Optional - the codepage to use (for example .
4103). Code page 4103 is Unicode (UTF16). If
the SAP system you are communicating with is
not Unicode (for example release 4.6 Kanji)
you may need to change this value

public string SAPGatewayHost [get,
set]

The name of the SAP Gateway host (for
example PCINTEL11)

public string SAPGatewayService [
get, set]

The name of the SAP Gateway service (for
example sapgw00)

Example
See the sample RFCServerConsole for an RFC server implementation of
RFC_CUSTOMER_GET.

3 SAP RFC Server Programming

3.2. Calling our RFC .NET Server from SAP Programs

70 November 2002

3.2. Calling our RFC .NET Server from SAP Programs
To execute our .NET server stub application from the SAP system we need to execute the
ABAP command Call function X Destination Y. This report calls our proxy and
writes the results to screen. Alternatively, you can use the SAP function module’s single test
capability with the TRFC destination for your .NET server stub.

To create a TRFC destination for the SAP .NET server stub create a destination of type T
(TRFC) in transaction code SM59. The program ID in your server stub is case sensitive.

Example

*&---
*& Report ZRFCSERVERCALL
*&
**&--
*& This program can be used with the RFCServerConsole sample
*& Source is available in %\RFCServerConsole\ABAPProgram
*&---

REPORT ZRFCSERVERCALL .
DATA: TBLCUST like BRFCKNA1 occurs 0 with header line.
PARAMETERS: P_CUSTNO like KNA1-KUNNR, P_CUSTNA like KNA1-NAME1,

P_DEST(15) TYPE C.

CALL FUNCTION 'RFC_CUSTOMER_GET' DESTINATION P_DEST
EXPORTING

KUNNR = P_CUSTNO
NAME1 = P_CUSTNA

TABLES
CUSTOMER_T = TBLCUST

EXCEPTIONS
NOTHING_SPECIFIED = 1
NO_RECORD_FOUND = 2
OTHERS = 3.

CASE SY-SUBRC.
WHEN 0.

LOOP AT TBLCUST.
WRITE: / SY-TABIX, TBLCUST-KUNNR, TBLCUST-NAME1, TBLCUST-ORT01.

ENDLOOP.

WHEN 1.
WRITE: / 'You need to specify a value ', SY-MSGV1.

WHEN 2.
WRITE: / '.NET component didnt find anything ', SY-MSGV1.

WHEN 3.
WRITE: / 'Some other error occurred ', SY-MSGV1.

WHEN OTHERS.
WRITE: / 'Something is wrong if we get here'.

ENDCASE.

 3 SAP RFC Server Programming

 3.2. Calling our RFC .NET Server from SAP Programs

November 2002 71

The entry point in the C# method is the method with the function module
name being called from the SAP system (for example, RFC_CUSTOMER_GET).
In Microsoft Visual Studio, you can set a breakpoint here and examine the
input values from the SAP system. This provides a similar idea to the
ABAP_DEBUG functionality that is provided in the client proxy.

3 SAP RFC Server Programming

3.3 Monitoring and Debugging SAPServer Stubs

72 November 2002

3.3 Monitoring and Debugging SAPServer Stubs
In RFC server code you can set a breakpoint directly in the C# class and see when the
function is called by the SAP system. You can monitor TRFC calls to your server from the
TRFC monitor in the SAP system with transaction SM58. From here you can also resend the
function call to your server. Use the SAP queue monitor (transaction SMQ2)to monitor QRFC
calls.

You can do advanced tracing within the SAP system, for example from transaction code
SM50 and by examining the work process trace files (for example, dev_w0 in the SAP work
directory).

 3 SAP RFC Server Programming

 3.4 SAPServer and TRFC

November 2002 73

3.4 SAPServer and TRFC
An RFC server application allows you to use .NET functionality within your SAP system. RFC
servers can be (normal) RFC, TRFC or QRFC servers.

To write a QRFC server, you have to implement the SAP queuing mechanism. For purposes
where you want queuing, we recommend to use Microsoft Message Queue in a TRFC server.

A TRFC server makes sense when have to send information only once from the SAP system
to another application (for example, sending a purchase order) . TRFC is required if you want
to write an application to receive SAP IDOCS. On your TRFC server, you must manage a
connection to a transactional store such as Microsoft SQL Server. You require a transaction
store to ensure you can keep track of and manage all RfcTID sent to you from the SAP
system so that you can create the TID and the function execution within a transaction. You
should therefore override the base class CheckTransaction and CommitTransaction
methods. The base method returns 0 indicating success.

