

BC400 ABAP Workbench Concepts and Tools

BC400

 Release 46C 12.12.2002

BC400 ABAP Workbench Concepts and Tools ...0-1

Copyright 0-2

ABAP Workbench 0-4

ITS 0-5

Prerequisites 0-6

Target Group 0-7

ABAP Workbench Foundations and Concepts: Contents 1-1

Course Goal 1-2

Course Objectives 1-3

Course Content 1-4

Course Content 1-5

Main Business Scenario 1-6

Important Database Tables for the Flight Data Model1-7

Program Flow in an ABAP Program 2-1

Overview 2-2

Client / Server Architecture 2-3

User-Oriented View 2-4

Program Flow: What the User Sees 2-5

Interaction Between Server Layers 2-6

Overview 2-7

Sample Program 1: Program Start 2-8

System Loads Program Context 2-9

Runtime System Sends Selection Screen 2-10

Selection Screen Entries Inserted into Data Objects2-11

Program Requests Data Record from Database 2-12

Database Returns Data Record to Program 2-13

Runtime System Sends List 2-14

Overview 2-15

Sample Program 2: Program Start 2-16

ABAP Runtime System sends Screen 2-17

User Leaves Selection Screen 2-18

Program Requests Data Record from Database 2-19

Database Returns Data Record 2-20

Program Calls Screen 2-21

ABAP Runtime System Sends Selection Screen 2-22

User Executes User Action 2-23

Processing of the ABAP Processing Block Resumes2-24

Overview 2-25

Course Content 2-26

Course Content 2-27

Introduction to the ABAP Workbench 3-1

Introduction to the ABAP Workbench 3-2

Overview: Introduction to the ABAP Workbench 3-3

R/3 Repository 3-4

Repository Structure 3-5

SAP Application Hierarchy 3-6

Repository Information System 3-7

ABAP Workbench Tools 3-8

Screen Structure in the Object Navigator 3-9

Navigation Functions in the Navigation Area 3-10

Navigation in the Tool Area 3-11

Synchronizing the Navigation Area and the Tool Area 3-12

Analyzing an Existing Program 3-13

Determining the Functional Scope: Executing a Program 3-14

Executing a Program Using a Transaction Code 3-15

Determining Screen Numbers and Field Names 3-16

Static Analysis: Object list 3-17

Static Analysis in the Object Navigator 3-18

Example: Displaying Screen 100 in the Screen Painter 3-19

Dynamic analysis: Debugging mode 3-21

Starting a Program in Debugging Mode 3-22

Switch to Debugging Mode at Runtime 3-23

Investigating the Behavior of ABAP Programs at Runtime: Breakpoints in the Debugging Mode 3-24

Breakpoints in the Debugging Mode 3-25

Analyzing the Source Code 3-26

General ABAP Syntax: Key Words 3-27

Keyword Documentation in the Editor 3-28

Navigation in the Editor: Double-Clicking 3-29

Comments 3-30

Analyzing the Sample Program Source Code 3-31

Data Objects and Selection Screens 3-32

Requesting a Data Record from the Database 3-33

Receiving the Results of a Query 3-34

Processing Screens 3-35

Creating Lists in ABAP 3-36

Overview: Introduction to the ABAP Workbench 3-37

Objective of the First Project 3-38

Project Organization in the ABAP Workbench 3-39

Transporting Repository Objects 3-40

Sample Project: Training BC400 3-41

Project Representation in the Workbench Organizer3-42

Completing the Development Process 3-43

Performing Adjustments 3-44

Copying Programs 3-45

Saving Programs 3-46

Allocation to a Change Request 3-47

Adjusting Short Texts 3-48

Adapting Source Code 3-49

Making Changes to Screens 3-50

Activating Program Objects 3-51

Displaying ABAP Programs in the Object Navigator3-52

Executing an ABAP Program 3-53

Changing ABAP Programs in the Object Navigator 3-54

Activating the ABAP program (1) 3-55

Activating the ABAP program (2) 3-56

Activating a Single Program Object 3-57

Syntax Checks and Extended Program Checks 3-58

Creating a New Program 3-59

Creating a Program 3-60

Creating a Transaction Code 3-62

Including a Transaction Code in SAP Easy Access 3-63

Introduction to the ABAP Workbench: Unit Summary3-64

ABAP Workbench Exercises 3-65

ABAP Workbench Solutions 3-69

ABAP Statements and Data Declarations 4-1

ABAP Statements and Data Declarations: Unit Objectives 4-2

Main Focus of Unit: Data Objects in Programs 4-3

Overview: Types 4-4

Using Types 4-5

Attributes of Global and Local Program Types 4-6

Global types in the ABAP Dictionary 4-7

Example: Using Semantic Information from the Dictionary 4-8

Finding out About ABAP Dictionary Types 1 4-9

Finding ABAP Dictionary Types in the Repository Information System 4-10

Local Data Types in Programs 4-11

Overview: Data objects 4-13

Defining Data Objects 4-14

Overview: Elementary Data Objects 4-15

Syntax Example: Defining Elementary Data Objects4-16

Fixed Data Objects 4-18

Copying and Initializing Variables 4-20

Performing Calculations 4-21

Evaluating Field Contents 4-22

Tracing Data Flow in the Debugger: Field View 4-23

Tracing Data Flow in the Debugger: Watchpoint 4-24

Overview: Structures 4-25

Defining Structures with a Dictionary Type Reference4-26

Example: Dictionary Structure Type SBC400FOCC4-27

Syntax Example: Local Program Structure Types 4-28

Addressing Fields in Structures 4-29

Copying Identically-Named Fields Between Structures 4-30

Structures in the Debugger 4-31

Data Objects in a Program's Object List and in the Where-Used List 4-32

Overview: Internal Tables 4-33

Internal Tables 4-34

Attributes of Internal Tables 4-35

The Relationship Between the Table Kind and the Access Type 4-36

Declaring Internal Tables with a Dictionary Type Reference 4-37

Syntax Example: Local Table Types in Programs 4-38

Example: Filling Internal Tables Line by Line 4-39

Overview: Accessing Single Records 4-40

Overview: Processing Sets of Records 4-41

Example: Reading Internal Table Contents Using a Loop 4-42

Example: Reading Internal Tables Using the Index 4-43

Example: Reading Internal Tables Using Keys 4-44

Operations on the Whole Internal Table 4-45

Syntax Example: Sorting a Standard Table 4-46

Internal Tables in Debugging Mode 4-47

Internal Tables with Headers 4-48

Overview: ABAP Statement Attributes 4-49

ABAP Statement Return Codes 4-50

Standard Dialogs for Messages 4-51

Syntax Example: MESSAGE Statements 4-52

The MESSAGE Statement, Message Classes, and Messages 4-53

Messages with and Without Long Texts 4-54

Messages with Place-Holders 4-55

The Dialog Behavior of Messages: Message Types4-56

Runtime Behavior of Messages 4-57

Creating Message Classes and Messages 4-58

ABAP Statements and Data Declarations: Unit Summary 4-59

Data Objects and Statements Exercises 4-60

Data Objects and Statements Solutions 4-65

Reading Database Tables 5-1

Reading Database Tables: Unit Objectives 5-2

Overview: Using Reuse Components 5-3

Reference Model 5-4

Overview: Available Reuse Techniques 5-5

Information on Database Tables in R/3 5-6

Maintenance Tool: ABAP Dictionary 5-7

Flight Data Model for ABAP Training Courses 5-8

Data Model 5-9

Implementation in the Database Using the ABAP Dictionary 5-11

Finding Fields, Key Fields, and Secondary Indexes in the ABAP Dictionary 5-12

Finding Database Tables 5-13

Reading Database Tables 5-15

Querying the Database 5-16

SELECT Overview 5-17

Reading a Single Record 5-19

Reading Several Records Using a SELECT Loop 5-20

Reading Several Records Using an Array Fetch 5-21

The Field List and Appropriate Target Structure: The INTO Clause 5-22

Target Structures with Identically-Named Fields for All Columns Specified 5-23

Authorization Checks 5-24

Authorization Checks in ABAP Programs 5-25

Authorization Objects and Authorizations 5-26

AUTHORITY-CHECK 5-27

Inserting AUTHORITY-CHECK in Programs 5-28

Outlook: Reading Multiple Database Tables 5-29

Reading Multiple Database Tables 5-30

ABAP Join and Dictionary Views 5-31

Reading Database Tables: Unit Summary 5-32

Database Dialogs 1: Exercises 5-33

Database Dialogs 1: Solutions 5-38

Internal Program Modularization 6-1

Internal Program Modularization: Unit Objectives 6-2

Possible Elements in an ABAP Program 6-3

Event Blocks 6-4

Example: ABAP Program with Event Blocks and a Selection Screen 6-5

Sample Program Runtime Behavior 6-6

Event Blocks in Executable Programs 6-7

Syntax: Event Blocks 6-8

Subroutines 6-9

Example: Flow Chart 6-10

Concept: Encapsulating Output in a Subroutine 6-11

Calling Subroutines 6-12

Syntax Example: Calling the Subroutine 6-13

Implementation: Generic Subroutine to Display the First n Lines of an Internal Table 6-14

Syntax: Generic Subroutine to Display the First n Lines of an Internal Table 6-15

Generating a Call Using Drag&Drop 6-16

Subroutines in the Debugging Mode 6-17

Subroutines That Return Data 6-18

Syntax Example: Subroutines with USING and CHANGING Parameters 6-19

Copying Large Internal Tables 6-21

Solution: Reference Parameters 6-22

Syntax Example: Subroutine with Interface Reference Parameters 6-23

Internal Program Modularization: Unit Summary 6-24

Modularization in Programs Exercises 6-25

Internal Program Modularization Solutions 6-27

User Dialogs: Lists 7-1

User Dialogs: Lists: Unit Objectives 7-2

List Attributes 7-3

Standard List Functions 7-4

Column Header in the Default Page Header 7-5

Multilingual Capability 7-6

Lists in Executable Programs 7-7

Detail Lists 7-8

Example: A Simple Detail List 7-9

Syntax: A Simple Detail List 7-10

Example: Detail lists 7-11

Placing Global Data in the HIDE Area 7-12

Line Selection 7-13

Line Selection: Syntax 7-14

User Dialogs: Lists: Unit Summary 7-15

User Dialogs – Lists: Exercises 7-16

User Dialogs – Lists Benutzerdialog Liste: Solutions7-18

User Dialogs: Selection Screens 8-1

Selection Screens: Unit Objectives 8-2

Use of Selection Screens 8-3

Screen Attributes 8-4

The Selection Screen 8-5

Entering Selections 8-6

Using the Semantic Information of Dictionary Types 8-7

Selection Texts 8-8

Variants 8-9

Single Fields (PARAMETERS) 8-10

Effect of the PARAMETERS Statement 8-11

Runtime Behavior and Data Transport (1) 8-12

Using Parameters When You Access the Database8-13

Value Sets (SELECT-OPTIONS) 8-14

Effect of SELECT-OPTIONS 8-15

Runtime Behavior and Data Transport (2) 8-16

Using Value Sets When You Access the Database 8-17

Selection screen events 8-18

Selection Screen Events 8-19

Error Messages in AT SELECTION-SCREEN 8-20

Syntax Example for AT SELECTION-SCREEN 8-21

Selection Screens: Unit Summary 8-22

Selection Screen: Exercises 8-23

Selection Screen Solutions 8-24

User Dialogs: Screens 9-1

Screens: Unit Objectives 9-2

Selection Screen Attributes 9-3

Options for Calling Screens 9-4

Objective of the Example Program 9-5

Parts of a Screen 9-6

Editing Screens 9-7

The Editing Window in the Graphical Layout Editor 9-8

Example, Step 1: Creating a Screen 9-9

Creating a Screen: Screen Attributes 9-10

Input Fields with Reference to Fields of a Dictionary Structure 9-11

Changing the Element Attributes of a Field: The Attribute Window 9-12

Example, Step 2: Displaying Data 9-13

Screen Interfaces 9-14

Data Transport from the Program to the Screen 9-15

Data Transport from the Screen to the Program 9-16

Data Transport in the Example Program 9-17

Data Availability 9-19

Syntax: Example Program with Data Transport 9-21

Example, Step 3: Defining Pushbuttons 9-22

Runtime Behavior When User Chooses a Pushbutton 9-24

Defining Pushbuttons / Assigning Function Codes 9-25

Making the Command Field Usable 9-26

Modules 9-27

The user_command_<nnnn> PAI Module 9-28

Creating Modules Using Forward Navigation 9-29

Next Screen (Set Statically) = 0 9-30

Next Screen (Set Statically) = Screen Number 9-31

Setting the Next Screen Dynamically 9-32

Syntax Example: The user_command_100 Module 9-33

Exceptional Runtime Behavior When ENTER Is not Assigned to a Function Code 9-34

Possible Solution: Deleting the Command Field in a PBO Module 9-35

Screens: Unit Summary 9-36

Screens: Exercises 9-37

Screens Solutions 9-42

Interfaces 10-1

Interfaces: Unit Objectives 10-2

Overview of Screen Objects 10-3

Evaluating Functions After User Actions 10-4

Evaluating Standard List Functions Using a System Program 10-5

Functions in ABAP Programs 10-6

Status: Functions in Screens 10-7

Runtime Behavior: Setting a Status before Displaying a Screen 10-8

Creating GUI Statuses for Lists 10-9

Adjusting Statuses 10-10

Statuses in the Menu Painter: Key Settings 10-11

Statuses in the Menu Painter: The Menu Bar 10-12

Technical View of Basic Interface Elements 10-13

Objective: Example Program Interface 10-14

Creating GUI Statuses for a Screen 10-15

Including Existing Elements 10-16

Technical View of an Interface with Two Statuses 10-17

Each Status References Functions (Indirectly) 10-18

Each Referenced Function Has the Attribute Active or Inactive in the Status 10-19

Setting Functions to Active or Inactive in the Status10-20

Adding an Additional Function Subsequently 10-21

Outlook: Title 10-22

Creating GUI Titles for a Screen 10-23

Interfaces: Unit Summary 10-24

Interfaces Exercises 10-25

InterfacesSolutions 10-27

Reuse Components 11-1

Reuse Components: Unit Objectives 11-2

Techniques for Encapsulating Business Logic 11-3

Overview: Function Groups and Function Modules 11-4

Function Groups and Function Modules: Course Objectives 11-5

Function Groups 11-6

Function Modules 11-7

Function Groups: Data Flow 11-8

Example: The Cancel Dialog Box 11-9

Requirement: Function Module for Standard Dialog11-10

Finding the Function Module 11-11

Function Module Interface 11-12

Documentation and Testing 11-13

Syntax: Calling the Function Module 11-14

Inserting a Function Module Call in a Program 11-15

Overview: Business Objects and BAPIs 11-16

Business Objects and BAPIs: Course Objectives 11-17

Where Are BAPIs Used? 11-18

Components of mySAP.com 11-19

BAPIs Map Process Steps in the System 11-20

BAPIs Are Methods of Business Objects 11-21

Example: Business Object Type FlightCustomer 11-22

Example: Delivering Detail Information with BAPIs 11-23

Example: BAPI Causes Status Change 11-24

BAPI Explorer and Interface Repository 11-25

Defining and Implementing Business Object Types11-26

Defining and Implementing Methods 11-27

Conditions for BAPI Function Modules 11-28

BAPI Explorer 11-29

Business Objects in the BAPI Explorer 11-30

Standardized BAPIs 11-31

Finding BAPI Function Modules 11-32

Calling a BAPI Function Module from an ABAP Program 11-33

Overview: Objects and Methods 11-34

Objects and Methods: Course Objectives 11-35

Benefits of Object-Oriented Programming 11-36

Real World / Functions / Objects 11-37

ABAP Objects: 11-38

Example Scenario: Changing a Flight Booking 11-40

Objects Are Instances of a Class 11-41

Program Flow in an ABAP Program 11-42

Application Areas of ABAP Objects 11-43

Controls: Technical Background I 11-44

Example: ALV Grid Control 11-45

Programs Using ALV Grid Control 11-46

Objects and Classes for the ALV Grid Control 11-47

CL_GUI_CUSTOM_CONTAINER 11-48

CL_GUI_ALV_GRID 11-49

Creating a Custom Control Screen Element 11-50

Syntax Example: Defining Reference Variables 11-51

Syntax Example: CREATE OBJECT 11-52

Syntax Example: Calling Methods 11-53

Reuse Components 11-54

Reuse Components: Exercises 11-55

Reuse Components: Solutions 11-59

Software Logistics and Software Adjustment: Contents 12-1

Software Logistics and Software Adjustment:Unit Objectives 12-2

Software Logistics and R/3 Adjustment 12-3

System Landscape 12-4

Development Classes 12-5

Projects 12-7

Creating a Request (For a Project) 12-8

Assigning Programs to a Request (Project) 12-9

Change Authorizations for All Team Members 12-10

At the End of Development 12-11

Registering Developers in the SSCR 12-12

Originals and Copies 12-13

Corrections and Repairs 12-14

Modifications During Upgrade 12-15

Quality Assurance: Error Correction in a Three-System Landscape 12-16

Software Logistics and R/3 Adjustment 12-17

Change Levels 12-18

How Enhancements Function 12-19

Finding Enhancements 12-20

Enhancing Functions 12-21

Enhancing User Dialogs 12-22

Enhancements: Examples 12-23

Software Logistics and Software Adjustment:Unit Summary 12-24

Database Dialogs II (Making Changes to the Database) 13-1

Database Updates: Unit Objectives 13-2

SAP LUW and Database LUW 13-3

Basic Business Process 13-4

Database LUW 13-5

(Implicit) Database Commits in Each User Dialog 13-6

Aim: Bundling Database Changes in an SAP LUW 13-7

Database Updates 13-8

Solution: Database Updates in a Single Dialog Step13-9

Example Program: Update in a Dialog Step 13-10

Outlook: Database Changes Using Update Task 13-11

Lock Concept 13-12

Why Set Locks? 13-13

Database Locks Are Not Enough 13-14

Example Program with Locks 13-15

Example Program: Locking and Unlocking 13-16

Example Program: Database Updates 13-17

Database Updates: Unit Summary 13-18

Developing Internet Applications 14-1

Developing Internet Applications 14-2

Overview of SAPGUI for HTML 14-3

Objective: Representing Screens Using HTML Pages 14-4

SAPGUI for HTML: Architecture 14-5

Generating an HTML Page 14-6

Overview of Easy Web Transaction 14-7

Transaction Features 14-8

Transaction Classification 14-9

Easy Web Transaction: Architecture 14-10

Creating an Internet Service 14-11

Publishing an Internet Service 14-13

Testing the Web Transaction 14-14

Overview: Transactions with a Web Layout 14-15

Easy Web Transaction with Static Templates 14-16

HTML Pages for SAP Screens 14-17

Reference Model 14-19

Overview: ITS Flow Logic 14-20

ITS Flow Logic: Development Outside the R/3 System 14-21

ITS Programming Models 14-22

Developing Internet Applications 14-24

Developing Internet Applications: Exercises 14-25

Developing Internet Applications: Solutions 14-27

Appendix 15-1

Typical Information System Requests 15-2

Overview: Creating Programs 15-3

Structures and internal Tables can be Nested 15-4

Type Groups in the ABAP Dictionary 15-5

PARAMETERS and TABLES 15-6

Deleting an Internal Table 15-7

Summary of Declarative Statements 15-8

Type Conversion 15-9

Logical Expressions 15-10

DO and WHILE Loops 15-11

CHECK and EXIT 15-12

Termination Conditions 2 15-13

Includes: Type I Programs 15-14

TOP Includes 15-15

Standard Includes for Function Groups 15-16

Central Role of Function Modules 15-17

Exception Handling 15-18

Catching Exceptions 15-19

Colors/Icons/Symbols in Lists 15-20

BAPIs in the BAPI Explorer 15-22

Business Object Builder 15-23

Logical Databases Course Objectives 15-24

Reading Logically Dependent Data 15-25

Logical Databases 15-26

Controlling an LDB from within a Program 15-27

Logical Databases 15-28

Summary 15-29

Event Blocks in Logical Databases 15-30

Example: Event Sequencing 15-31

External Data Transfer 15-32

External Data Transfer 15-33

Advanced Techniques: Dynamic Screen Sequencing15-34

Advanced Techniques: Update 15-35

 SAP AG 1999

BC400 ABAP Workbench Concepts and Tools

 SAP AG

R/3 System

Release 4.6C

Material Number 5004 2281

Januar 2001

 SAP AG 2001

Copyright 2001 SAP AG. All rights reserved.