For TRFC, you must implement the following methods:

 Method Explanation

1. CheckTransaction When this method is called you should search your TID
database to determine if this transaction ID exists or not.
If it exists it means that we have already received the
request to execute the function. If not, this is the first time
and we should log the TID with a status that indicates the
method is not yet executed. It should return the following:

0 – It is a new TID. Begin transaction and insert TID into
our database

1 – TID already exists in our database, but is not yet
confirmed in SAP system (client). SAP will confirm on its
end. No further action is required

Other – there is an error (for example database
connection is down. This tells the SAP system to try
again later)

2. Method itself (void) In the transaction, execute the function.

If there is a problem, throw an exception

3. CommitTransaction This method is called if you do not throw an exception
during the actual method execution (step 2).

When the method is called, you should commit the
transaction and return the following:

0 – committed successfully

Other – Failure

4. RollbackTransaction This function is called after the method execution failed
because you raised an exception. You can rollback the
transaction at this point or in the method.

5. ConfirmTransaction

This method is simply an opportunity for you to clean up
your TID database by removing TID values that have
been fully executed

0 – means it is ok

Other values – means it is not ok.

3 SAP RFC Server Programming

3.4 SAPServer and TRFC

74 November 2002

If the transaction fails at any point, the SAP system tries to resubmit it. By default, the system
attempts to resubmit the transaction every 15 minutes up to a maximum of 30 attempts.
However, you can configure the resubmission parameters individually for each RFC
destination using transaction SM59. From the destination maintenance screen, choose
Destination → TRFC options.

Graphically this process looks like this:

Transaction
CALL FUNCTION
‚XYZ‘IN BACKGROUND
TASK...
DESTINATION dest

COMMIT WORK

Windows 2000/XPSAP System

ABAP programm .NET component

OnCheckTID

Function
XYZ

OnCommit
SM58

OnConfirm

tRFC admin

Begin
Trans

Insert
TID

TID
Mgmt

Delete
TID

Commit
Trans

.NET Connector

CheckTID

Function
XYZ

Commit

Confirm

 3 SAP RFC Server Programming

 3.5 RFC Server Exceptions

November 2002 75

3.5 RFC Server Exceptions
If an exception is thrown while the SAPServer is executing, this exception will be passed to
the SAPServerHost on which the SAPServer instance is hosted by calling the
SAPServerHost’s OnServerException function. This is a virtual function and can be
overridden in the derived class.

SAP ABAP exceptions can be returned from your RFC Server component by throwing an
RFCAbapException. The RfcAbapException contains two strings: error code and
message.

Error code is the name of the exception in ABAP/4 (for example, NOTHING_SPECIFIED)
and is referenced inside the ABAP/4 program as a SY-SUBRC code. Message is mapped to
SY-MSGV1 and can be examined for additional detail.

Example:
// exceptions are returned to SAP ABAP/4 program as appropriate SY-
SUBRC & SY-MSGV1

if (""== Kunnr & "" == Name1)

{

RfcAbapException ns = new RfcAbapException("NOTHING_SPECIFIED", "
Both kunnr and name1 were empty");

throw ns;

}

if ("RHD" == Name1)

{

RfcAbapException nrf = new RfcAbapException("NO_RECORD_FOUND", " No
customer by name: " + Name1);

throw nrf;

}

For a complete RFC Server example with exception handling, see the RFCServerConsole
sample.

3 SAP RFC Server Programming

3.6 SAPIDocReceiver

76 November 2002

3.6 SAPIDocReceiver
The SAPIDocReceiver class is a TRFC server implementation used to receive SAP
intermediate documents from an SAP system. An example of an IDOC might be a customer
sales order or a material master record. IDOC records are typically used in EDI scenarios.
See the IdocReceiverService sample for example code.

[C#]
public class SAPIDocReceiver : SAP.Connector.SAPServer

Public Constructors
public SAPIDocReceiver (string[]
args , SAP.Connector.SAPServerHost
host)

Creates a new SAPIDocReceiver and
attaches to a SAPServerhost. Gets the
connection information from args.

public SAPIDocReceiver (string[]
args)

Creates a new SAPIDocReceiver and does
not attach to a SAPServerhost. Gets the
connection information from args.

public SAPIDocReceiver (
System.String ConnectionString ,
SAP.Connector.SAPServerHost host)

Creates a new SAPIDocReceiver and
attaches to a SAPServerhost. Gets the
connection information from a connection
string.

public SAPIDocReceiver (
System.String ConnectionString)

Creates a new SAPIDocReceiver and does
not attach to a SAPServerhost. Gets the
connection information from args.

public SAPIDocReceiver () Creates a new SAPIDocReceiver without
connection information. Does not attach to a
SAPServerhost.

Public Events
public event
SAP.Connector.SAPIDocReceiver.Recei
veEventHandler BeginReceive

Raised when the IDOC transmission from SAP
is first received. You must define an event
handler for this event in your code.

public event
SAP.Connector.SAPIDocReceiver.Recei
veEventHandler EndReceive

Called at the end of the transmission. You must
define an event handler for this event in your
code.

Remarks
SAPIDocReceiver is based on SAPServer and can be managed just like other
SAPServer classes (added to hosts, started and stopped, etc.) The SAPIDocReceiver
adds the BeginReceive and EndReceive events to the base implementation. These
events are called when an IDOC transmission is first received and after the transmission is
completed respectively. The complexity of working with IDOCs is in large part managed by
the component’s internal implementation details.

Example
For a complete example see the sample IdocReceiverService.

 3.6 SAPIDocReceiver

November 2002 77

Creating the variables for IDOC receiver and registering the event handlers
private SAPServerHost host;

private SAP.Connector.SAPIDocReceiver idocrec;

private System.IO.StreamWriter sw;

SAPIDocReceiver idocrec = new SAPIDocReceiver(args, host);

idocrec.BeginReceive += new
SAPIDocReceiver.ReceiveEventHandler(this.idoc_BeginReceive);

idocrec.EndReceive += new
SAPIDocReceiver.ReceiveEventHandler(this.idoc_EndReceive);

Example: BeginReceive event handler

private void idoc_BeginReceive(object sender,
SAP.Connector.SAPIDocReceiver.ReceiveEventArgs e)
{

// this method is called when an idoc is received.
// we tell the idoc receiver to write to a stream writer
EventLog.WriteEntry("Idoc Service", "idoc begin receive");
sw = new System.IO.StreamWriter(@"C:\temp\idocs.txt", true,

System.Text.Encoding.ASCII);

e.WriteTo = sw;
}

Example: EndReceive event handler
private void idoc_EndReceive(object sender,
SAP.Connector.SAPIDocReceiver.ReceiveEventArgs e)
{
// this method is called when idoc is done being received
// we can close the stream writer now
EventLog.WriteEntry("Idoc Service", "idoc end receive");
sw.Close();
}

4 Data Type Reference

4.1 RFC To .NET Data Type Mapping

78 November 2002

4 Data Type Reference
4.1 RFC To .NET Data Type Mapping
Simple Data Types
The following data types are mapped directly to .NET base data types in the main C# proxy
class.

ABAP Type .NET CLS

C (String) String

I (integer) Int32

F (Float) Double

D (Date) String

T (Time) String

P (BCD Packed, Currency, Decimal, Qty) Decimal

N (Numc) String

X (Binary and Raw) Byte []

RFC String String

XString String

Comments on Simple Data Types

• ABAP type N (numeric) data is mapped to a STRING data type in the C# proxy. It
contains numeric data such as invoice numbers. Some type N fields like invoice number
or customer number require you to enter the string with leading zeroes. If in your
application the customer number field is numeric, be sure to convert your entry back to
the appropriately formatted string before using it in the proxy.

• Date / Time fields are mapped to .NET STRING data types in the C# proxy. The format of
the string is the same as the SAP internal storage of the date and time. Specifically for
date this is YYYYMMDD and for time it is HHMMSS. The SAP .NET connector provides
functions specifically to help you convert from SAP Date/Time fields stored as string to a
.NET date or time field.