No part of this publication may be reproduced or transmitted in
any form or for any purpose without
the express permission of SAP AG. The information contained
herein may be changed without prior notice.

All rights reserved.

Copyright

Trademarks:

Some software products marketed by SAP AG and its distributors contain proprietary software
components of other software vendors.

Microsoft®, WINDOWS®, NT®, EXCEL®, Word®, PowerPoint® and SQL Server® are registered
trademarks of Microsoft Corporation.

IBM®, DB2®, OS/2®, DB2/6000®, Parallel Sysplex®, MVS/ESA®, RS/6000®, AIX®, S/390®, AS/400®,
OS/390®, and OS/400® are registered trademarks of IBM Corporation.

ORACLE® is a registered trademark of ORACLE Corporation.

INFORMIX®-OnLine for SAP and INFORMIX® Dynamic ServerTM are registered trademarks of
Informix Software Incorporated.

UNIX®, X/Open®, OSF/1®, and Motif® are registered trademarks of the Open Group.

HTML, DHTML, XML, XHTML are trademarks or registered trademarks of W3C®, World Wide Web
Consortium, Massachusetts Institute of Technology.

JAVA® is a registered trademark of Sun Microsystems, Inc.

JAVASCRIPT® is a registered trademark of Sun Microsystems, Inc., used under license for technology
invented and implemented by Netscape.

SAP, SAP Logo, R/2, RIVA, R/3, ABAP, SAP ArchiveLink, SAP Business Workflow, WebFlow,
SAP EarlyWatch, BAPI, SAPPHIRE, Management Cockpit, mySAP.com Logo and mySAP.com
are trademarks or registered trademarks of SAP AG in Germany and in several other countries all over
the world. All other products mentioned are trademarks or registered trademarks of their respective
companies.

 SAP AG 1999

ABAP Workbench

ABAP Workbench:
Foundations and
Concepts

BC400 5 days

Managing ABAP
Developments Projects

MBC40 2 days

Data Transfer
BC420 5 days

Techniques of List
Processing and InfoSet
Query

BC405 3 days

SAPscript: Forms Design
and Text Management

BC460 3 days

CATT:Test Workbench and
Computer Aided Test Tool

CA610 (Rel. 4.0) 2 days

ABAP Performance
Tuning

BC490 3 daysABAP Programming
Techniques

BC402 3 days

Programming
Database Updates

BC414 3 days

Enhancements
and Modifications

BC425 3 days

Recommended supplementary
courses are:
Business Process Technologies
CA925, CA926, CA927
BC095 (Business Integ. Techn.)
BC619 (ALE), BC620, BC621

Level 2

ABAP Objects: Object -
Oriented Programming in R/3

BC404 3 days

Form Printing Using
SAP Smart Forms

BC470 2 days

ABAP Dictionary
BC430 2 days

Dialog Programming
using EnjoySAP Controls

BC412 3 daysProgramming
User Dialogs

BC410 5 days

Communication
Interfaces in ABAP

BC415 2 days

Level 3

 SAP AG 1999

ITS

Level 3Level 2

ABAP Workbench:
Foundation and
Concepts

BC400 5 days

Level 3Level 2

Corporate Identity Design

ITS150 2 days

SAP Internet Transaction
Server: Administration

ITS070 2 days

Developing Web Scenarios
and MiniApps using ITS
Flow Logic

ITS110 2 days

Developing
EasyWebTransactions

ITS100 2 days

SAP Internet Transaction
Server: Foundations

ITS050 3 days

 SAP AG 1999

Prerequisites

Programming knowledge

Training course SAP 50: Basis Technology

 SAP AG 1999

Participants:

Project members

Duration: 5 days

Target Group

Notes to the user

The training materials are not teach-yourself programs. They complement the course instructor's
explanations. On the sheets, there is space for you to write down additional information.

There may not be time during the course itself for you to complete all the exercises. The exercises are
intended as additional examples of the topics discussed during the course. Participants can also use
them as an aid to enhancing their knowledge after the course has finished.

(C) SAP AG BC400 1-1

 SAP AG 1999

ABAP Workbench Foundations and Concepts:
Contents

Course goal

Course objectives

Course content

Course overview diagram

Main business scenario

Course introduction

(C) SAP AG BC400 1-2

 SAP AG 1999

At the conclusion of this course, you will be able to:

Course Goal

Understand the various uses of the ABAP Workbench,
including:

The different methods available for facilitating user
dialog, and

How to carry on dialog with the database

(C) SAP AG BC400 1-3

 SAP AG 1999

At the conclusion of this course, you will be able
to:

Course Objectives

Create an ABAP program containing user dialogs
and database dialogs

Describe various development objects (Repository
objects) and how they are used

Create basic examples of those Repository objects
introduced in the course using the appropriate
ABAP Workbench tools

(C) SAP AG BC400 1-4

 SAP AG 1999

Unit 1 Introduction

Unit 2 Program Flow in an ABAP Program

Unit 3 Introduction to the ABAP Workbench

Unit 4 ABAP Statements and Data Declarations

Unit 5 Database Dialogs I (Reading Database Tables)

Unit 6 Internal Program Modularization

Unit 7 User Dialogs: List

Unit 8 User Dialogs: Selection Screen

Unit 9 User Dialogs: Screen

Unit 10 Interfaces

Course Content

(C) SAP AG BC400 1-5

 SAP AG 1999

Unit 11 Reuse Components

Unit 12 Database Dialogs II (Making Changes to the Database)

Unit 13 Software Logistics and Software Adjustment

Exercises

Solutions

Appendices

Course Content

(C) SAP AG BC400 1-6

 SAP AG 1999

In this course, you will develop several
programs meant to assist travel agencies.
Some of their typical needs include:

Determining flight connections on specific dates

Processing bookings for specific flights

Evaluating additional flight information, such as

Price

Capacity

Departure City

Departure Airport

Destination

Destination City

Main Business Scenario

(C) SAP AG BC400 1-7

 SAP AG 1999

 Important Database Tables for the Flight Data Model

SCARRSCARR CARRID:
CARRNAME:
CURRCODE:

Airline ID
Airline
Local currency of airline

SPFLISPFLI CARRID:
CONNID:
COUNTRYFR:
CITYFROM:
AIRPFROM:
COUNTRYTO:
CITYTO:
AIRPTO:

Airline ID
Flight connection ID
Country key for departure city
Departure city
Departure airport
Country key for arrival city
Destination City
Destination airport

SFLIGHTSFLIGHT CARRID:
CONNID:
FLDATE:
PRICE:
CURRENCY:
SEATSMAX:
SEATSOCC:

Airline ID
Flight connection ID
Flight date
Price
Currency
Maximum number of seats on flight
Current number of occupied seats on flight

(C) SAP AG BC400 2-1

 SAP AG 1999

Client / server architecture

Sample program with data displayed in list form

Sample program with data displayed on a screen

Which ABAP program components are discussed in
which units?

Contents:

Program Flow in an ABAP Program

(C) SAP AG BC400 2-2

 SAP AG 1999

Overview

Client / server architectureClient / server architecture

Sample program with data displayed in list formSample program with data displayed in list form

Sample program with data displayed on the screenSample program with data displayed on the screen

Which ABAP program components are discussed Which ABAP program components are discussed

in which units?in which units?

(C) SAP AG BC400 2-3

 SAP AG 1999

Client / Server Architecture

Presentation
Server
Layer

Application
Server
Layer

database

Dispatcher

Work
Process

SAPGUI SAPGUI SAPGUI SAPGUI SAPGUI SAPGUI

Work
Process

Work
Process

Work
Process

Dispatcher

Work
Process

Work
Process

Work
Process

Work
Process

The R/3 System has a modular software architecture that follows software-oriented client/server
principles.

The R/3 System allocates presentation, applications, and data storage to different computers. This
serves as the basis for the scalability of the R/3 system.

The lowest level is the database level. Here data is managed with the help of a relational database
management system (RDBMS). In addition to master data and transaction data, programs and the
metadata that describe the R/3 System are stored and managed here.

ABAP programs run at the application level, both the applications provided by SAP and the ones you
develop yourself. ABAP programs work with data called up from the database level and store new data
there as well.

The third level is the presentation level (SAPGUI). This level contains the user interface, in which an
end user can access an application, enter new data and receive the results of a work process.

The technical distribution of software is independent of its physical location on the hardware. Vertically,
all levels can be installed on top of each other on one computer or each level on a separate computer.
Horizontally, application and presentation level components can be divided among any number of
computers. The horizontal distribution of database components, however, depends on the type of
database installed.

(C) SAP AG BC400 2-4

 SAP AG 1999

User-Oriented View

Presentation
Server
Layer

Application
Server
Layer

Database

Work Process

ABAP Program

This graphic can be simplified for most topics discussed during this course. The interaction between
ABAP programs and their users will be of primary interest to us during this course. The exact processes
involved in user dispatching on an application server are secondary to understanding how to write an
ABAP program. Therefore we will be working with a simplified graphic that does not explicitly show the
dispatcher and the work process. Certain slides will, however, be enhanced to include these details
whenever they are relevant to ABAP programming.

ABAP programs are processed on the application server. The design of the user dialogs and the
database dialogs is therefore of particular importance when writing application programs.

(C) SAP AG BC400 2-5

 SAP AG 1999

Program Flow: What the User Sees

Time

Selection Screen

List

Screen

The user is primarily interested in how his or her business transaction flows and in how data can be input
into and displayed from the transaction. Technical details, such as whether a single program is running
or multiple programs are called implicitly, or the technical differences between the kind of screens being
displayed, are usually less important to the user. The user does not need to know the precise flow of the
ABAP program on the application server. Users see the R/3 System with application servers and
database as a black box.

There are, however, three technically distinct screen types (screens, selection screens, and lists) that
offer the user different services. It is the developer's job to determine which type of user dialog is most
suitable to the user's needs.

(C) SAP AG BC400 2-6

 SAP AG 1999

Interaction Between Server Layers

Program
Start

ABAP Runtime System

ABAP Program

ABAP
Processing
Block

ABAP
Processing
Block

Database
Table

When the user performs a user action (choosing Enter, a function key, a menu function or a pushbutton,
for example), control is handed over from the presentation server to the application server and certain
parts of the ABAP program are processed. If further user dialog is triggered within the ABAP program,
the system sends a screen to the presentation server and control is once again handed over to the
presentation server.

(C) SAP AG BC400 2-7

 SAP AG 1999

Overview

Client / server architectureClient / server architecture

Sample program with data displayed in list formSample program with data displayed in list form

Sample program with data displayed on the screenSample program with data displayed on the screen

Which ABAP program components are discussed Which ABAP program components are discussed

in which units?in which units?

In this part of the unit, the user has chosen to start a program where an airline ID can be entered on the
initial selection screen. The program subsequently uses this information to retrieve the 'Long name of
airline' and the 'Local currency of airline' from the database and display them for the user in list form.

(C) SAP AG BC400 2-8

 SAP AG 1999

Program
Start

Sample Program 1: Program Start

Database
Table

Repository

Time

Whenever a user logs on to the system, a screen is displayed. From this screen, the user can start a
program by using its menu path.

(C) SAP AG BC400 2-9

 SAP AG 1999 Time

Program
Start

System Loads Program Context

Data Objects

ABAP
Processing
Block

ABAP Runtime System

ABAP Program

Selection Screen

Repository

Database
Table

If the user has triggered a program with a user action, then the program context is loaded on the
application server. The program context contains memory areas for variables and complex data objects,
information on the screens for user dialogs and ABAP processing blocks. The runtime system gets the
program information from the Repository, which is a special part of the database.

The sample program has a selection screen as the user dialog, a variable and a structure as data
objects and one ABAP processing block. The list that is used to display the data is created dynamically
at runtime.

The subsequent flow of the program is controlled by the ABAP runtime system.

(C) SAP AG BC400 2-10

 SAP AG 1999 Time

Program
Start

Runtime System Sends Selection Screen

Data Objects

ABAP
Processing
Block

ABAP Runtime System

ABAP Program

Database
Table

Since the program contains a selection screen, the ABAP runtime system sends it to the presentation
server at the beginning of program processing. The presentation server controls the program flow for as
long as the user fills in the input fields.

Selection screens allow users to enter selection criteria required by the program.

(C) SAP AG BC400 2-11

 SAP AG 1999 Time

Program
Start

Selection Screen Entries Inserted into Data Objects

Data objects

ABAP
Processing
Block

ABAP Runtime System

ABAP Program

Database
Table

As soon as the user has finished entering data on the selection screen, he or she can trigger further
processing by choosing 'Execute'. All data input on the selection screen is the automatically placed in its
corresponding data object in the program and the ABAP runtime system resumes control of processing.
Our sample program contains only one ABAP processing block. The runtime system triggers sequential
processing of this ABAP processing block.

If the entries made by the user do not have the correct type, then an error message is automatically
triggered. The user must correct his/her entries.

(C) SAP AG BC400 2-12

 SAP AG 1999 Time

Program
Start

Program Requests Data Record from Database

Database
Table

ABAP
Processing
Block

ABAP Runtime System

ABAP Program

Data objects

The ABAP processing block contains a read access to the database that has been programmed into it.
The program also passes the database information about which database table to access and which line
in the table to read.

(C) SAP AG BC400 2-13

 SAP AG 1999 Time

Program
Start

Database Returns Data Record to Program

Database
Table

Data objects

ABAP
Processing
Block

ABAP Runtime System

ABAP Program

The database returns the requested data record to the program and the runtime system ensures that this
data is stored in the appropriate data objects. Normally a structure is the target field when a single
record is accessed. The structure contains variables for all fields requested from the database.

(C) SAP AG BC400 2-14

 SAP AG 1999 Time

Program
Start

Runtime System Sends List

Database
Table

Data objects

ABAP
Processing
Block

ABAP Runtime System

ABAP Program

The layout of the subsequent list display has also been programmed into the processing block. After all
processing has ended, the runtime system sends the list screen to the presentation server.

(C) SAP AG BC400 2-15

 SAP AG 1999

Overview

Client / server architectureClient / server architecture

Sample program with data displayed in list formSample program with data displayed in list form

Sample program with data displayed on the screenSample program with data displayed on the screen

Which ABAP program components are discussed Which ABAP program components are discussed

in which units?in which units?

In this part of the unit, the user starts a second sample program where an airline ID can be entered on
the initial selection screen. This program subsequently uses the information input on the selection
screen to retrieve the 'Long name of airline' and the 'Local currency of airline' from the database and
display them for the user on a screen.

(C) SAP AG BC400 2-16

 SAP AG 1999 Time

Sample Program 2: Program Start

Database
Table

Data objects

ABAP
Processing
Block

ABAP Runtime System

ABAP ProgramProgram
Start Repository

Screen

When the user starts the program, the program context is loaded first. This time, however, our sample
program contains three processing blocks, a selection screen, and a screen, and a variable and two
structures as its data objects.

(C) SAP AG BC400 2-17

 SAP AG 1999 Time

Database
Table

Data objects

ABAP
Processing
Block

ABAP Runtime System

ABAP ProgramProgram
Start

Screen

ABAP Runtime System sends Screen

Since the program contains a selection screen, the ABAP runtime system sends it to the presentation
server at the beginning of program processing.

(C) SAP AG BC400 2-18

 SAP AG 1999 Time

User Leaves Selection Screen

Database
Table

Data objects

ABAP
Processing
Block

ABAP Runtime System

ABAP ProgramProgram
Start

Screen

As soon as the user has finished entering data on the selection screen, he or she can trigger further
processing by choosing 'Execute'. All data input on the selection screen is then automatically placed in
its corresponding data object in the program and the ABAP runtime system resumes control of
processing. The runtime system then triggers sequential processing of the ABAP processing block that
comes after the selection screen.

(C) SAP AG BC400 2-19

 SAP AG 1999 Time

Program Requests Data Record from Database

Database
Table

Data objects

ABAP
Processing
Block

ABAP Runtime System

ABAP ProgramProgram
Start

Screen

The ABAP processing block contains a read access to the database that has been programmed into it.
The program also passes the database information about which database table to access and which line
in the table to read.

(C) SAP AG BC400 2-20

 SAP AG 1999 Time

Database Returns Data Record

Database
Table

Data objects

ABAP
Processing
Block

ABAP Runtime System

ABAP ProgramProgram
Start

Screen

The database returns the requested data record to the program and the runtime system ensures that this
data is stored in the appropriate data objects. Normally a structure is the target field when a single
record is accessed. The structure contains variables for all fields requested from the database.