Complex Data Types
SAP Data Type .NET Data Type
Structure C# class derived from SAPStructure

Table (ITAB) C# class derived from SAPTable

(New) Hierarchical Table (type II
ITAB)

Not supported in this version

 4 Data Type Reference

 4.2 SAPTable Class

November 2002 79

4.2 SAPTable Class
The SAPTable class represents a very common data type in the SAP system and is
frequently used to hold the results of the RFC call. It is occasionally used to pass in selection
variables to the RFC call. A SAPTable is made of SAPStructures of a single type. For
example a SAPTable called RFCFuncTable would be made up of RFCFunc structures
(rows).

[C#]

public class SAPTable : System.Collections.CollectionBase

Public Constructors
protected SAPTable () Creates a new instance of SAP Table. You should use

the SAP table control to reference SAP Tables in your
code. The SAP table will be created automatically by
the connector.

Public Methods
Add (SAPStructure) Adds a new row (SAPStructure) to the table

Contains(SAPStructure) Returns true if the SAPTable contains that row

CopyTo(SAPStructure[],int) Copies into a SAPStructure array up to the given
index

CreateNewRow() Creates a new blank row in the SAPTable

GetElementType() Returns the type of the particular SAPStructure (for
example, RFCFunc or other SAP structure)

IndexOf(SAPStructure) Returns the current index ID

Insert(int, SAPStructure) Inserts at the index given a SAP structure

Remove(SAPStructure) Removes the SAP structure specified from the table

SortBy(string fieldname,
string direction)

The SAP table now supports sorting, for example in a
datagrid.

ToADODataTable Creates a new ADO .NET DataTable from the SAP
Table.

FromADODataTable Creates the SAP Table from an ADO .NET DataTable.
Note that the schemas must be IDENTICAL.

Public Properties
This[int] An indexer to get access to the current SAP

structure

Example
See the Winform sample for examples of using the SAPTable class.

4 Data Type Reference

4.3 SAPStructure Class

80 November 2002

4.3 SAPStructure Class
The SAPStructure class represents a very common data type in the SAP system and is
frequently used to hold the results of the RFC call as part of a SAPTable or as a BAPI error
return. A structure is made up of several simple data types and can be thought of as a row of
a table. The SAPStructure is generated for you by the SAP .NET Connector and should
not be modified outside of the SAPConnectorGenerator tool.

[C#]
public class SAPStructure : System.Object

Public Constructors
protected SAPStructure () The SAPstructure is the base class for a

specific type of SAP Structure. For example a
structure containing customer address data
(customer, city, state, phone, etc.)

Example
See the Winform sample application for example code dealing with SAP Structures.

 4 Data Type Reference

 4.4 RFC Parameter Mapping to C#

November 2002 81

4.4 RFC Parameter Mapping to C#
RFC parameters fall into these categories:

• IMPORT

Always pass values from the calling program to the function module unless this is marked
as an optional parameter.

• CHANGING

These are passed to the function module from the calling program and are then passed
back to the program.

• EXPORT

These are passed from the function module to the calling program unless marked as an
optional parameter.

• TABLES

These represent an array of SAP structure instances. They can be IN or OUT
parameters.

• IMPORT, EXPORT, CHANGING

These parameter types cannot be tables. They can be structures or other simple data
types.

• OPTIONAL

Parameters can also be defined as optional.

A simple mapping of RFC parameter types to C# parameter types follows:

RFC Parameter Type C# Parameter Type
IMPORT IN

EXPORT OUT

CHANGING REF (In/Out)

TABLES REF (In/Out)

5 Samples

5.1 Windows Form Sample

82 November 2002

5 Samples
Several samples are provided with the connector to help you understand how the proxies
work and to illustrate the topics discussed in this reference. They are provided without
warranty or support.

The samples are designed to work against the Mini SAP Web Application Server 6.20 or any
system supporting RFC_CUSTOMER_GET and RFC_CUSTOMER_UPDATE. For the IDOC
samples you need a system than can accept IDOCs. An Exchange_rate01 IDOC type is
provided as a sample that should work with the mini SAP system. All samples are written in
Microsoft C#, except for the Visual Basic windows form sample. Before using the samples, be
sure to verify the login parameters in the SAP destination component. The samples are in the
folder Samples. To launch the samples in Visual Studio .NET double-click on
Samples.sln.