(C) SAP AG BC400 2-21

 SAP AG 1999

Screen

Time

Program Calls Screen

Database
Table

Data objects

ABAP
Processing
Block

ABAP Runtime System

ABAP Program

Process
Before
Output

Program
Start

The ABAP processing block now triggers screen processing. This is often expressed simply by saying
'The program calls the screen'. However, in reality, each screen possesses its own processing block that
is sequentially processed before the runtime system sends the screen to the presentation server
(Process Before Output). This allows screens to be used in a very flexible manner.

(C) SAP AG BC400 2-22

 SAP AG 1999 Time

ABAP Runtime System Sends Selection Screen

Database
Table

Data objects

ABAP
Processing
Block

ABAP Runtime System

ABAP ProgramProgram
Start

Screen

Process
Before
Output

After the screen's processing block has been processed, the ABAP runtime system sends the screen to
the presentation server. During this process, data is transported into the screen's fields from a structure
that serves as an interface for the screen.

(C) SAP AG BC400 2-23

 SAP AG 1999 Time

User Executes User Action

Database
Table

Data objects

ABAP
Processing
Block

ABAP Runtime System

ABAP ProgramProgram
Start

Screen

Process
Before
Output

Process
After
Input

Once the user performs a user action (choosing Enter, a function key, a menu function or a pushbutton,
for example), control is handed over to the runtime system on the application server again. The screen
fields are transported into the structure that serves as the screen's interface and a special processing
block belonging to the screen is triggered. This processing block is always processed immediately
following a user action (Process After Input).

(C) SAP AG BC400 2-24

 SAP AG 1999 Time

Processing of the ABAP Processing Block
Resumes

Database
Table

Data objects

ABAP
Processing
Block

ABAP Runtime System

ABAP ProgramProgram
Start

Screen

Process
Before
Output

Process
After
Input

After the 'Process After Input' processing block has been processed, the sample program continues
processing the ABAP processing block that called the screen in the first place.

(C) SAP AG BC400 2-25

 SAP AG 1999

Overview

Client / server architectureClient / server architecture

Sample program with data displayed in list formSample program with data displayed in list form

Sample program with data displayed on the screenSample program with data displayed on the screen

Which ABAP program components are discussed Which ABAP program components are discussed

in which units?in which units?

(C) SAP AG BC400 2-26

 SAP AG 1999

Unit 1 Introduction

Unit 2 Program Flow in an ABAP Program

Unit 3 Introduction to the ABAP Workbench

Unit 4 ABAP Statements and Data Declarations

Unit 5 Database Dialogs I (Reading Database Tables)

Unit 6 Internal Program Modularization

Unit 7 User Dialogs: List

Unit 8 User Dialogs: Selection Screen

Unit 9 User Dialogs: Screen

Unit 10 Interfaces

Course Content

(C) SAP AG BC400 2-27

 SAP AG 1999

Unit 11 Reuse Components

Unit 12 Database Dialogs II (Making Changes to the Database)

Unit 13 Software Logistics and Software Adjustment

Exercises

Solutions

Appendices

Course Content

(C) SAP AG BC400 3-1

 SAP AG 1999

Repository and Workbench

Analyzing an existing program

First project: Adjusting a copy of an existing program to
fulfill special requirements

Contents:

Introduction to the ABAP Workbench

(C) SAP AG BC400 3-2

 SAP AG 1999

At the conclusion of this unit, you will be able to:

Introduction to the ABAP Workbench

Use the different types of navigation available in
the ABAP Workbench to reconstruct an existing
program

Make simple changes to an existing program's
user dialogs using the tools ABAP Editor and
Screen Painter

(C) SAP AG BC400 3-3

 SAP AG 1999

Overview: Introduction to the ABAP Workbench

Repository and WorkbenchRepository and Workbench

Analyzing an existing programAnalyzing an existing program

First project: Adapting an existing program to
special requirements
First project: Adapting an existing program to
special requirements

Creating a new programCreating a new program

(C) SAP AG BC400 3-4

 SAP AG 1999

R/3 Repository

Presentation
Server
Layer

Application
Server
Layer

Database

ABAP Program

Repository Customizing tables
Application tables

Cross-client Client-specific

Along with the Repository, the database contains application and customizing tables that are usually
client-specific.

The Repository contains all development objects, for example, programs, definitions of database tables
and global types. Development objects are therefore also known as Repository objects. Repository
objects are not client-specific. They can therefore be viewed and used in all clients.

(C) SAP AG BC400 3-5

 SAP AG 1999

Repository Structure

Development Classes

Repository objects

Function Modules

Programs

Tables

. . .

FI HR

SD

MM

WM

Cust.

MMMM

All development objects created with the development tools found in the ABAP Workbench are classified
as Repository objects and are stored centrally in the R/3 Repository.

The R/3 Repository is a special part of the SAP system's central database.

The Repository is organized by application. Each application is further divided into logical subdivisions
called development classes.

Repository objects are often made up of sub-objects that are themselves Repository objects.

Each Repository object must be assigned to a development class when it is created.

You can use the Repository Information System to search for Repository objects by various criteria.

(C) SAP AG BC400 3-6

 SAP AG 1999

SAP

SAP Application Hierarchy

Application hierarchy

Cross-Application Components
Accounting - General
Financial Accounting
 ...
 FBAS Financial Accounting 'Basis'
 ...
FI-GL General Ledger Accounting
FI-LC Consolidation
...
Treasury
Controlling

CA
AC
FI

TR
CO
...

+
+
+

+
+

+
+

Application component

Development class

Selected sub-tree

Information System

+

You can view the Repository structure in the application hierarchy. You can navigate to the application
hierarchy from the initial screen using Tools -> ABAP Workbench -> Overview -> Application Hierarchy.
(Transaction SE81).

The application components are displayed in a tree structure in the application hierarchy. Expanding a
component displays all the development classes that are assigned to that component.

You can select a sub-tree and navigate from the application hierarchy to the Repository Information
System. The system then collects all development classes for the sub-tree selected and passes them to
the Information System.

(C) SAP AG BC400 3-7

 SAP AG 1999

Repository Information System

Repository Information System
 Business Engineering
 ABAP Dictionary

 Basic objects
Database tables

 Views
 Data elements

Structures
Table types

 ...
 Other objects
 Fields

 Programming
 Function Builder

 Program library
 Prog. environment
 Program sub-objects

 ABAP Objects
 Class library
 Components of classes
 Components of interfaces

 Environment

You can use the Repository Information System to search for specific Repository objects. Search criteria
are available for the various kinds of Repository objects.

You can navigate to the Repository Information System using

The Information system pushbutton in the application hierarchy

The menu path Tools -> ABAP Workbench -> Overview -> Information System

Transaction SE84 in the command field.

(C) SAP AG BC400 3-8

 SAP AG 1999

Function BuilderFunction Builder

Screen PainterScreen Painter

ABAP DictionaryABAP DictionaryABAP EditorABAP Editor

Object
Navigator

Menu PainterMenu Painter

ABAP Workbench Tools

DebuggerDebugger

Class BuilderClass Builder

FI HR

MM

SD

MM

WM

Cust.

The ABAP Workbench contains different tools for editing Repository objects. These tools provide you
with a wide range of assistance that covers the entire software development cycle.
The most important tools for creating and editing Repository objects are:

ABAP Editor for writing and editing program code

ABAP Dictionary for processing database tables and retrieving global types

Menu Painter for designing the user interface (menu bar, standard toolbar, application toolbar)
 (see Interfaces)

Screen Painter for designing screens (dynamic programs) for user dialogs

Function Builder for displaying and processing function modules (subroutines with defined interfaces
that are available throughout the system)

Class Builder for displaying and processing central classes

There are two different ways to go about using these tools:

Either you call each individual tool and edit the corresponding Repository objects.
 You must then call the next tool for the next set of objects...

Or you work with the Object Navigator: This transaction provides you with a tree-like overview of all
 objects within a development class or program.

(C) SAP AG BC400 3-9

 SAP AG 1999

Screen Structure in the Object Navigator

Tool areaTool area

Size of display area can be changed

Right
mouse click

Full screen on/off

Context menu

Navigation areaNavigation area

The Object Navigator screen is divided into two areas:

A navigation area for displaying an object list as a hierarchy

A tool area, for displaying and editing a development object using the correct tool

You can hide the navigation area using the Full screen on/off pushbutton.

You can select functions from a context menu in both screen areas. You are only given a choice of those
functions that are relevant to displaying or editing the object on which the cursor is positioned. Right-click
with the mouse to display the context menu. (Left-click if you have set up your mouse for left-handers).

(C) SAP AG BC400 3-10

 SAP AG 1999

Navigation Functions in the Navigation Area

Higher-level object list

Dictionary objects
Programs
SAPBC400WBD_GETTING_STA
SAPBC400WBT_GETTING_STA
Function groups
BC400
Classes
CL_BC400

BC400

Development class

BC400

Navigation areaNavigation area

Application hierarchy
Development class
Program
Function group
Class
Internet services
Local objects

Navigation in
the navigation
history of the
navigation
area

Favorites

 Add

 Edit

 Programs

Refresh object list

Double-clicking aDouble-clicking a
Repository object with itsRepository object with its
own object list opens thisown object list opens this
object listobject list

Repository objects are organized in a hierarchy:

Each application component consists of multiple development classes

Each development class can contain several different kinds of Repository objects:
programs, function groups, ABAP Dictionary objects, ...

Each Repository object can consist of different object types:

­ Programs can contain: global data, types, fields, events, ...

­ Function groups can contain: global data, function modules, ...

You can enter the type of object list and the object name in the upper part of the navigation area. The
object list is then displayed in the navigation area.

Double-clicking on a sub-object in an object list displays the object list for the selected object in the
hierarchy area.

Double-clicking on an object that does not have an object list displays that object in the object window.

You can use the icons to navigate by history or hierarchy between the object lists.

You can add object lists that you edit frequently to your favorites.

(C) SAP AG BC400 3-11

 SAP AG 1999

Tool areaTool area

Navigation in the Tool Area

 Navigation stack

Functions of
the current tool

Previous object in
navigation history

Next object in navigation history

Close navigation
history window

Display the
navigation history
window

You can display a window showing your navigation history. This window displays a list of the objects that
you have displayed since you opened the Object Navigator in the tool area.

You can navigate backwards using the left arrow (blue) in the tool bar in the navigation window, or in the
pushbutton bar. The object currently displayed in the tool area is highlighted in a different color.

You can also navigate "forwards in history" (as in the Internet Explorer) using the blue right arrow in the
navigation window tool bar or in the pushbutton bar. This type of navigation is only possible if you have
navigated backwards before.

(C) SAP AG BC400 3-12

 SAP AG 1999

Synchronizing the Navigation Area and the Tool Area

Tool areaTool area

Display
Change

Navigation areaNavigation area

Double-click

Context menu

Object listObject list

Navigation in the navigation area is logically independent from navigation in the tools area. This allows
you to navigate flexibly. If you want to, you can synchronize the two areas:

In the navigation area, if you want to display the correct object list for an object that is currently
being displayed in the tool area, use the Object list icon.

You can display a development object from an object list in the tools area by double-clicking or
using the context menu. The system then automatically selects the correct tool for processing the
object selected.

To create objects from an object list, you can use the context menu for that object type. If that object
type is not available in the object list, you can create any object using the Edit object or Any object.

(C) SAP AG BC400 3-13

 SAP AG 1999

Analyzing an Existing Program

Repository and WorkbenchRepository and Workbench

Analyzing an Existing ProgramAnalyzing an Existing Program

First project: Adapting an existing program to
special requirements
First project: Adapting an existing program to
special requirements

Determining the Functional Scope: Executing a ProgramDetermining the Functional Scope: Executing a Program

Static Analysis: Object listStatic Analysis: Object list

Dynamic analysis: Debugging modeDynamic analysis: Debugging mode

Analyzing the source code Analyzing the source code

Creating a new programCreating a new program

(C) SAP AG BC400 3-14

 SAP AG 1999

Determining the Functional Scope: Executing a
Program

Repository and WorkbenchRepository and Workbench

Analyzing an Existing ProgramAnalyzing an Existing Program

First project: Adapting an existing program to
special requirements
First project: Adapting an existing program to
special requirements

Determining the Functional Scope: Executing a
Program
Determining the Functional Scope: Executing a
Program

Static Analysis: Object listStatic Analysis: Object list

Dynamic analysis: Debugging modeDynamic analysis: Debugging mode

Analyzing the source code Analyzing the source code

Creating a new programCreating a new program

We will start by answering the question "What information can I find about a program, without using the
ABAP Workbench?" This is important whenever you know of a function, which you can start either using
the menu or from your role, but you do not know the program name.

(C) SAP AG BC400 3-15

 SAP AG 1999

Executing a Program Using a Transaction Code

SAP SAP Easy Easy AccessAccess
Favorites
BC400 Getting Started

BC400 Getting Started

Execute: BC400 Getting Started
Execute in a new window
Display documentation
Add to favorites

/nSAPBC400_GS

Technical
transaction code

Execute: BC400 Getting Started
Execute in a new window
Display documentation

Transaction code
 Short text
 Program name
 Execution type
 Classification for ITS

SAPBC400_GS

+ Enter

ITS: Internet
 Transaction
 Server

There are various ways of starting a program:

From SAP Easy Access. As a user, you will have a menu, defined specifically for your role, that allows
you to access all the functions and programs you need for your work. You can store programs that
you use a lot in your Favorites.
When you choose an entry in the tree, you can start the appropriate program using the context menu.
In the background, the system uses a transaction code to achieve this. You can also display the
transaction codes in the tree by choosing Utilities -> Settings and checking Show Technical Names.

If you know the transaction code, you can start the program by entering its code in the input field in the
toolbar and choosing Enter. You may need to stop the current program running first. You can do this
by choosing the yellow arrow icon, or by entering '/n' followed by Enter in the input field in the toolbar.

Associated with each transaction code there is a short text, (which appears in your role tree) along with
the program that will be started, and the execution type of that program. You can add additional
transactions to your favorites, provided you have the necessary authorizations.

Staring programs by choosing a menu entry follows the same principles. This is often used in the Goto
or Environment menus. For detailed information on menu bar and tool bar elements, see the Interfaces
chapter.

(C) SAP AG BC400 3-16

 SAP AG 1999

Determining Screen Numbers and Field Names

AA American Airlines USDAirline
ID

Name

Local currency

Airline

Selection screen Screen List

F1

Technical info

Field names
Field types

System

Status

Program name
Screen number

There are various ways of starting a program:

You can start a program from the Object Navigator object list using the context menu or using the
'Test' icon.

If the program has a transaction code, then this can be added to a menu. Then all you have to do is
click on the menu option with the mouse.

You can add programs to the favorites list on the initial screen. Programs can also be made available
using the activity groups on the initial screen. Then all you have to do is select the program in the
hierarchy on the initial screen.

You can determine the functional scope by executing the program.

On any screen, you can access information about the program name and the screen number using
System -> Status. A standard selection screen has the screen number 1000.

You can access information on the field name and field type for any field on the screen using F1 ->
Technical Info.

(C) SAP AG BC400 3-17

 SAP AG 1999

Static Analysis: Object list

Repository and WorkbenchRepository and Workbench

Analyzing an Existing ProgramAnalyzing an Existing Program

First project: Adapting an existing program to
special requirements
First project: Adapting an existing program to
special requirements

Determining the Functional Scope: Executing
a Programs
Determining the Functional Scope: Executing
a Programs

Static Analysis: Object listStatic Analysis: Object list

Dynamic analysis: Debugging modeDynamic analysis: Debugging mode

Analyzing the source code Analyzing the source code

Creating a new programCreating a new program

(C) SAP AG BC400 3-18

 SAP AG 1999

Static Analysis in the Object Navigator

Dictionary structures
SBC400_CARRIER
Fields
PA_CAR
WA_SCARR
Events
START-OF-SELECTION
Screens
0100
1000

SAPBC400WBT_GETTING_S

Tool areaTool area
Navigation areaNavigation area

Display a program object, such as:
• Source code in the Editor
• Screen in the Screen Painter

Navigate to the definition in
the source text
Display it in the ABAP Editor

Display in Screen Painter

Program

SAPBC400WBT_GETTING

You can display an overview of the program objects using the program object list in the Object
Navigator. To display the object list for a program, choose Program from the first input field; in the
second, enter the program name. Then, to display the object list, click the Display icon (a pair of
spectacles) or choose Enter.

The hierarchy only shows those object types for which objects exist.

You can display the objects in the Object Navigator details window by double-clicking or using the
context menu.

You can find out about the environment in which each object in the list is used. From the context list for
the object, choose Where-Used List. The system displays a list showing all the places where the object
is used. Double-click an entry in this list to navigate to it.

(C) SAP AG BC400 3-19

 SAP AG 1999

Example: Displaying Screen 100 in the Screen
Painter

Dictionary structures
Fields
Events
Screens
0100
1000

SAPBC400WBT_GE

Screen PainterScreen Painter

Program tab

SAPBC400WBT_GETTING

Navigation areaNavigation area

Layout

Screen number 0100

Graphic Layout Editor

01000100

We will be dealing with the Editor and source code in detail later, so for the moment we shall restrict
ourselves to displaying a screen as an example.

As we have already seen in an example program, a "screen" (or "dynamic program") is a in fact a
technique for creating screens for user dialogs. Each screen is identified by a number of up to four digits.
They appear in the program object list under the Screens node.

You can display a screen in the tool area either by using the context menu for a particular screen
number or by double-clicking that screen number. The tool you use to edit screens is called the Screen
Painter. The following information is stored for each screen:

Screen attributes: such as whether the screen should fill the monitor, or be a modal dialog window.

Layout information: which screen objects should be displayed on the screen and in which position?
An input field is a simple example of a screen object. For each input field, you must enter a type to
specify the length of the input field and the value range for automatic type checks.

Flow logic: allows you to call the ABAP modules that the system executes before and after it displays
the screen.

For more information, see the User Dialogs: Screens dialog.

You can avoid recording layout information in text form by using the graphic Layout Editor. The system
displays a portrayal of the layout of the screen. You then generate screen objects by dragging and

(C) SAP AG BC400 3-20

dropping special icons. To open the graphic Layout Editor, choose the icon with the blue arrow and the
word Layout.