5.1 Windows Form Sample
This sample is a Windows form and illustrates the following concepts:

• SAPClient programming

• Dealing with exceptions

• Asynchronous method calls

• Debugging and tracing

• Working with SAP Tables (sorting, converting to ADO .NET, data binding)

• Synchronous, transactional and Queued RFC updates

The Windows form sample uses the RFC_CUSTOMER_GET function module. It accepts as
input a customer name string (for example, A*) and returns in a datagrid all customers that
match that selection.

To use the sample, you have to enter an SAP customer search selection criteria. All functions
are available from the sample’s application menu.

To use the option Save Results to SQL Server you must set the SQL logon parameters in the
component SqlConnection1 on form1. To do this, click on the property
ConnectionString and use the drop down box. Let the Wizard construct the connection
string for you. You also need a table named cust in the Northwind database, and a stored
procedure called Insert_cust. The SQL script to create both of these objects is located in
the subfolder SQL.

 5 Samples

 5.2 Webform Sample

November 2002 83

5.2 Webform Sample
The web form sample is the simple ASP .NET web form shown in the guide and illustrates
the following:

• SAPClient programming

• Using ASP .NET with the connector

• Databinding in web form

• Use of the SAPlogin form

Before using this sample, you have to share the folder DNCWebApp.

5 Samples

5.3 Simple RFC Server

84 November 2002

5.3 Simple RFC Server
This console application is a simple RFC server implementing the SAP function
RFC_CUSTOMER_GET. Our .NET implementation, returns two customers back to the SAP
system and prints out the parameters sent to us by the SAP call.

This sample illustrates:

• Use of a Windows Console application with the connector

• A simple RFC Server

• Calling a .NET server from SAP

• Command line parameters for connecting to SAP gateway

• Using the RFC Server host with the same connection information for each server

This sample uses command line arguments to connect to the SAP gateway (for example,
 –aMYPROGID –gLOCALHOST –xSAPGW00), where –a is the program ID used in your
TCP/IP destination, -g is the gateway host and –x is the gateway service.

You can set the command line arguments in the Visual Studio .NET debugger by right-
clicking on the project RFCServerConsole and selecting Properties → Configuration
properties → Debugging → Command Line Arguments.

Before calling this RFC server in the SAP system, you must have setup a TCP/IP destination
in your SAP system (type registration). You can call this sample RFC server by running
RFC_CUSTOMER_GET in single test from the RFC function builder (transaction SE37) inside of
the SAP system, with the destination of your TCP/IP destination. Alternatively, you can write
an Abap/4 program as described in Calling our RFC .NET Server from SAP Programs [Page
70].

An example ABAP/4 program is provided in this sample’s “ABAP” directory.

 5 Samples

 5.4 IDOC Receiver as a Windows Service

November 2002 85

5.4 IDOC Receiver as a Windows Service
The windows service sample takes the SAP IDOC Receiver component and deploys it as a
Windows Service. You can see:

• How RFC servers and Windows Services are similar

• How to install a Windows Service that is also an SAP RFC .NET server

• Basic functions of the IDOC Receiver

• How to manage the connection parameters in the Windows Service properties

Before running this sample, you must install it using the Visual Studio utility
Installutil.exe.

Using the Visual Studio .NET command line, navigate to the folder containing Installutil
IdocReceiverService.exe (for example,
SAP .NET Connector\Samples\IdocReceiverService\bin\Debug).

Run the command Installutil IdocReceiverService.exe. This should install the
Windows Service. You can verify this by looking at the Services manager in the
Administrative Tools. The Service name is .Net connector Idoc Service.

To uninstall the Windows service run the command
Installutil -u IdocReceiverService.exe.

You set the SAP connection string in this service’s Start parameters property. For
example if your TCP/IP destination used the program ID of myProgID and your SAP system
ran on your local machine, then the start parameters would be:

-amyProgID –glocalhost –xSAPGW00.

Messages are logged to the Windows Application Event Viewer. When received, SAP IDOCs
are appended to the following file: C:\temp\idoc.txt.

To enable your system to send IDOCS you must have a TCP/IP destination (type
registration), a configured partner profile (WE20) and a configured TRFC Port (WE21). The
Mini SAP Web Application Server 6.20 supports the IDOC type EXCHANGE_RATE01. For
convenience, you can find a sample IDOC file in the IDOC submitter sample’s SampleIdoc
folder. If you have no IDOCs on your system you can submit this IDOC using the
IdocSubmit sample application. Then use the IDOC test utility (WE19), change the IDOC
header and submit it as an outbound IDOC to the TRFC Port representing this
IdocReceiver sample.

5 Samples

5.5 IDOC Submitter Windows Form

86 November 2002

5.5 IDOC Submitter Windows Form
This application is a Windows form that loads an IDOC file and displays it on the form. You
can then submit the IDOC using the .NET connector’s IdocSender component. For
convenience, an EXCHANGE_RATE01 IDOC (ANSI encoded) file is provided in the folder
“SampleIdoc”. This sample illustrates the following:

• Sending an IDOC file to SAP system

• Creating and confirming SAP Transaction ID (TID)

• Working with a stream reader to open IDOC file and display on Windows form.

 5 Samples

 5.6 Simple RFC Web Service

November 2002 87

5.6 Simple RFC Web Service
This application is an ASP .NET web service interface to RFC_CUSTOMER_GET. The web
method signature can be the same method signature as the SAP RFC method or it can be a
simplified method signature. However, since SAP Tables are complex data types you must
write a client to execute the web method. In other words, you cannot run the web service
using the default Web Services test harness provided by Visual Studio .NET. To allow you to
run the web service with the least effort, the method signature was slightly modified.

Before running this application you have to share the folder DNCWebServiceSample.

This sample illustrates a simple web service wrapper for RFC_CUSTOMER_GET.

5 Samples

5.7 Simple Visual Basic Windows Form

88 November 2002

5.7 Simple Visual Basic Windows Form
The VBWinform project shows how to use a compiled SAP Proxy which was generated in C#
within your Visual Basic .NET project. To use Visual Basic or other CLR language with the
connector you simply have to set a reference to an existing or a new proxy. The proxy could
be in the global assembly cache (recommended) or within the same solution as your VB.NET
project (shown in this sample).

 5 Samples

 5.8 X.509 Certificate Sample

November 2002 89

5.8 X.509 Certificate Sample
Before using this sample, share the folder
\SAP .NET Connector\Samples\DNCX509Cert\. This sample shows how to use X.509
certificates with the connector. Note that you must run this sample in HTTPS to get the X.509
certificate from IIS.

	SAP .NET Connector
	Part I SAP .NET Connector Overview
	1 Features
	2 Prerequisites
	3 Creating an ASP .NET Web Application Using the SAP .NET Connector
	4 SAP Client Applications
	4.1 Project Types
	4.2 RFC or SOAP
	4.3 Connecting to the SAP System
	4.4 Authentication
	4.5 Asynchronous Methods
	4.6 TRFC and QRFC Support
	4.7 Monitoring and Debugging
	4.8 IDOC

	5 SAP .NET Server Applications
	5.1 Key Steps
	5.2 Authentication
	5.3 Monitoring and Debugging
	5.4 TRFC and QRFC

	Part II SAP .NET Connector Programmers’ Reference
	1 Overview of Classes
	2 SAP Client Programming
	2.1 SAPClient Class
	2.2 SAPClient Proxy Generation
	2.3 Customizing SAP Proxies
	2.4 SAPClient Methods
	2.5 SAPClient Exceptions
	2.6 Debugging of SAPClient Proxies
	2.7 Authentication
	2.8 SAPIDocSender Class
	2.9 Asynchronous Methods
	2.10 TRFC Client Programming
	2.11 QRFC Client Programming
	2.12 Connection Classes
	2.13 Data Binding with SAPTable
	2.14 Programming with Visual Basic .NET

	3 SAP RFC Server Programming
	3.1 SAPServer Class
	3.2. Calling our RFC .NET Server from SAP Programs
	3.3 Monitoring and Debugging SAPServer Stubs
	3.4 SAPServer and TRFC
	3.5 RFC Server Exceptions
	3.6 SAPIDocReceiver

	4 Data Type Reference
	4.1 RFC To .NET Data Type Mapping
	4.2 SAPTable Class
	4.3 SAPStructure Class
	4.4 RFC Parameter Mapping to C#

	5 Samples
	5.1 Windows Form Sample
	5.2 Webform Sample
	5.3 Simple RFC Server
	5.4 IDOC Receiver as a Windows Service
	5.5 IDOC Submitter Windows Form
	5.6 Simple RFC Web Service
	5.7 Simple Visual Basic Windows Form
	5.8 X.509 Certificate Sample