(C) SAP AG BC400 3-21

 SAP AG 1999

Dynamic analysis: Debugging mode

Repository and WorkbenchRepository and Workbench

Analyzing an Existing ProgramAnalyzing an Existing Program

First project: Adapting an existing program to
special requirements
First project: Adapting an existing program to
special requirements

Determining the Functional Scope: Executing a
Program
Determining the Functional Scope: Executing a
Program

Static Analysis: Object listStatic Analysis: Object list

Dynamic analysis: Debugging modeDynamic analysis: Debugging mode

Analyzing the source code Analyzing the source code

(C) SAP AG BC400 3-22

 SAP AG 1999

Starting a Program in Debugging Mode

EditorEditorNavigation areaNavigation area

Program

SAPBC400WBT_GETTING

SAPBC400WBT_GETTING

REPORT sapbc400wbt_getting_started.

TABLES sbc400_carrier.
DATA wa_scarr TYPE scarr.
PARAMETERS pa_car TYPE scarr-carrid.
START-OF-SELECTION.
 SELECT SINGLE * FROM scarr
 INTO CORRESPONDING
 WHERE carrid = pa_car.
 IF sy-subrc = 0.
 MOVE-CORRESPONDING wa_scarr TO sbc4
 CALL SCREEN 100.
 MOVE-CORRESPONDING sbc400_carrier T

 WRITE:/ wa_scarr-carrid,
 wa_scarr-carrname,

STOP

Execute Direct processing

DebuggingDebugging

1 : Get program name
using context menu

2 : Set breakpoint and
start program

There are several ways to start a program in Debugging mode, without having to change the program:

Using the context menu for a program name in the program object list, choose Execute -> Debugging.

Using a breakpoint in the Editor: You can select a point in the program that the runtime system in
Debugging mode should switch to. To do this, navigate to the line in the program, select it, and
choose the Breakpoint icon (that is, the STOP sign). Then start the program, either by choosing
Execute -> Direct processing or F8.

(C) SAP AG BC400 3-23

 SAP AG 1999

Switch to Debugging Mode at Runtime

/h
+ Enter

System HelpSystem Help

Utilities Debugging Screen
Debugging ABAP

2 : By entering /h in the
command field

1 : By choosing System ->
Utilities from the menu

You can switch to Debugging Mode at runtime:

Choose System -> Utilities -> Debugging Screen to debug the screen.

Choose System -> Utilities -> Debugging ABAP to debug the ABAP code.

You can also switch to Debugging mode by typing /h in the command field in the tool bar, followed by
Enter.

(C) SAP AG BC400 3-24

 SAP AG 1999

Investigating the Behavior of ABAP Programs at
Runtime: Breakpoints in the Debugging Mode

X SAP

 Watchpoint

ABAP Debugger

 BIN (1) (000) ds0025 INS

Variante

chwschws

Felder

Hauptprogramm

Quelltext von

ZJJ_KURS_000
ZJJ_FORMS

1 4- Variante

SY-SUBRC SY-TABIX SY-DBCNT 0 0 1

SELECT SINGLE * FROM scarr
 INTO CORRESPONDING FIELDS OF wa_scarr
 WHERE carrid = pa_car.
 IF sy-subrc = 0.
 MOVE-CORRESPONDING wa_scarr TO sbc400_carrier.
 CALL SCREEN 100.
 MOVE-CORRESPONDING sbc400_carrier TO wa_scarr.

Festpunktarithmetik
 15 30-Single step

Starting the program in Debugging mode allows you to execute the program line by line using the Single
Step icon. You can display up to eight variables. To trace the variable values, enter the field names in
the left input field. You can also see this entry by double-clicking the field name in the code displayed.

(C) SAP AG BC400 3-25

 SAP AG 1999

Breakpoints in the Debugging Mode

X SAP

 Watchpoint

ABAP Debugger

 BIN (1) (000) ds0025 INS

Variante

chwschws

Fields

Main program

Source code of

ZJJ_KURS_000

ZJJ_FORMS

1 4- Variante

SY-SUBRC SY-TABIX SY-DBCNT 0 0 1

SELECT SINGLE * FROM scarr
 INTO CORRESPONDING FIELDS OF wa_scarr
 WHERE carrid = pa_car.
 IF sy-subrc = 0.
 MOVE-CORRESPONDING wa_scarr TO sbc400_carrier.
 CALL SCREEN 100.
 MOVE-CORRESPONDING sbc400_carrier TO wa_scarr.

Fixed point arithmetic
 15 30-Continue

STOP

You can set a breakpoint by double-clicking in front of a line of source code in the debugging mode. If
you then click on the Continue icon, the program will be executed up to the point where the next
breakpoint is defined.

You can find information on content-related breakpoints in the ABAP Statements and Data Declarations
unit.

(C) SAP AG BC400 3-26

 SAP AG 1999

Analyzing the Source Code

Static Analysis: Object listStatic Analysis: Object list

Repository and WorkbenchRepository and Workbench

Analyzing an existing programAnalyzing an existing program

First project: Adapting an existing program to
special requirements
First project: Adapting an existing program to
special requirements

Creating a new programCreating a new program

Determining the functional scope: executing a programDetermining the functional scope: executing a program

Analyzing the source code Analyzing the source code

Dynamic analysis: Debugging modeDynamic analysis: Debugging mode

(C) SAP AG BC400 3-27

 SAP AG 1999

General ABAP Syntax: Key Words

Additions (depending on keyword) Period (ends all
ABAP statements)

ABAP
key word

START-OF-SELECTION .
 SELECT SINGLE * FROM scarr
 INTO CORRESPONDING FIELDS OF wa_scarr
 WHERE carrid = pa_car .
 IF sy-subrc = 0 .
 MOVE-CORRESPONDING wa_scarr TO sbc400_carrier.
 CALL SCREEN 100 .
 MOVE-CORRESPONDING sbc400_carrier TO wa_scarr.

 WRITE : wa_scarr-carrid ,
 wa_scarr-carrname ,
 wa_scarr-currcode .
 ENDIF.

TABLES sbc400_carrier .
DATA wa_scarr TYPE scarr .
PARAMETERS pa_car TYPE scarr-carrid .

START-OF-SELECTIONSTART-OF-SELECTION
SELECTSELECT

IFIF
MOVE-CORRESPONDINGMOVE-CORRESPONDING
CALLCALL
MOVE-CORRESPONDINGMOVE-CORRESPONDING

ENDIFENDIF

TABLESTABLES
DATADATA
PARAMETERSPARAMETERS

WRITEWRITE
Chained
statement

,
,
.

..

..

..
..

..

..

..

..

..

:

ABAP programs are made up of individual statements.

Each statement ends with a period.

The first word in a statement is called a keyword.

Words must always be separated by at least one space.

Statements can be indented.

Statements can take up more than one line.

You may have multiple statements in a single line.

Consecutive statements with identical initial keywords can be condensed into one chained statement:

In chained statements, the initial part of the statement containing the keyword must be followed by a
colon.

Individual elements that come after the colon must always be separated by commas.

Blank spaces are allowed before and after all punctuation (colons, commas, periods).

Be aware that the system still considers the individual parts of a chained statement to be complete
statements that are independent of one another.

(C) SAP AG BC400 3-28

 SAP AG 1999

Keyword Documentation in the Editor

EditorEditor

START-OF-SELECTION.
 SELECT SINGLE * FROM scarr
 INTO wa_scarr
 WHERE carrid = pa_car.
 IF sy-subrc = 0.
 MOVE-CORRESPONDING wa_scarr TO
sbc400_carrier.
 CALL SCREEN 100.
 MOVE-CORRESPONDING sbc400_carrier

 TO wa_scarr.
 WRITE: wa_scarr-carrid,

 wa_scarr-carrname,
 wa_scarr-currcode.

ENDIF.

i

Editor Help
ABAP Overview
ABAP Term
ABAP News
ABAP Docu and Examples

Help

WRITE

WRITEWRITE

Keyword Documentation

F1

There are various ways of navigating to keyword documentation for an ABAP statement:

F1 on a keyword displays the documentation for the statement on which the cursor is positioned.

The Information icon displays a dialog box offering you various views of the keyword documentation.

(C) SAP AG BC400 3-29

 SAP AG 1999

START-OF-SELECTION.
 SELECT SINGLE * FROM scarr
 INTO CORRESPONDING FIELDS OF wa_scarr
 WHERE carrid = pa_car.
 IF sy-subrc = 0.
 MOVE-CORRESPONDING wa_scarr TO sbc400_carrier.
 CALL SCREEN 100.
 MOVE-CORRESPONDING sbc400_carrier TO wa_scarr.

 WRITE: wa_scarr-carrid,
 wa_scarr-carrname,
 wa_scarr-currcode.

ENDIF.

scarrscarr
wawa__scarrscarr

Double-click

Definition of a database table
in the ABAP Dictionary Definition of a structure

(or of a structured field)

Navigation in the Editor: Double-Clicking

Double-click

Double-click100100 Definition of a screen
(in the Screen Painter)

You can display detailed information on single objects in the Editor by double-clicking:

Double-clicking the name of a database table displays the database table definition using the ABAP
Dictionary in the object window of the Object Navigator.

Double-clicking a field name displays the part of the program source code where the data object is
defined.

Double-clicking a screen number displays the screen using the Screen Painter in the object window
of the Object Navigator.

Use the Back function to get back to the program source code display in the Editor.

(C) SAP AG BC400 3-30

 SAP AG 1999

Comments

START-OF-SELECTION.

 SELECT SINGLE * FROM scarr
 INTO CORRESPONDING FIELDS OF wa_scarr
 WHERE carrid = pa_car.
 IF sy-subrc = 0.
 MOVE-CORRESPONDING wa_scarr TO sbc400_carrier.
 CALL SCREEN 100.
 MOVE-CORRESPONDING sbc400_carrier TO wa_scarr.

 WRITE: wa_scarr-carrid,
 wa_scarr-carrname,
 wa_scarr-currcode.
 ENDIF.

* Read data record from database table SCARR* Read data record from database table SCARR

" Process screen 100" Process screen 100

Comment takes up
whole line

Comment on
rest of line

There are two ways to insert comments into a program:

A star (*) in column 1 allows you to designate the whole line as a comment.

Quotation marks (") in the middle of a line designate the remainder of the line as a comment.

(C) SAP AG BC400 3-31

 SAP AG 1999

Analyzing the Sample Program Source Code

START-OF-SELECTION.
 SELECT SINGLE * FROM scarr
 INTO CORRESPONDING FIELDS OF wa_scarr
 WHERE carrid = pa_car.
 IF sy-subrc = 0.
 MOVE-CORRESPONDING wa_scarr TO sbc400_carrier.
 CALL SCREEN 100.
 MOVE-CORRESPONDING sbc400_carrier TO wa_scarr.

 WRITE: wa_scarr-carrid,
 wa_scarr-carrname,
 wa_scarr-currcode.
 ENDIF.

TABLES sbc400_carrier.
DATA wa_scarr TYPE scarr.
PARAMETERS pa_car TYPE scarr-carrid.

1

2

3

4

Definitions:

Executable Source Code

If you need more precise information on parts of the source code, you can analyze it. The following
slides explain the most important statements in the sample program.

(C) SAP AG BC400 3-32

 SAP AG 1999

TABLES sbc400_carrier.
DATA wa_scarr TYPE scarr.
PARAMETERS pa_car TYPE scarr-carrid.

TABLESTABLES
DATADATA
PARAMETERSPARAMETERS

Data Objects and Selection Screens

When you generate a program using the 'Activate' function,
 the system automatically generates a
 selection screen with an input field of type pa_car.

When you execute a program, all necessary variables,
structures, and selection screens are created.

Data objects

ABAP program

sbc400_carrier

wa_scarr

pa_car

1

There are various statements that you can use to define data objects:

The TABLES statement always refers to the global type of a flat structure that is defined in the ABAP
Dictionary. The structure type for the data object in the program is taken from the Dictionary. The data
object name is identical to the name of the structure type. TABLES structures are stored technically
slightly differently to local data objects that are defined using the DATA statement. They are normally
used as a structure for the interface to the screen.

The DATA statement is usually used to define local data objects. The data object type is specified
using the TYPE addition.

The PARAMETERS statement defines not only an elementary data object, but also an input field on
the standard selection screen that is processed at the start of the program.

When you activate a program, an internal load version is generated. A selection screen is generated
from the PARAMETERS statement. When the program starts, memory areas are made available for the
data objects.

You can find further information on data objects in the unit entitled ABAP Statements and Data
Declarations, or in the keyword documentation.

(C) SAP AG BC400 3-33

 SAP AG 1999

Database
table
SCARR

ABAP
processing
block

ABAP Laufzeitsystem

ABAP program

Requesting a Data Record from the Database

 SELECT SINGLE * FROM scarr
 INTO CORRESPONDING FIELDS OF wa_scarr
 WHERE carrid = pa_car.
 IF sy-subrc = 0.
 ...

SELECT SINGLESELECT SINGLE FROMFROM scarr scarr

WHERE CARRID =WHERE CARRID = pa pa__carcar

Data objects
papa__carcar

wawa__scarrscarr

2

The SELECT statement ensures that data is read from the database. In order to read a record from a
database table, the following information must be passed to the database:

From which database table is the data read? (FROM clause)

How many lines are read? The SINGLE addition shows that only one line is read.

Which line is read? The WHERE clause shows which columns of the database table have which
values. For a SELECT SINGLE, the condition must be formulated so that one line is specified
unambiguously.

(C) SAP AG BC400 3-34

 SAP AG 1999

2

Database
table
SCARR

ABAP
processing
block

ABAP program

Data objects

Receiving the Results of a Query

 SELECT SINGLE * FROM scarr
 INTO CORRESPONDING FIELDS OF wa_scarr
 WHERE carrid = pa_car.
 IF sy-subrc = 0.
 ...

INTO CORRESPONDING FIELDS OFINTO CORRESPONDING FIELDS OF wa wa__scarrscarr

pa_carpa_car

wa_scarrwa_scarr

The data supplied by the database is stored in local data objects. The INTO clause specifies the data
objects into which you want to copy the data. In this example, the data is copied to the components of
the same name in structure wa_scarr.

(C) SAP AG BC400 3-35

 SAP AG 1999

ABAP runtime system

Processing Screens

Time

Data objects

ABAP processing block

ABAP program

Process
Before
Output

CALL SCREEN 100.CALL SCREEN 100.

sbc400_carrier.sbc400_carrier.

Process
After
Input

3

The statement CALL SCREEN calls a screen.

A screen must be created using the Screen Painter tool.

A screen is an independent Repository object, but belongs to the program.

You can define input fields on a screen that refer to the ABAP Dictionary. Screens automatically perform
consistency checks on all input and provide any error dialogs that may be needed. Thus, screens are
more than just templates for entering data, they are, in fact, dynamic programs (dynpros).

The statement TABLES defines a structure object that serves as an interface for the screen. All data
from this structure is automatically inserted into its corresponding screen fields whenever CALL
SCREEN is called. Data entered by the user on the screen is transferred to its corresponding fields in
the program after each user action (after choosing Enter, for example).

(C) SAP AG BC400 3-36

 SAP AG 1999

Creating Lists in ABAP

START-OF-SELECTION.
 SELECT SINGLE * FROM scarr
 INTO CORRESPONDING FIELDS OF wa_scarr
 WHERE carrid = pa_car.
 IF sy-subrc = 0.
 MOVE-CORRESPONDING wa_scarr TO sbc400_carrier.
 CALL SCREEN 100.
 MOVE-CORRESPONDING sbc400_carrier TO wa_scarr.

 WRITE: wa_scarr-carrid,
 wa_scarr-carrname,
 wa_scarr-currcode.
 ENDIF.

WRITEWRITE
4

ABAP contains statements (WRITE, SKIP, ULINE) that allow you to create a list.

WRITE statements display field contents, formatted according to their data type, as a list.

Consecutive WRITE statements display output in the same output line. Output continues in the next line
when the present one is full.

You can place a position entry in front of any output value. This allows you to determine carriage feed
(/), output length (l) and where a column begins (p). More detailed information about formatting options
can be found in the keyword documentation under WRITE.

List output can be displayed in color.

The complete list appears automatically at the end of the processing block.

(C) SAP AG BC400 3-37

 SAP AG 1999

Overview: Introduction to the ABAP Workbench

Repository and WorkbenchRepository and Workbench

Analyzing an existing programAnalyzing an existing program

First project: Adapting an existing program to
special requirements
First project: Adapting an existing program to
special requirements

Project organization in the ABAP WorkbenchProject organization in the ABAP Workbench

Performing adjustmentsPerforming adjustments

Activating program objectsActivating program objects

Creating a new programCreating a new program

(C) SAP AG BC400 3-38

 SAP AG 1999

Objective of the First Project

LH Lufthansa DEM

LH Lufthansa DEMAirline
ID

Name

Local currency

Airline
Source program

Airline
ID

Name

Local currency

Airline
Adapted copy:

User

WALTERS

WALTERS

LH

LUFTHANSA

DEM

LH

LH

LUFTHANSA

DEM

LH

The first project is to extend an existing program. As no extensions are allowed in the program and
modifications are to be avoided, the first step is to copy the program and then change it.

You must allocate changes to existing programs to a project in the system, just as you would for creating
copies of programs or creating new programs. Therefore, the following slides deal first with how a project
is represented in the R/3 System.

(C) SAP AG BC400 3-39

 SAP AG 1999

Project Organization in the ABAP Workbench

Repository and WorkbenchRepository and Workbench

Analyzing an existing programAnalyzing an existing program

First project: Adapting an existing program to
special requirements
First project: Adapting an existing program to
special requirements

Project Organization in the ABAP WorkbenchProject Organization in the ABAP Workbench

Performing adjustmentsPerforming adjustments

Activating program objectsActivating program objects

Creating a new programCreating a new program

(C) SAP AG BC400 3-40

 SAP AG 1999

Change
RequestRequest

Development system Production system

Transporting Repository Objects

FI HR

MM

SD

MM

WM

Cust.

FI HR

MM

SD

MM

WM

Cust.

Projects are always implemented in a development system and then transported to the next system. A
decisive criterion for the combination of projects is therefore which Repository objects need to be
transported together because of their dependencies. More detailed information on project organization is
available in the unit entitled Software Logistics and Software Adjustment.

Repository objects are automatically linked to correction and transport systems when they are assigned
to a development class.

After development has ended, Repository objects are transported into both test systems and production
systems by way of certain prescribed pathways.

The ABAP Workbench tool Workbench Organizer (WBO) organizes all development tasks pertaining to
Repository objects.

(C) SAP AG BC400 3-41

 SAP AG 1999

Sample Project: Training BC400

Team:

Project Manager:

CARSON

Schedule: Monday Tuesday Wednesday Thursday Friday

End of DevelopmentEmployee activities (here: Exercises)

CARSON

BC400-00

BC400-01

BC400-02

BC400-03

...

Each project requires the following information:

Name of the Project Manager?

What functional scope is to be covered by the object? Which Repository objects are to be changed or
created?

What is the timeframe for the project?

Names of the project participants?

As an example, we are going to organize Course BC400 as a project.

The trainer is the Project Manager.

Programs need to be developed for each topic. (These are the trainer's sample programs and the
exercise groups' exercises)

This project is to be completed by 3:00 p.m. on Friday.

The user names of the participants (in this case, the exercise groups) are BC400-XX.

(C) SAP AG BC400 3-42

 SAP AG 1999

Workbench Organizer: Requests

Project Representation in the Workbench
Organizer

Team:

Project Manager:

CARSON

CARSON

BC400-00

BC400-01

BC400-02

BC400-03

...

Project Manager

Request number

Change requests involving user BC400-00

 Changeable

 Transportable

 IT3K900051 CARSON

 IT3K900052 CARSON

 IT3K900053 BC400-00

 Reportsource

 ZBC400_00_FLIGHTLIST

 ABAP program

 IT3K900054 BC400-01

 IT3K900055 BC400-02

 IT3K900056 BC400-03

 IT3K900057

Repository objects
changed or created
Repository objects

Team member number
(assigned by
the system)

 (Task)

At the beginning of a development project, the project manager must create a change request. The
project manager assigns all project team members to the change request. The Workbench Organizer
assigns a project number to the change request (<sid>K9<nnnnn>. Example: IT3K900001). <sid> is the
system number.

Next, the Workbench Organizer (WBO) creates a task for each employee. From now on whenever an
employee allocates a Repository object to that change request, the Repository object will automatically
be filed away as that employee's task. Thus all Repository objects that an employee works on during a
development program are collected within his or her task folder.

When changing a Repository object, a developer assigns it to a change request. Unlike the logical
functional divisions that separate different development classes, change requests are project-related.
Thus, although a program always belongs to only one development class, it can, at different times,
belong to different change requests.

(C) SAP AG BC400 3-43

 SAP AG 1999

Completing the Development Process

Team:

Project Manager:

CARSON

CARSON

BC400-00

BC400-01

BC400-02

BC400-03

...

End of
Development

Schedule: . . . Thursday Friday

Quality control of all
repository objects

Documentation of the entire task

Quality Control of Entire Project
Project documentation

Task is released

Request is released

When development is finished, the developer carries out a final quality check and releases the task.
The objects and object locks are passed from the task to the change request. However, all employees
assigned to the task can still make changes to the object because the Workbench Organizer will
automatically create a new task should the need arise.

When the project is complete, the Project Manager checks the consistency of the request and the
Project Manager releases the change request. The locks on the objects in the request are released.

The Repository objects are then exported to the central transport directory.

The objects are not imported automatically into the target system. Instead, the system administrator
uses the transport control program tp at operating system level. Afterwards, the developers check the
import log.

(C) SAP AG BC400 3-44

 SAP AG 1999

Performing Adjustments

Repository and WorkbenchRepository and Workbench

Analyzing an existing programAnalyzing an existing program

First project: Adapting an existing program to
special requirements
First project: Adapting an existing program to
special requirements

Project Organization in the ABAP WorkbenchProject Organization in the ABAP Workbench

Performing adjustmentsPerforming adjustments

Activating program objectsActivating program objects

Creating a new programCreating a new program

(C) SAP AG BC400 3-45

 SAP AG 1999

Copying Programs

Technical info

Source program

Target program

Source
Text elements
Documentation
Variants
Interfaces
Screens
Includes

Copy

Copy Requests (Organizer)

Create
Change
Display
Check
Activate
Execute
Copy
...

SAPBC400WBT_GETTING_STARTED

Technical info

ZBC400_00_GETTING_STARTED

Program names beginning with Y or Z, or with SAPMZ or SAPMY, are reserved for customer
developments. You can also have a namespace reserved for customer developments. Detailed
information on customer namespaces for various Repository objects is available in the SAP Library
under Basis Components -> Change and Transport System(BC-CTS) -> BC Namespaces and
Naming Conventions.

You can copy a program from the object list of a development class or program. To do so, simply place
your cursor on the name of the program you want to copy and click with the right mouse button. Choose
Copy. The system displays a dialog box where you can enter a new name for your copy. Confirming
your entries using the appropriate pushbutton in the application toolbar causes the system to display a
dialog box where you can select the sub-objects that you want to copy with the program. Thus, you
should decide which sub-objects you want to copy with the program BEFORE you begin the copy
procedure. After you confirm these entries, the system displays yet another dialog box where you can
save Repository objects.

If you are copying a program that contains includes, another dialog box is displayed before this one,
where you can choose which includes you want to copy and enter new names for them.

(C) SAP AG BC400 3-46

 SAP AG 1999

Saving Programs

Attributes

Development class

Person responsible

Original system

Original language

ZBC400_00

BC400-00

Create Object Catalog Entry

Object R3TR PROG ZBC400_00_GETTING_STARTED

Local object

New programs must
be assigned to a
development class

IT3

DE

Assign the program to a development class, so that you can save it. Your name is automatically entered
into the system as the person responsible for the new program copy. Check all entries to see if they are
correct and then choose Save.

(C) SAP AG BC400 3-47

 SAP AG 1999

Allocation to a Change Request

Reportsource

Workbench Organizer: Transportable Requests

ZBC400_00_GETTING_STARTED

Transportable change request

Exercises for participants on Course BC400 as of May 8,
2000

 IT3K900051

Request

My requests Workbench Organizer: Transportable Requests

Change requests involving user BC400-00

 Changeable

 Transportable

 IT3K900051 CARSON

 IT3K900052 CARSON

 IT3K900053 BC400-00

 IT3K900054 BC400-01

Double-click
on the
request number

All Repository objects that are created or changed must be assigned to the change request for their
corresponding project. For this training course, the trainer has created a change request for the project
'Exercises for Participants on Course BC400 as of May 8, 2000'. Each group has a task within this
change request. Save all of your Repository objects (development classes, programs, and so forth) to
this change request.

You can display all change requests in which you have a task using the 'My tasks' pushbutton.

For more information about project organization from the project management point of view (including
creating tasks), refer to the unit on Software Logistics and Software Adjustment.

(C) SAP AG BC400 3-48

 SAP AG 1999

Adjusting Short Texts

Object selection

Program name

Program
...

Attributes

Attributes

ABAP: Program Attributes ...

Title

ZBC400_00_GETTING_STARTED

Adapt title

Change
original language
to logon language

Choose Program tab

You can adjust the short text (that is, the title) as follows:

Double click on Program object types in the Object Navigator object list.

Choose attributes.

Click on the 'Change' icon.

If the original language of the source program is not identical to your logon language, a dialog box
appears to ask you whether you want to change the title in the original language or if you want to
change the original language.

Now you can adapt the title.

The altered title appears as short text next to the program name in the Object Navigator object list.

(C) SAP AG BC400 3-49

 SAP AG 1999

Adapting Source Code

START-OF-SELECTION.
 SELECT SINGLE * FROM scarr
 INTO CORRESPONDING FIELDS OF wa_scarr
 WHERE carrid = pa_car.
 IF sy-subrc = 0.
 MOVE-CORRESPONDING wa_scarr TO sbc400_carrier.
 CALL SCREEN 100.
 MOVE-CORRESPONDING sbc400_carrier TO wa_scarr.

 WRITE: wa_scarr-carrid,
 wa_scarr-carrname,
 wa_scarr-currcode.
 ULINE.
 WRITE sbc400_carrier-uname.
 ENDIF.

ULINE.
WRITE sbc400_carrier-uname.

Syntax check

To adapt the source code, navigate to the Editor (context menu).

Adapt the list by adding a ULINE statement and a WRITE statement. You can find further information on
these statements in the keyword documentation.

You can carry out a syntax check after you have changed the source code.

(C) SAP AG BC400 3-50

 SAP AG 1999

Making Changes to Screens

Program object types
Dictionary structures
Fields
Events
Screens
0100
1000

ZBC400_00_GETTING_STARTED

ID

Name

Local currency

Airline

ChangeRight Mouse Click

sbc400_carrier

Layout

Input field and
field label

User

You can change a screen using the Screen Painter. To change the layout, first use the context menu for
the screen in the object list, to navigate to the Screen Painter. From there, use the Layout icon to
navigate to the graphic Layout Editor.

This contains an icon for creating input/output fields with reference to global types. Enter a structure
type. All fields for this structure type are displayed for selection. You cannot select fields that are already
contained on the screen. This is shown by a small padlock next to the field.

The tool for displaying and maintaining global types is called the ABAP Dictionary. You can find more
detailed information on global types in the ABAP Statements and Data Declarations unit.

(C) SAP AG BC400 3-51

 SAP AG 1999

Activating Program Objects

Repository and WorkbenchRepository and Workbench

Analyzing an Existing ProgramAnalyzing an Existing Program

First project: Adapting an existing program to
special requirements
First project: Adapting an existing program to
special requirements

Project Organization in the ABAP WorkbenchProject Organization in the ABAP Workbench

Performing adjustmentsPerforming adjustments

Activating program objectsActivating program objects

Creating a new programCreating a new program

(C) SAP AG BC400 3-52

 SAP AG 1999

Displaying ABAP Programs in the Object Navigator

Source text version

ABAP program

Source codeSource code

Screen

Texts

Interface

R/3 Repository

Object Navigator

Display program
object

Display
program
object

Each program has different types of program objects associated with it:

The source code contains all the definitions of data objects and executable ABAP source. You edit
ABAP source code in the ABAP Editor.

A screen must be created using the Screen Painter tool.

Texts contain field descriptions of selection screens, list headers, and text symbols. These texts can
be translated and are displayed in the logon language at runtime. You can display texts in the Editor
by choosing Goto -> Text elements.

The interface containers the user interface with the menu bars and both toolbars, which are created
using the Menu Painter.

When you display a program object in the appropriate tool in the Object Navigator, a source code
version is invoked.

You can display only one program object in a single session. To display several program objects at
once, use the Display -> In New Window in the context menu. Bear in mind that creating a new session
is very runtime-intensive. Where possible, use the navigation functions, which allow you to move quickly
between displaying different program objects.

(C) SAP AG BC400 3-53

 SAP AG 1999

Executing an ABAP Program

Generated versionGenerated version

Source text version

Source code

Screen

Texts

Interface

R/3 Repository

ABAP runtime system

ABAP program:
runtime objects

Executing
 a Program

ABAP code

ABAP code interprets

Screen

ABAP program

ABAP program

Source code

Screen

Texts

Interface

When you start a program, the system generates runtime objects:

Data objects: Memory is made available for each data object. The amount of memory depends on the
type. You do not need to concern yourself with memory management when programming in ABAP.
You simply define the data objects using ABAP statements and the runtime system does the rest.

Screens: The system also has to create a runtime object for each screen while it is being processed.
This object can, for example, contain the memory allocated to the screen fields.

ABAP code is interpreted block-by-block by an ABAP interpreter. The different types of processing
blocks are explained in detail in the Internal Program Modularization unit.

The runtime objects for the ABAP program are created from a generated version of the ABAP program.
Each program has no more than one generated version, which is stored in the database in the
Repository after having been generated. If there is no current generated version, the system creates one
when the program is started.

(C) SAP AG BC400 3-54

 SAP AG 1999

Changing ABAP Programs in the Object Navigator

Generated version

Source text versions

Active version

Source code

Screen

Texts

Interface

Source code

Screen

Texts

Interface

R/3 Repository

Object Navigator

Change screen

Inactive version:
Modified
program objects

Screen

Change program object,
such as screen

Save

1

2

ABAP program

Once you have edited a program object and stored the changed version, an inactive source text version
of the program is created. It contains all the altered program objects. The generated version, however, is
not changed. To ensure that the active version of the program is started, run it from the object list
context menu.

Saving the program objects triggers a local save, which does not affect the generated version of the
program.

Note: The Editor, Screen Painter and Menu Painter tools allow you to test program objects locally using
a Test icon or F8. The system then creates a temporary generated version of the program object. If other
parts of the program are required to test the program object, these are supplemented by the generated
version. Example: You have changed the source code and a screen in a program and saved them. You
choose Test from the Editor. The system creates a temporary generated version for the source text, from
which the runtime objects for the data objects ad the ABAP code are then generated. For the screen, the
generated version of the active program is invoked.

(C) SAP AG BC400 3-55

 SAP AG 1999

Activating the ABAP program (1)

Generated version

Source text versions

Source code

Screen

Texts

Interface

R/3 Repository

Object Navigator

Activate
program

Source code

Screen

Texts

Interface

Modified
program objects

Source codeSource code

ScreenScreen
 3

ABAP program

1

Activation involves:
1) Saving the content of the tool area
2) A syntax check of all selected objects
3) Overwriting the newly activated program
 objects in the active version

SavingSaving
A syntax checkA syntax check
OverwritingOverwriting

2

Active version

To convert the modified program objects to an active version, you must activate all modified program
objects.

Technically, activating these program objects involves:

Saving the content of the tool area

Performing a syntax check

(Provided there are no syntax errors), overwriting the active source text version and...

(C) SAP AG BC400 3-56

 SAP AG 1999

Activating the ABAP program (2)

Generated version

Source text versions

Source code

Screen

Texts

Interface

R/3 Repository

Object Navigator

Source codeSource code

ScreenScreen

Texts

Interface

Modified
program objects

Activate
program

ABAP program

 3

Activation involves:
1) Saving the tool area content
2) A syntax check on all selected objects
3) Overwriting the new activated program objects of
 the active version
4) Regenerating the changed program objects

1

2

4

SavingSaving
A syntax checkA syntax check
OverwritingOverwriting

RegeneratingRegenerating

(New) active version

Technically, activating these program objects involves:

Saving the content of the tool area

Performing a syntax check

(Provided there are no syntax errors), overwriting the active source text version

Regenerating the modified parts of the program (thus over-writing the generated version).

(C) SAP AG BC400 3-57

 SAP AG 1999

Activating a Single Program Object

Generated version

Source text versions

Active version

ABAP program

Source code

Screen

Texts

Interface

R/3 Repository

Object Navigator

Source code

ScreenScreenActivate
program

Source code

ScreenScreen

Texts

Interface

Modified
program objects

2Regenerate
and
overwrite

 Overwrite1

Runtime version of the program <> inactive source text version

You can also activate individual program objects. This means that only the objects you selected are
regenerated and overwritten in the active version. This can lead to unexpected results, since the runtime
version may not be identical to the current, inactive source code version.

(C) SAP AG BC400 3-58

 SAP AG 1999

Syntax Checks and Extended Program Checks

Source code versions
Active version

Source code

Screen

Texts

Interface

R/3 Repository

Object Navigator
Modified
program objects

Source code

Performed on the current
content of the Editor

Syntax check on the whole program:
Performed on the current source text

parts of the program

Extended program check:
Contains more extensive

checks; is performed on the
active version of the program

Change source
code

Prüfen->Syntax

Syntax check

There are several levels of syntax check:

Syntax check on the content of the Editor: You can check the source code you have worked on in
the Editor by choosing the Syntax check icon. This check does not take includes into account.

Syntax check on the whole program: You can trigger a syntax check of all the parts of the program
from the context menu of the program name. In the appropriate context menu, choose Check-
>Syntax. If parts of the program are saved but not activated, the current (that is, inactive) version is
invoked for the syntax check.

To trigger an extended program check, which also performs more extensive consistency checks,
activate the program first. The extended program check is performed on the active version of the
program In the program's context menu, choose Check->Extended program check. Before you
complete a project, perform an extended program check on all the programs it contains.

(C) SAP AG BC400 3-59

 SAP AG 1999

Creating a New Program

Repository and WorkbenchRepository and Workbench

Analyzing an Existing ProgramAnalyzing an Existing Program

First project: Adapting an existing program to
special requirements
First project: Adapting an existing program to
special requirements

Creating a new programCreating a new program

(C) SAP AG BC400 3-60

 SAP AG 1999

With TOP Include

Create program

Program: ZBC400_XX_FIRST_PROGRAM

Customer namespace

Creating a Program

Attributes

ABAP: Program Attributes ...

Title ZBC400_XX_FIRST_PROGRAM program

Adapt title

Without TOP Include

Type

Status

Application

Fixed point arithmetic

Executable program

Test program

There are several ways to navigate to the dialog you need to create a program:

In the Object Navigator, choose the Program object type and enter a program name. Comply with the
customer namespace conventions. When you choose Enter, the system automatically checks to see if
your program already exists. If the program is available, the system displays it. If not, the system goes
to the dialog sequence that lets you create a program. (Note: this is not possible in 4.6A or 4.6B).

In the Object Navigator, display the development classes in which you want to create the program.
Trigger the dialog sequence for creating a program using the development class context menu or the
Program node.

Choose the Other object... or Edit object icon. On the Program tab, choose Program and enter the
name of your program. Choose the Create icon.

In the first dialog box, enter the program name and uncheck the With TOP Include field. Choose to
confirm.

Change the title to make it meaningful.

Choose the Executable program program type, so that it can include selection screens and lists if
necessary.

(C) SAP AG BC400 3-61

Choose the appropriate program status. If you choose System program, the source text is processed as
a whole in the normal debugging mode. This means that the program can only be debugged using
System Debugging.

You need not assign the program to an application. The program is placed in the part of the application
component hierarchy by being part of the development class.

(C) SAP AG BC400 3-62

 SAP AG 1999

Change request

Save

Development class ZBC400_XX

Program name ZBC400_XX_FIRST_PROGRAM

Transaction classification:
 Professional User Transaction
 Easy Web Transaction

Creating a Transaction Code

Transaction code
Short text
Initial object:
 Program and screen (dialog transaction)
 Program and selection screen (report transaction)

Customer namespace

If you want to include a program in role menus or in the Favorites in your SAP Easy Access menu, you
must assign a transaction code to it.

In the Object Navigator, open the object list for your program. In the program context menu, choose
Create -> Transaction.

Enter a transaction code. Comply with the customer namespace conventions. Enter a short text. (This
text appears, for example, in any role menus to which the transaction is assigned). If the program is an
"executable program", choose Program and Selection Screen (Report Transaction).

On the next screen, enter the name of the program. Choose Professional User Transaction. The
difference between a Professional User Transaction and an Easy Web Transaction is explained in more
detail in the Developing Internet Applications unit.

Choose Save.

On the next screen, enter the name of the development class, to which the program logically belongs.

On the next screen, assign the change request to which the project (that is, of creating a transaction
code) belongs.

(C) SAP AG BC400 3-63

 SAP AG 1999

System HelpSystem Help

Including a Transaction Code in SAP Easy Access

Favorites

SAP Menu

SAP Easy Access

Object Navigator

Add transaction

Enter Transaction Manually

Transaction code ZBC400_XX_FIRST_PROGRAM

To include a transaction code in the your role menu favorites:

Display the initial screen (SAP Easy Access).

In the favorites context menu, choose Insert transaction.

In the dialog box that appears, enter a transaction code.

Choose Enter to confirm.

The transaction code short text appears under the Favorites node. You can start the relevant program
from the context menu associated with this short text.

(C) SAP AG BC400 3-64

 SAP AG 1999

You are now able to:

Introduction to the ABAP Workbench: Unit
Summary

Use the different types of navigation available in
the ABAP Workbench to reconstruct an existing
program

Make simple changes to an existing program's
user dialogs using the tools ABAP Editor and
Screen Painter

(C) SAP AG BC400 3-65

 ABAP Workbench Exercises

Unit: ABAP Workbench

Topic: Analyzing a program

At the conclusion of these exercises, you will be able to:

Use the navigation functions to examine the structure of a program

The program SAPBC400WBT_GETTING_STARTED contains a selection
screen that allows the user to enter an airline code. The airline details then
appear on a screen. When the user presses Enter, the data is then displayed in
a list.

Navigate through the program code and other components to help you
understand the structure and flow of the program.

Program: SAPBC400WBT_GETTING_STARTED

1-1 Open the object list for development class BC400. Find the program
SAPBC400WBT_GETTING_STARTED, and open its object list. Throughout the exercise,
make sure that you remain in display mode.

1-2 Run the program to find out how it works. There is an input field on the selection screen.

1-2-1 What information must you pass to the program? (Use the F1 help for the input field)

1-2-2 What values can you enter? (Use the possible entries help F4)

1-2-3 What information does the program provide?

1-2-4 What user dialogs does the program contain? Find out the number of the selection
screen and the screen number by choosing System

Status.

1-2-5 What are the names of the input field on the selection screen and the output fields on
the screen? You can display the field names using F1 Technical info, then see the
box with the heading Field description for batch input.

1-3 Use the object list in the Object Navigator to examine the program.

1-3-1 What data objects are there? (Use the program object list) Where are they defined?
(Use navigation) Where are they used? (Use the where-used list).

(C) SAP AG BC400 3-66

1-3-2 What data object in the ABAP program corresponds to the input field on the selection
screen? (Look in the object list for a data object with the same name as the field that
you found out in step 1-2-5.)

1-3-3 Which statement processes the screen? (Look in the source code or use a where-used
list for the screen number.)

1-3-4 Navigate to the screen, and from there to the graphical layout. Click an output field.
Where in the graphical layout editor does the field name appear that you found out in
step 1-2-5?

1-4 Navigate to the program source code.

1-4-1 Which statement constructs the list? Open the keyword documentation for this
statement.

1-4-2 Which statement is responsible for the database dialog? From which database table is
the data read? Navigate to the database table definition. What columns are in the
table?

1-4-3 Only one line is read from the database table. In which data object is the information
as to which line should be read? When is the variable containing the information about
the line of the database to be read filled?

(C) SAP AG BC400 3-67

Unit: ABAP Workbench

Topic: Adapting a Program to Special Requirements

At the conclusion of these exercises, you will be able to:

Copy programs and change them using the ABAP Editor and the Screen
Painter

Use the syntax check to identify simple errors

Program: ZBC400_##_GETTING_STARTED

Template: SAPBC400WBT_GETTING_STARTED

Model solution: SAPBC400WBS_GETTING_STARTED

2-1 Copy the program SAPBC400WBT_GETTING_STARTED with all of its components to
ZBC400_##_GETTING STARTED and assign it to your development class ZBC400_## and
the change request for your project, “BC400…”. (## is your group number.)

2-2 Extend the program as follows:

2-2-1 Add the statement “ULINE.” to the program and do a syntax check. Make a deliberate
syntax error and use the syntax check to find it. Activate the program and start it
again. What has changed? Run the extended program check.

2-2-2 Change the program so that input fields occur on the screen for the user name, a time,
and a date. Navigate to the Screen Painter by double-clicking on the screen number.
This takes you to the screen's flow logic. Check that the graphical layout editor is
active Utilities Settings). Start the graphical layout editor by choosing the relevant
pushbutton in the application toolbar. Check that you are in change mode. Define the
additional fields with reference to the ABAP Dictionary. As your reference structure,
use SBC400_CARRIER and select the fields UNAME, UZEIT, and DATUM. Activate
the screen.

2-3 Display the extra fields in the list. Use the WRITE statement. Display the data on a
new line, separated from the other fields by an empty space and a horizontal line. To
do this, use the ABAP keywords SKIP and ULINE. Check your program for syntax
errors, then activate it, and run it.

(C) SAP AG BC400 3-68

Unit: ABAP Workbench

Topic: Creating Transaction Codes

At the conclusion of these exercises, you will be able to:

Create a transaction for your program

Add a transaction code to the favorites in your role menu

Program: ZBC400_##_GETTING_STARTED

3-1 Create the transaction code ZBC400_##_GS for your program
ZBC400_##_GETTING_STARTED. Then assign it to your development class ZBC400_##
and the change request for your project, “BC400…”. (where ## is your group number.)

3-1-1 From the context menu for the program name in the program object list, choose Create
Transaction. Give this transaction the code ZBC400_##_GS.

3-1-2 Enter the necessary information in the dialog boxes that appear (using the Creating a
Transaction Code slide for reference).

3-2 Add this transaction code to the favorites in your role menu in SAP Easy Access.

3-2-1 Navigate to the initial screen, by opening a new session (System Open session).

3-2-2 Using the Favorites context menu, add your transaction code to the favorites.

3-2-3 Start your program from this menu.

(C) SAP AG BC400 3-69

 ABAP Workbench Solutions

Unit: ABAP Workbench

Topic: Analyzing a program

1-2 Analyzing by executing a program:

1-2-1 You need to add the code for an airline to the program. This information can be
displayed from the input field using F1.

1-2-2 The values permitted here depend on the contents of database table SCARR. You can
display possible entries help from the input field using F4.

1-2-3 The program displays detailed information on the airline company selected. This
information is first displayed on the screen and then as a list.

1-2-4 The program contains a selection screen with screen number 1000, a screen with
number 100 and a list.

1-2-5 The field name of the input field on the selection screen is pa_car and the names of
the output fields on the screen are sbc400_carrier-carrid, sbc400_carrier-carrname
and sbc400_carrier-currcode. You can display the field names using F1 technical
info, then see the box with the heading Field description for batch input.

1-3 Analyzing using the program's object list

1-3-1 The program has the structures sbc400_carrier and wa_scarr and the elementary
data object pa_car.

1-3-2 The variable pa_car belongs to the input field of the same name.

1-3-3 Screen 100 is processed using the statement CALL SCREEN 100..

1-3-4 The field name appears in an input field above the area for the screen layout.

1-4

1-4-1 The list is structured using the WRITE statement.

1-4-2 The SELECT statement is responsible for the database dialog. The data is read from
the database table SCARR. The database table name is specified in the FROM clause
of the SELECT statement. The database table has the MANDT, CARRID,
CARRNAME, CURRCODE and URL.

1-4-3 The information on the line to be read is in data object pa_car. This is in the WHERE
clause of the SELECT statement. Data object pa_car is automatically filled with the
selection screen input value as soon as the user chooses the Execute function on the
selection screen.

(C) SAP AG BC400 3-70

Unit: ABAP Workbench

Topic: Adapting a Program to Special Requirements

Model solution SAPBC400WBS_GETTING_STARTED

&--

*& Report SAPBC400WBS_GETTING_STARTED *

&--

REPORT sapbc400wbs_getting_started .

TABLES: sbc400_carrier.

DATA: wa_scarr TYPE scarr.

PARAMETERS: pa_car TYPE s_carr_id.

START-OF-SELECTION.

* Select all fields of one dataset from database table SCARR

 SELECT SINGLE * FROM scarr INTO CORRESPONDING FIELDS OF wa_scarr

 WHERE carrid = pa_car.

* At least one record could be selected

 IF sy-subrc = 0.

* Copy fields with corresponding names

 MOVE-CORRESPONDING wa_scarr TO sbc400_carrier.

 CALL SCREEN 100.

* Copy fields with corresponding names back

 MOVE-CORRESPONDING sbc400_carrier TO wa_scarr.

* Write data on list

 WRITE: wa_scarr-carrid,

 wa_scarr-carrname,

 wa_scarr-currcode.

(C) SAP AG BC400 3-71

* add an empty line

 SKIP.

* add a horizontal line

 ULINE.

* write username, time and date on list

 WRITE: sbc400_carrier-uname,

 sbc400_carrier -uzeit,

 sbc400_carrier -datum.

ENDIF.

Screen 100:

New Fields on screen 100: SBC400_CARRIER-UNAME

SBC400_CARRIER-UZEIT

SBC400_CARRIER-DATUM

(C) SAP AG BC400 3-72

Unit: ABAP Workbench

Topic: Creating a Transaction Code

3-1 Follow the instructions in the Creating a Transaction Code slide.

3-2 Follow the instructions in the Including a Transaction Code in SAP Easy Access slide.

(C) SAP AG BC400 4-1

 SAP AG 1999

Types

Data objects

Elementary data objects

Structures

Internal tables

Return codes and how to handle them

Contents:

ABAP Statements and Data Declarations

(C) SAP AG BC400 4-2

 SAP AG 1999

ABAP Statements and Data Declarations: Unit
Objectives

Describe the various different data types and their
uses

Define elementary data objects, structures, and
internal tables

Use Debugging mode to observe how the values
of individual data objects change during
processing

Program several important operations involving
data objects

Find information about the various return codes
used by ABAP statements and evaluate these in
programs

At the conclusion of this unit, you will be able to:

(C) SAP AG BC400 4-3

 SAP AG 1999

Main Focus of Unit: Data Objects in Programs

ABAP program

Data

Data

Operations
on
data objects

Elementary data objectsElementary data objects

StructuresStructures

Internal tablesInternal tables

This unit will focus on the definition of data objects, along with selected ABAP statements.

(C) SAP AG BC400 4-4

 SAP AG 1999

Overview: Types

TypesTypesTypes

Data objectsData objectsData objects

Return codes and how to handle themReturn codes and how to handle themReturn codes and how to handle them

(C) SAP AG BC400 4-5

 SAP AG 1999

Interfa
ce

Functio
n

Modules

Using Types

ABAP program

Types describe the attributes of

Data objects
Interface parameters

for subroutines

Interface parameters
for functions/methods

Input / output fields

Function
Group

ABAP
source
code Interface

 Subroutine

Types describe the attributes of

Input and output fields in screens

Data objects

Interface parameters: Type checks are performed each time a function or subroutine is called
according to how the interface parameter is typed. Type conflicts are already identified during the
editing process and appropriate syntax errors displayed.

(C) SAP AG BC400 4-6

 SAP AG 1999

ABAP program

Interfa
ce

Interfa
ce

Functio
n

Functio
n

Modules

Modules

Function
Group

Attributes of Global and Local Program Types

ABAP
source
code Interface

 Subroutine

Types can be defined locally in a program or centrally in the Dictionary

Local Types:
Technical attributes only Global types in

ABAP Dictionary:
technical and semantic

attributes

Local types are used in programs

If only technical attributes are needed, not semantic attributes

If the types are only used locally within a program

Global types (= ABAP Dictionary types) are used

If you intend to use the types outside of your program as well
(for example, for typing the interface parameters of global functions or with those data objects in the
program that serve as the interface to the database or the presentation server)

If you need semantic information as well (for example, on screens with input and output fields)

More information on storing semantic information centrally can be found in this unit.

(C) SAP AG BC400 4-7

 SAP AG 1999

Global types in the ABAP Dictionary

ABAP Dictionary:

Transparent Table
 SCARR:

SCARR

Line type
Key fields
Secondary indexes
...

Database table
selections

Global types

Data element

Table type

Structure type

Structures

You define global types and manage the descriptions of database tables in the ABAP Dictionary. You
have the following options for global types:

Elementary types are called data elements. They contain a complete description of the technical
attributes of an elementary field, along with semantic information.

Structure types are usually known as structures. They can consist of elementary components.
Alternatively, each component can itself have a structured type. This allows you to construct nested
structure types of any depth you want. Note that you can also use the line type of a transparent table
(that is one defined as a database table) as a structured type.

Table types are types used to define internal tables.

(C) SAP AG BC400 4-8

 SAP AG 1999

Example: Using Semantic Information from the
Dictionary

Data element: Technical type
 Field label
 Field Documentation
 (for F1 Help)
 Search help
 (for possible

entries help)

Airline

Input field

Help

Airline ID

This field contains the airline ID

Field label

Short text

AA
AF
BA
DL
LH
NU
QF
SA
SQ
UA

American Airlines
Air France
British AIrways
Delta Airlines
Lufthansa
Japan Transocean Air.
Qantas Airways
South African Air.
Singapore Airlines
United Airlines

ID Airline
Technical infoApplication help

Data element

Search help

Field documentation:
Field label

F1

Elementary Dictionary types are called data elements. They contain semantic as well as technical
information (technical type, length, number of decimal places).

A data element can contain the following semantic information:

Field Label: This text appears on screens and selection screens to the left next to the input or output
fields. A field label can have one of three possible lengths. You must select one of the different field
labels when you create a screen.

Field documentation: The field documentation tells the user what information should be entered in
the field. The user gets the field documentation for an input or output field where the cursor is
positioned by pressing function key F1.

Search Help: A data element can be linked to a search help. This search help defines the value help
provided by function key F4 or the corresponding icon.

(C) SAP AG BC400 4-9

 SAP AG 1999

Finding out About ABAP Dictionary Types 1

DATA wa_flight_occ TYPE sbc400focc .

D
ou

bl
e-

cl
ic

k

Structure type
SBC400FOCC

sbc400focc

Fields Field type

CARRID S_CARR_ID
CONNID
...

S_CARR_ID

Data element
S_CARR_ID

Help

Field Data

Structure

Field name

Data element

SBC400_CARRIER

CARRID

S_CARR_ID

Technical info
Double-click

S_CARR_ID Dou
bl

e-
cl

ic
k

F1

Technical info

You can find more information on elementary ABAP Dictionary types:

For screen fields: Using F1 -> Technical info. or by double-clicking the output field next to the data
element

For local types in programs or data objects: By double-clicking the type

Technical types and technical domains may be directly assigned to data elements. If you want more
information on other data elements found within the same domain, you can navigate to the domain from
the data element by double-clicking and then executing the function Where-used list.

(C) SAP AG BC400 4-10

 SAP AG 1999

Finding ABAP Dictionary Types in the Repository
Information System

Application hierarchy
 Select sub-tree
 Information System

Business Engineering
ABAP Dictionary

Programming
ABAP Objects
Environment

Repository Information System

Basic objects

Other objects
Fields

Database tables
Views
Data elements
Structures
Table types
Domains

Standard selections

Data element

Short description

Field Label

Data type

Length

Development class

Repository Information System: Data Elements

You can search for data elements by using the application hierarchy and the R/3 Repository Information
System.

In the application hierarchy, select the components that you want to search.

Go to the R/3 Information System.

Choose ABAP Dictionary --> Basic objects --> Data elements and restrict the search.

If you go to the R/3 Information System from the application hierarchy, the development classes of the
selected application components are automatically entered.

You can also go directly to the R/3 Information System. If you do not select a development class, the
entire Repository is scanned.

(C) SAP AG BC400 4-11

 SAP AG 1999

Local Data Types in Programs

Types: <user_defined_type> TYPE <type>.

DATA: <dataobject> TYPE <type>.

Help for local
data type declaration

Navigates to local
data type declaration
or ABAP Dictionary
type declaration

TYPE

Keyword documentation
for predefined types

TYPES

F1

<type>
Double-click

Double-click<type>DATA

Help for local
data object declaration

F1

F1

Generally, data objects are typed using either a complete local program type or a complete global type.
Double-click the name of the type to display its definition. For local program types this means: Navigate
to the line in the source codes where the type has been defined. For global program types this means:
Navigate to the Dictionary and display the global type.

You can use the complete predefined ABAP types directly, to provide a type for variables. If you do so,
double-clicking on the type after the TYPE statement has no effect. For more information on pre-defined
types, refer to the keyword documentation on TYPES or DATA.

The following predefined ABAP types are complete:

d Date: (YYYYMMDD)

t Time: HHMMSS)

i Integer

f Floating Point Number

string character String (string, of variable length)

xstring byte sequence (heXadecimal string, of variable length)

You must define the length for these types.

c Character

(C) SAP AG BC400 4-12

n Numeric text (Numeric Character)

x Byte (heXadecimal)

p Packed number (= Binary Coded Decimals). You must enter the number of decimal places.

(C) SAP AG BC400 4-13

 SAP AG 1999

Overview: Data objects

TypesTypesTypes

Data objectsData objectsData objects

Elementary data objectsElementary data objectsElementary data objects

StructuresStructuresStructures

Internal tablesInternal tablesInternal tables

Return codes and how to handle themReturn codes and how to handle themReturn codes and how to handle them

(C) SAP AG BC400 4-14

 SAP AG 1999

Defining Data Objects

DATA: <varname> TYPE <type>.

Predefined
ABAP types

x

Predefined
types

i

f
string

xstring

td

The type attributes of
the data object must be
completely specified

Global
types in
the ABAP
Dictionary

c

n

p

How is the data
stored?

How is it
interpreted?

What is the structureWhat is the structure
of the type?of the type?
By field:By field:
•• PredefinedPredefined
ABAP typeABAP type
•• LengthLength

DATA: <varname> LIKE <data object>.

Assign data object types by referring your object to either a built-in ABAP type, a user defined type, or an
ABAP Dictionary object.

If a variable v2 refers to variable v1 using the addition LIKE (DATA v2 LIKE v1), then v2 inherits its type
from v1.

Up to Release 4.0B, you could only refer to Dictionary types using LIKE. Only structure fields could be
used as elementary types up to that point. Only flat structures were provided as structure types.

(C) SAP AG BC400 4-15

 SAP AG 1999

Overview: Elementary Data Objects

TypesTypesTypes

Data objectsData objectsData objects

Elementary data objectsElementary data objectsElementary data objects

StructuresStructuresStructures

Internal tablesInternal tablesInternal tables

Return codes and how to handle themReturn codes and how to handle themReturn codes and how to handle them

(C) SAP AG BC400 4-16

 SAP AG 1999

ABAP
Program tabcarrid

counter

TYPES: flag_type(1) TYPE C.

DATA: counter TYPE I,
 flag TYPE flag_type,

carrid TYPE s_carr_id.

Syntax Example: Defining Elementary Data Objects

s_carr_id

flag

Data element

You can define an elementary data object as follows:

DATA <do name> TYPE <predefined ABAP Type>.
if you want to define an object with the type d,t,i,f,string or xstring. These predefined ABAP types
are complete.

TYPES <type name>(<length>) TYPE <predefined ABAP Type>. DATA <do name> TYPE <type
name>.
if you want to defined an object with the type c, n, p, or x. You must define the length for these types.
For type p objects, you can also define the number of decimal places using the DECIMALS <nn>
addition.

DATA <do name> TYPE <global type>.
if there is a suitable global type defined in the Dictionary.

For more information, see the keyword documentation for the DATA statement.

For compatibility reasons, you can still construct data objects in the DATA statement without first having
to define the type locally in the program with a TYPES statement. Default values are also defined in
addition to the type information for the following generic types:

With data types p, n, c, and X you can enter a length in parentheses after the type name. If no length
is entered, the default length for this data type is used. You can find the standard lengths in the
keyword documentation for TYPES and DATA.

(C) SAP AG BC400 4-17

With data type P you can use the DECIMALS addition to determine the number of decimal places that
should be used (up to a maximum of 14). If this addition is missing, the number of decimal places is
set to zero.

If you do not specify a type, then the field is automatically type C.

(C) SAP AG BC400 4-18

 SAP AG 1999

Fixed Data Objects

CONSTANTS: <const.name> TYPE <type>

 VALUE <literal>.

CONSTANTS:

<literal>

Text symbols:Text symbols:

Literal:Literal:

Constant:Constant:

Fixed data object with ID code

Fixed data object with ID code

Fixed data object without ID code

<literal>

Numeric literal
Positive integers: 123
Negative integers: -123

Numeric literal:Numeric literal: Type i or pType i or p Text literal
String 'abcde'
Decimal number: '123.45'
Floating point number: '123.45E01'

Text literal:Text literal: Type cType c

(cannot be translated)

(cannot be translated)

WRITE: text-cid,

 'Name der Fluggesellschaft'(t01)

text-cid

'Name der Fluggesellschaft'(t01)

Display, change,
or create by
Double-click

You assign a value to each fixed data object in the source code. These cannot be changed at runtime.

You can create translatable text literals, or text symbols, for all ABAP programs. A three-digit code,
<xxx>, is assigned to each text symbol. In the program, you can address it using text-<xxx>. Example:
WRITE text-cid.
Users then see the text in lists, in their logon language. In the program source code, you can navigate to
the current version of the text by double-clicking. To open the maintenance environment for text symbols
in the Editor, choose the menu entry Goto-> Text elements.

You define constants using the ABAP keyword CONSTANTS. Their type is defined similarly to the type
of a variable in the DATA.statement. You can assign a value using a literal, with the VALUE addition.

ABAP recognizes two types of literals: number literals and text literals. The latter are always enclosed
in inverted commas (').

Whole numbers (with preceding minus sign if they are negative) are stored as number literals of type i
(provide they fall within the value range of four-byte integers). Otherwise, they are stored internally as
packed numbers.

All other literals (character, numbers with decimal places, floating point numbers) are stored as text
literals with data type C. If a literal is assigned to a variable that does not have type C, then a type
conversion is carried out. The conversion rules are described in the keyword documentation about
MOVE.

(C) SAP AG BC400 4-19

If you want to include an inverted comma (') in a text literal, you must enter it twice.

(C) SAP AG BC400 4-20

 SAP AG 1999

Copying and Initializing Variables

ABAP runtime system

ABAP program

MOVE c_qf TO gd_carrid1.

gd_carrid2 = gd_carrid1.

ADD 1 TO counter.

CLEAR: gd_carrid1,
 gd_carrid2,
 counter.

Time

gd_carrid1

CONSTANTS c_qf TYPE s_carr_id VALUE 'QF'.
DATA: gd_carrid1 TYPE s_carr_id,
 gd_carrid2 TYPE s_carr_id VALUE 'LH',
 counter type I.

Program start

Data declarations:

c_qf QF

gd_carrid2 counter

 LH 0000

 QF LH 0000

 QF QF 0000

 QF QF 0001

0000

MOVE

CLEAR

When a program is started, the program context is loaded into a storage area of the application server
and made available for all the data objects.

Each elementary field comes as standard with an initial value appropriate to its type. You can set an
start value for an elementary field yourself using the VALUE addition. After VALUES you may only
specify a fixed data object.

You can copy the field contents of a data object to another data object with the MOVE statement. If the
two data objects have different types, the type is automatically converted if there is a conversion rule. If
you want to copy the field contents of variable var1 to a second variable var2, you can choose one of
two syntax variants:

MOVE var1 TO var2.

var2 = var1.

You can find detailed information about copying and about the conversion rules in the keyword
documentation for MOVE or in the BC402 training course.

The CLEAR statement resets the field contents of a variable to the initial value for the particular type.
You can find detailed information about the initial values for a particular type in the keyword
documentation about CLEAR.

(C) SAP AG BC400 4-21

 SAP AG 1999

Performing Calculations

COMPUTE performs calculations (keyword is optional)

ABAP program

COMPUTE gd_percentage = gd_occ * 100 / gd_max.

* Second possibility with same calculation

gd_percentage = gd_occ * 100 / gd_max.

DATA: gd_max TYPE sbc400focc-seatsmax,
 gd_occ TYPE sbc400focc-seatsocc,
 gd_percentage TYPE sbc400focc-percentage.

Data declarations:

COMPUTE

You can precede calculations with the COMPUTE statement. (This statement is optional). You can use
either of the following two syntax variants to calculate percentage occupancy using the variable
v_occupancy for 'current occupancy'‚ v_maximum for 'maximum occupancy'‚ and v_percentage for
'percentage occupancy':

COMPUTE v_percentage = v_occupancy * 100 / v_maximum.

v_percentage = v_occupancy * 100 / v_maximum.

You can find detailed information on the operations and functions available in the keyword
documentation on COMPUTE.

(C) SAP AG BC400 4-22

 SAP AG 1999

CASE <data object 1>.

WHEN <data object 2>.

WHEN <data object 3> OR <data object 4>.

WHEN OTHERS.

ENDCASE.

Statements

Statements

Statements
IF <logical expression>.

ELSEIF <logical expression>.

ELSEIF <logical expression>.

ELSE.

ENDIF.

Statements

Statements

Statements

Statements

Evaluating Field Contents

CASE

WHEN

WHEN

WHEN

ENDCASE.

IF

ELSEIF

ELSEIF

ELSE.

ENDIF.

OR

IF and CASE statements allow you to make case distinctions:

CASE ... ENDCASE:

Only one of the sequences of statements is executed.

The WHEN OTHERS statement is optional.

IF ... ENDIF:

The logical expressions that are supported are described in the keyword documentation for the IF
statement.

The ELSE and ELSEIF statements are optional.

If the logical expression is fulfilled, the following sequence of statements is executed.

If the logical expression is not fulfilled, the ELSE or ELSEIF section is processed. If there is no ELSE
or no further ELSEIF statement, the program continues after the ENDIF statement.

You can include any number of ELSEIF statements between IF and ENDIF. A maximum of one of the
sequences of statements will be executed.

(C) SAP AG BC400 4-23

 SAP AG 1999

Tracing Data Flow in the Debugger: Field View

X SAP

 Watchpoint

ABAP Debugger

Variant

chwschws

Felder
Main program

Source code of

ZJJ_KURS_000
ZJJ_FORMS

Fixed point arithmetic
 15 30-

1 4- Variant

SELECT SINGLE * FROM scarr
 INTO CORRESPONDING FIELDS OF wa_sbc400
 WHERE carrid = pa_car.
 IF sy-subrc = 0.
 MOVE-CORRESPONDING wa_sbc400 TO sbc400_carrier.
 CALL SCREEN 100.
 MOVE-CORRESPONDING sbc400_carrier TO wa_sbc400.

pa_car LH

Fields

You can trace the field contents of up to eight data objects in debugging mode by entering the field
names on the left side or by creating the entry by double-clicking on a field name.

You can change field values at runtime by overwriting the current value and pressing the Change icon.

(C) SAP AG BC400 4-24

 SAP AG 1999

Tracing Data Flow in the Debugger: Watchpoint

 Watchpoint

Create/Change Watchpoint

Local watchpoint (only in specified program)

program
Field name
Relational operator

Comp. field/value

Comparison field (Comparison value if not selected)

No.Local program Field name FldOperator Comp. field/value
1
2
3
...
10

Logical operator between watchpoints OR AND

carrid
=

LH

From Release 4.6, you are allowed to set up to 10 watchpoints and link them using the logical operators
AND and OR. Watchpoints are breakpoints that are field-specific. You can create the following types of
watchpoints:

Variable <operator> value: The system stops processing once the logical condition is fulfilled. The
'Comparison field' flag is not selected and the value is inserted at 'Comp. field/value'.

Variable1 <operator> variable2: The system stops processing once the logical condition is fulfilled.
The 'Comparison field' flag is selected and variable2 is inserted at 'Comp. field/value'.

Variable: The system stops processing each time the variable's value changes.

You can also set a breakpoint for a specific ABAP statement. To do this, choose Breakpoints->
Breakpoint at ...-> Statement

(C) SAP AG BC400 4-25

 SAP AG 1999

Overview: Structures

TypesTypesTypes

Data objectsData objectsData objects

Elementary data objectsElementary data objectsElementary data objects

StructuresStructuresStructures

Internal tablesInternal tablesInternal tables

Return codes and how to handle themReturn codes and how to handle themReturn codes and how to handle them

(C) SAP AG BC400 4-26

 SAP AG 1999

Defining Structures with a Dictionary Type Reference

ABAP Dictionary:

Structure Definition

ABAP
program

ABAP Source Code
TABLES sbc400_carrier.

DATA: wa_scarr TYPE scarr.

wa_scarr

sbc400_carrier

Transparent table
scarr

Structure
sbc400_carrier

DATA:DATA: wa_scarr TYPE scarr.wa_scarr TYPE scarr.

You can define structured data objects (also called structures) in ABAP. This allows you to combine
variables that belong together into one object. Structures can be nested. This means that other
structures or even tables can be sub-objects of your original structure.

There are two different kinds of structures in ABAP programs:

Structures defined using
DATA <name> TYPE <structure_type>.
These kinds of structures serve as the target fields for database accesses or for calculations
performed locally within the program. You can declare these types of structures either in the ABAP
Dictionary or locally within your program. For more information on how to declare local structures,
refer to the keyword documentation on TYPES.

Structures defined using
TABLES <ABAP-Dictionary-Structure>.
These types of structures are technically administered in their own area. From Release 4.0, TABLES
structures only serve as interface structures for screens. This statement may only be used for tables
whose non-key fields are all numeric.

(C) SAP AG BC400 4-27

 SAP AG 1999

Example: Dictionary Structure Type SBC400FOCC

ABAP Dictionary:

Component
CARRID

CONNID

FLDATE

SEATSMAX

SEATSOCC

PERCENTAGE

Component type
S_CARR_ID

S_CONN_ID

S_DATE

S_SEATSMAX

S_SEATSOCC

S_FLGHTOCC

Dtyp
CHAR

NUMC

DATS

INT4

INT4

DEC

Length
3

4

8

10

10

5

Short text
Airline ID

Flight connection code

Flight date

Maximum capacity

Occupied seats

Percentage Occupancy
of Flights

Dec.Pl.
0

0

0

0

0

2

Structure: SBC400FOCC active

Short text: Percentage Occupancy of Flights
SBC400FOCC

Each component is assigned to a structure type. The following information is stored for each component

Component name: You can choose any name you want; there are no naming conventions. If the
component is given the type of a data element that has a default name assigned to it, you should use
this default value.

Component type: Generally, a data element is used to provide the type. If so, the component inherits
all the type attributes of this data element. The type and length are displayed in the structure
definition.

Short text: describes the component.

Keep the following in mind, if you want to create a structure in the Dictionary:

The name of the structure must be in the customer namespace.

Currency fields usually have the type CURR. You must enter the associated currency field (type
CUKY) as a reference field.

Lengths, weights, and other sizes measured in units generally have the type QUAN. You must enter
the associated unit field (type UNIT) as a reference field.

To find out the rules on mapping predefined Dictionary types and predefined ABAP types, see the SAP
Library, under Basis-> ABAP Workbench-> BC-ABAP Dictionary-> Data types in the ABAP Dictionary->
Mapping of ABAP data types

(C) SAP AG BC400 4-28

 SAP AG 1999

Syntax Example: Local Program Structure Types

TYPES: BEGIN OF flightinfo_type
 carrid TYPE s_carr_id,
 connid TYPE s_conn_id,
 fldate TYPE s_date,
 seatsmax TYPE sflight-seatsmax,
 seatsocc TYPE sflight-seatsocc,
 percentage(3) TYPE p DECIMALS 2,
 END OF flightinfo_type.

DATA wa_flightinfo type flightinfo_type .

wa_flightinfo
ABAP
program

flightinfo_type.

BEGIN OF flightinfo_type,

END OF flightinfo_type.

You can also define structure types locally in programs using the TYPE statement. The components are
enclosed within the statements
BEGIN OF <structure type.
...
and

END OF <structure type>.

You must assign a name and type to each component.

For more information, see the keyword documentation for the SORT statement.You can then create a
structure using
DATA <structure name> TYPE <structure type name>.

(C) SAP AG BC400 4-29

 SAP AG 1999

Addressing Fields in Structures

ABAP
program

ABAP source code

DATA: wa_scarr TYPE scarr.

wa_scarr-carrid = 'LH'.

SELECT SINGLE * FROM scarr
 INTO wa_scarr
 WHERE carrid = wa_scarr-carrid.
WRITE:/ wa_spfli-carrid,
 wa_spfli-carrname.

wa_scarr

mandt carrid carrname currcode

wa_scarr-carrid

wa_scarr-carrname

Fields in structures are
always addressed
using
<Structure>-<Fieldname>

wa_scarr-carrid

Fields of a structure are always addressed using <Structure>-<Field_name>.

This means that you should never use a hyphen in a variable name. The hyphen character is reserved
for separating the structure name and the field name.

(C) SAP AG BC400 4-30

 SAP AG 1999

MOVE-CORRESPONDING <rec1> TO <rec2>.

DATA: wa_sflight TYPE sflight,
 wa_sbc400focc TYPE sbc400focc.

MOVE-CORRESPONDING wa_sflight TO wa_sbc400focc.

wa_sflightLH401 0400

wa_sbc400focc
CARRID
LH

CONNID
0400

Copying Identically-Named Fields Between
Structures

20000513 ...

FLDATE
20000513

MOVE-CORRESPONDING wa_sflight TO wa_sbc400focc.

280 100

PERCENTAGESEATSMAX
280

SEATSOCC
100

...
carridmandt connid fldate ... seatsmax seatsocc ...

The MOVE-CORRESPONDING <rec1> TO <rec2> statements transports values field by field between
structures <rec1> and <rec2>. This only works if the components have identical names.

The system looks for all fields in <rec1> whose name also occurs in <rec2> and transports field
<rec1>-<field name> to <rec2>-<field name> in all cases where it finds a match. All other fields remain
unchanged.

(C) SAP AG BC400 4-31

 SAP AG 1999

Structures in the Debugger

 Watchpoint

ABAP Debugger

Variant

chwschws

Fields

Main program

Source code of

ZJJ_KURS_000
ZJJ_FORMS

1 4- Variant

SELECT SINGLE * FROM scarr
 INTO CORRESPONDING FIELDS OF wa_sbc400
 WHERE carrid = pa_car.
 IF sy-subrc = 0.
 MOVE-CORRESPONDING wa_sbc400 TO sbc400_carrier.
 CALL SCREEN 100.
 MOVE-CORRESPONDING sbc400_carrier TO wa_sbc400.

wa_sbc400

No. Component name Type Length Contents

1
2
3
4
5
6
7
8

MANDT
CARRID
CARRNAME
CURRCODE
MARK
UNAME
UTIME
DATE

C
C
C
C
C
C
T
D

3
3
20
5
1
12
6
8

100
AA
American Airlines
USD

000000
00000000

Double-click

Structured field

Length (in bytes)

wa_sbc400

 58

Fixed point arithmetic
 15 30-

You can trace the field contents of a structure by entering the name of the structure in the left column.
The field view of the structure is displayed if you double-click on this entry.

(C) SAP AG BC400 4-32

 SAP AG 1999

Data Objects in a Program's Object List and in the
Where-Used List

Types
Dictionary structures
SBC400_CARRIER
Fields
PA_CAR
WA_BC400
Events
Screens

SAPBC400WBT_GETTING_STARTED

Change
Display
Where-used list

TABLES structures

All the data objects
created using DATA

Where-used list

List of all the lines in the ABAP program,
in which the data object occurs

Elementary data objects appear in the program object list under the Fields node.

From the object list, you can use the right mouse button to navigate to the part of the source code
where the data object is defined.

You can use the Where-used list function to display all lines of source code where the data object is
used.

Structures created using the TABLES statement are a special case. They are stored under the object
type Dictionary structures, for historical reasons.

(C) SAP AG BC400 4-33

 SAP AG 1999

Overview: Internal Tables

TypesTypesTypes

Data objectsData objectsData objects

Elementary data objectsElementary data objectsElementary data objects

StructuresStructuresStructures

Internal tablesInternal tablesInternal tables

Return codes and how to handle themReturn codes and how to handle themReturn codes and how to handle them

(C) SAP AG BC400 4-34

 SAP AG 1999

Internal Tables

ABAP
programElementary data objects

Strukturen

Local data objects:
(Except for STRING, XSTRING,

and Reference types)

Internal table

At runtime, the system allocates memory for
table lines as necessary (dynamic table
extension)

Internal tables are data objects that allow you to retain data records in memory that are of one structure
type, but several lines long. For this reason, you can refer to each component in a line as a column in an
internal table.

Internal tables are dynamic data objects made up of any number of lines that are all of the same type.
The number of lines in an internal table is limited only be the capacity constraints of each specific system
installation.

Any ABAP data type can be used to form the line type of the internal table - elementary, structured, or
another internal table.

Each line in an internal table is known as a table row or table entry.

(C) SAP AG BC400 4-35

 SAP AG 1999

Attributes of Internal Tables

Line typeLine type

Table kindTable kind

KeyKey

Unique / Non-unique key

Key fields

Sequence
1

2

3

4

5

6

Line
index

CARRID CONNID DISTANCECARRID CONNID DISTANCE

 AA 0017 2,572

 QF 0005 10,000

 SQ 0866 1,625

 UA 0007 2,572

 LH 0402 5.136

 LH 0400 6,162

Access with index

Access with key

UA 0007UA 0007
Data access type

5

You must define the following information in order to specify a table type fully:

Line type: You can ensure the information about the required columns, their names and types, by
defining a structure type as line type.

Key: A fully specified key must define: Which columns should be key columns? In what order? Should
the key uniquely specify a record of the internal table (unique key)? Unique keys cannot be defined for
all the table types.

Table kind: There are three kinds of table: standard tables, sorted tables and hashed tables. The
estimated access type is mainly used to choose the table type.

The access type defines how the runtime system accesses individual table entries. There are two
different types of data access in ABAP, access using the index and access using a key.

Access using the index involves using the data record index that the system maintains to access data.

Example: Read access to a data record with index 5 delivers the fifth data record of your internal table
(Access quantity: one single data record).

Access using a key involves using a search term, usually either the table key or the generic table key,
to access data.

Example: Read access using the search term 'UA 0007' to an internal table with the unique key
CARRID CONNID and the data pictured above delivers exactly one data record.

(C) SAP AG BC400 4-36

 SAP AG 1999

Access with index

Access with key

Unique / NON- UNIQUE UNIQUE | NON-UNIQUE UNIQUE
Non-unique key

Access using Mainly index Mainly keys Keys only

HASHED TABLEHASHED TABLESTANDARD TABLESTANDARD TABLE SORTED TABLESORTED TABLE

The Relationship Between the Table Kind and the
Access Type

n

Index tables Hash table

Table kind

Another internal table attribute is the table kind. Internal tables can be divided into three table kinds
according to the way they access data:

­ Standard tables maintain a linear index internally. This kind of table can also be accessed using
either the table index or keys.

­ Sorted tables are sorted according to key and saved. Here too, a index is maintained internally.
This kind of table can also be accessed using either the table index or keys.

­ Hashed tables do not maintain an index internally. Hashed tables can only be accessed using
keys.

Which table type you use depends on how that table's entries are normally going to be accessed. Use
standard tables when entries will normally be accessed using the index, use a sorted table when entries
will normally be made using keys, and use hashed tables when entries will exclusively be made with
keys.

In this course, we will discuss the syntax of standard tables only.

(C) SAP AG BC400 4-37

 SAP AG 1999

Declaring Internal Tables with a Dictionary Type
Reference

Line type and access

Key Key definition
Key category
Key components

Line type
Data access type

SBC400FOCC

Standard table

Key components
non-unique
CARRID

CONNID

FLDATE

sbc400_t_sbc400foccABAP Dictionary: table type

DATA itab_flightinfo type sbc400_t_sbc400focc .

itab_flightinfo
ABAP
program

sbc400_t_sbc400focc

Table types can be defined locally in a program or centrally in the ABAP Dictionary

To define a table-type data object or an internal table, specify the type as a central/global table type or a
local table type.

For detailed information on the definition of global table types in the ABAP Dictionary, see the SAP
Library under Basis-> ABAP Workbench-> BC-ABAP Dictionary->Types->Table types.

(C) SAP AG BC400 4-38

 SAP AG 1999

Syntax Example: Local Table Types in Programs

TYPES: flightinfo_type
 TYPE STANDARD TABLE OF sbc400focc
 WITH NON-UNIQUE KEY carrid connid fldate.

DATA itab_flightinfo type flightinfo_type .

itab_flightinfo

ABAP
program

flightinfo_type

flightinfo_type

You can also define internal table types locally in programs using the TYPE statement. Enter the table
kind after the TYPE statement, the line type after the OF addition, and the key after the WITH addition.

You can find detailed information on declaring table types in the keyword documentation on the TYPES
statement, or in BC402 ABAP Programming Techniques.

(C) SAP AG BC400 4-39

 SAP AG 1999

Example: Filling Internal Tables Line by Line

* Struktur wa_flightinfo mit Werten füllen
...
* Struktur wa_flightinfo in Interne Tabelle
* einfügen

INSERT wa_flightinfo INTO TABLE itab_flightinfo.

itab_flightinfo

* Declaration of internal table and workarea
DATA: itab_flightinfo TYPE sbc400_t_sbc400focc,
 wa_flightinfo LIKE LINE OF itab_flightinfo.

wa_flightinfo

You can add lines to a standard table by first filling a structure with the required values and then adding
it to the internal table with the INSERT statement. For standard tables, this means that the line is
appended to the end of the table. For sorted tables and hash tables, the system inserts the line after
referring to the key.

Note: There is a special statement, APPEND, that you can use with standard tables. This statement
appends the line to the end of the standard table. This statement often occurs in programs, since sorted
and hash tables were only introduced in Release 4.0. Both statements have the same effect on standard
tables.

(C) SAP AG BC400 4-40

 SAP AG 1999

Overview: Accessing Single Records

Append

Insert

Read

Change

Delete

APPEND wa_itab to itab.

INSERT wa_itab INTO TABLE itab <condition>.

READ TABLE itab INTO wa_itab <condition>.

MODIFY TABLE itab FROM wa [<condition>].

DELETE itab <condition>.

APPEND

INSERT

READ

MODIFY

DELETE

The following single-record operations are provided for internal tables:

APPEND adds the contents of a structure (that has the same type as the line type) to the end of an
internal table. This operation can only be used with standard tables.

INSERT inserts the contents of a structure that has the same type as the line type in an internal
table. This causes a standard table to be appended and a sorted table to be inserted in the right place;
a hashed table is inserted according to the hashing algorithm.

READ copies the contents of a line in the internal table to a structure that has the same type as
the line type.

MODIFY overwrites a line of the internal table with the contents of a structure that has the same type
as the line type.

DELETE deletes a line in the internal table.

COLLECT inserts the contents of a structure having the same type as the row in an internal table into
an internal table in compressed form.. This statement may only be used for tables whose non-key
fields are all numeric. The numeric values are added to the same keys.

You can find detailed information about the ABAP statements described here in the keyword
documentation for the relevant ABAP keywords.

(C) SAP AG BC400 4-41

 SAP AG 1999

Overview: Processing Sets of Records

Using a loop:
for all operations

LOOP AT itab INTO wa_itab.

ENDLOOP .

DELETE itab <condition>.

INSERT LINES OF itab2
 <condition2>
 INTO itab1 <condition1>.

Delete

Insert
multiple lines
from another
internal table

LOOP

ENDLOOP

DELETE

INSERT

Append
multiple lines
from another
internal table

INSERT itab2 <condition2>
 FROM itab1 <condition1>.

APPEND

The following operations on sets are provided for internal tables:

LOOP ... ENDLOOP The LOOP places the rows of the internal table in the structure specified in
the INTO clause one-by-one. The structure must have the same type as the row of the internal table.
All single-record operations can be executed within the loop. In this case the system provides the
information about the row to be edited for the single-record operations.

DELETE deletes the rows of the internal table that satisfy the condition <condition>.

INSERT copies the contents of several rows of an internal table to another internal table.

APPEND appends the contents of several rows of an internal table to another standard
table.

You can find detailed information about the ABAP statements described here in the keyword
documentation for the relevant ABAP keywords.

(C) SAP AG BC400 4-42

 SAP AG 1999

Example: Reading Internal Table Contents Using a
Loop

LOOP AT it_flightinfo INTO wa_flightinfo.

 WRITE: / wa_flightinfo-carrid,
 wa_flightinfo-connid,
 wa_flightinfo-fldate,
 wa_flightinfo-seatsmax,
 wa_flightinfo-seatsocc,
 wa_flightinfo-percentage,
 '%'.
ENDLOOP.

LOOP AT itab_flightinfo INTO wa_flightinfo.

ENDLOOP.

itab_flightinfo

* Declaration of internal table and workarea
DATA: itab_flightinfo TYPE sbc400_t_sbc400focc,
 wa_flightinfo LIKE LINE OF itab_flightinfo.

wa_flightinfo

You can read and edit the contents of an internal table using a LOOP statement. In this example, one
line is copied from internal table it_flightinfo to structure wa_flightinfo. The fields of the structure can
then be edited. You can then create a list from the fields using a WRITE statement.

If you want to change the contents of the internal table, first change the value of the structure fields
within the loop and then overwrite the line of the internal table with the MODIFY statement.

(C) SAP AG BC400 4-43

 SAP AG 1999

Example: Reading Internal Tables Using the Index

LOOP AT itab_flightinfo INTO wa_flightinfo
 FROM 1 TO 5.
 WRITE: / wa_flightinfo-carrid,
 wa_flightinfo-connid,
 wa_flightinfo-fldate,
 wa_flightinfo-seatsmax,
 wa_flightinfo-seatsocc,
 wa_flightinfo-percentage,
 '%'.

ENDLOOP.

FROM 1 TO 5.

READ TABLE itab_flightinfo INTO wa_flightinfo
 INDEX 3.
 WRITE: / wa_flightinfo-carrid,
 wa_flightinfo-connid,
 wa_flightinfo-fldate,
 wa_flightinfo-seatsmax,
 wa_flightinfo-seatsocc,
 wa_flightinfo-percentage,
 '%'.

INDEX 3.

LOOP AT

ENDLOOP.

READ TABLE

You can restrict access to certain line numbers using the INDEX addition. You may only perform index
operations on index tables. Both standard and sorted tables are supported here.

The above example shows the syntax for loop editing that only scans the first five lines of the internal
table.

The example below shows the syntax for reading the third line of the internal table.

(C) SAP AG BC400 4-44

 SAP AG 1999

Example: Reading Internal Tables Using Keys

LOOP AT itab_flightinfo INTO wa_flightinfo
 WHERE carrid = 'LH'
 WRITE: / wa_flightinfo-carrid,
 wa_flightinfo-connid,
 wa_flightinfo-fldate,
 wa_flightinfo-seatsmax,
 wa_flightinfo-seatsocc,
 wa_flightinfo-percentage,
 '%'.

ENDLOOP.

WHERE carrid = 'LH'.

READ TABLE itab_flightinfo INTO wa_flightinfo
 WITH TABLE KEY carrid = 'LH'
 connid = '0400'
 fldate = sy-datum.
 IF sy-subrc = 0.
 WRITE: / wa_flightinfo-seatsmax,
 wa_flightinfo-seatsocc,
 wa_flightinfo-percentage,
 '%'.
 ENDIF.

WITH TABLE KEY carrid = 'LH'
connid = '0400'
fldate = sy-datum.

LOOP AT

ENDLOOP.

READ TABLE

You can restrict access to lines with certain values in key fields using the WHERE addition . Key
operations are supported for all table types. Key access to sorted or hashed tables is more efficient than
key access to standard tables.

The above example shows the syntax for loop processing, which only scans the lines of the internal
table whose 'carrid' field has the value 'LH'. The sorted table is most suitable for this type of editing.
Loop editing with the WHERE addition is supported for sorted and standard tables.

The example below shows the syntax for reading a line in the internal table with a fully specified key.
The return code sy-subrc is set to zero if the internal table contains this line. The hashed table is most
suitable for single-record access by key. This type of access is supported for all table types. Note that all
the key fields must be defined in key accesses with the WITH TABLE KEY addition. It is easy to confuse
this addition with the WITH KEY addition, which permitted key access to standard tables prior to
Release 4.0, when it was not yet possible to define key columns explicitly.

(C) SAP AG BC400 4-45

 SAP AG 1999

Operations on the Whole Internal Table

Sort

Set the content
of the internal table
to initial

SORT itab <conditions>

CLEAR itab.CLEAR

SORT

The following operations can be executed on internal tables:

SORT You can sort tables in increasing or decreasing order of any column. However, sorted
tables cannot be resorted.

CLEAR Sets the contents of the internal table to the right initial value for the column type.

REFRESH works like CLEAR.

FREE Deletes the internal table and releases the memory.

(C) SAP AG BC400 4-46

 SAP AG 1999

Syntax Example: Sorting a Standard Table

SORT itab_flightinfo BY percentage.

itab_flightinfo

* Declaration of internal table and workarea
DATA: itab_flightinfo TYPE sbc400_t_sbc400focc.

Column name used to sort
the table (field name from the
internal table's line type)

You can sort standard tables by any column, simply by entering this column name after a BY addition to
the SORT statement.

For more information, see the keyword documentation for the SORT statement.

(C) SAP AG BC400 4-47

 SAP AG 1999

Internal Tables in Debugging Mode

 Watchpoint

ABAP Debugger

chwschws

table
Main program

Source code of

ZJJ_KURS_000
ZJJ_FORMS

LOOP AT it_flightinfo INTO wa_flightinfo.
 WRITE: / wa_flightinfo-carrid,
 wa_flightinfo-connid,

1
2
3
4
5
6
7
8

AA
AA
AA
AA
LH
LH
LH
LH

Internal table it_flightinfo Type Standard

1 Carrid

0017
0017
0017
0017
0400
0400
0400
0400

Connid

20000512
20000724
20000828
20001224
20000626
20000715
20001113
20001212

Fldate

660
660
660
660
280
280
280
280

Seatsmax

66
120
560
470
240
123
273
280

Seatsocc

66
120
560
470
240
123
273
280

Percentage

Fixed point arithmetic
 15 30-

You can trace the contents of an internal table in debugging mode by choosing Table and entering the
name of the internal table.

(C) SAP AG BC400 4-48

 SAP AG 1999

Internal Tables with Headers

AA 0017

Internal table <itab>

Work area <wa>

LH 0400

 Header line <itab>

APPEND <wa> TO <itab>.
MODIFY <itab> INDEX <n> FROM <wa>.

LOOP AT <itab> INTO <wa>.
 WRITE <wa>-<feld>.
ENDLOOP.

READ TABLE <itab> INDEX <n> INTO <wa>.
WRITE <wa>-<feld>.

APPEND <itab>.
MODIFY <itab> INDEX <n>.

LOOP AT <itab>.
 WRITE <itab>-<feld>.
ENDLOOP.

READ TABLE <itab> INDEX <n>.
WRITE <itab>-<feld>.

DATA <itab> TYPE <itabtype> [WITH HEADER LINE].

CARRIDCARRID CONNIDCONNID

AA 0017

Internal table <itab>

LH 0400

CARRIDCARRID CONNIDCONNID

[WITH HEADER LINE]

Internal tables can be defined with or without a header line. An internal table with header line consists
of a work area (the header line) and the actual body of table, both of which are addressed with the same
name. How this name is interpreted depends on the context in which it is used. For example: at MOVE
the name is interpreted to mean the header line, while at SORT it is interpreted as the table body.

You can declare an internal table with a header line using the addition WITH HEADER LINE.

In order to prevent mistakes, it is recommended that you create internal tables without header lines.
However, in internal tables with header lines you can often use a shortened syntax for certain
operations.

(C) SAP AG BC400 4-49

 SAP AG 1999

Overview: ABAP Statement Attributes

TypesTypesTypes

Data objectsData objectsData objects

Return codes and how to handle themReturn codes and how to handle themReturn codes and how to handle them

(C) SAP AG BC400 4-50

 SAP AG 1999

ABAP Statement Return Codes

ABAP runtime system

ABAP program

AA
AL
LH
QF

carrid ...

itab

READ TABLE itab
 INTO wa_itab
 WITH TABLE KEY
 carrid = c_ua.

Basis function
at READ

0

sy-subrc

Not available

4 Return Code 4IF sy-subrc ne 0.
* Message
...
ENDIF.

Time

CONSTANTS c_ua
 TYPE s_carr_id
 VALUE 'UA'.

Many ABAP statements support a return code. Depending on the statement, the system catches various
exceptions. If such an exception occurs, a value is stored in field sy-subrc and the function for the
statement is terminated. The keyword documentation for the particular statement describes the
exceptions that are supported and their values. When you start a program, a structure named sy is
automatically provided as data object. This structure contains various fields that are filled by the system..
You can access these fields from the program. subrc is one of the fields in this structure. There is thus
no need to create a data object for the return code.

In this example, the system should read a line from internal table itab with key access. There is no line
with the required key at runtime. The Basis function for the READ statement is therefore terminated and
the value 4 is placed in field sy-subrc. Field sy-subrc is queried in the program immediately after the
READ statement.

(C) SAP AG BC400 4-51

 SAP AG 1999

Standard Dialogs for Messages

Function

Error
occurred?

Information passed
to the user

Control of
subsequent

program processing
depends on the type

of error

Next program
step Program aborted

Standard Dialogs for MessagesStandard Dialogs for Messages

Yes

No

Text from the
message table
(language-specific)

Different message types
for status messages,
information,
warnings,
error messages,
aborted programs

Continue executing
program

Back to initial screenMessage
type

In many cases, the user of a program needs to be told that an error has occurred. Standardized
message dialogs are available for this purpose. Texts are stored in one location for these standard
dialogs. Several types of dialog are available. They can then be triggered by an ABAP statement, while
the program is running. The following slides explain this concept in more detail.

(C) SAP AG BC400 4-52

 SAP AG 1999

Syntax Example: MESSAGE Statements

READ TABLE itab INTO wa_itab
 WITH TABLE KEY carrid = c_ua.

CONSTANTS c_ua TYPE s_carr_id VALUE 'UA'.

...

IF sy-subrc ne 0.
* Message
 MESSAGE ID 'BC400' TYPE 'I'
 NUMBER '048' WITH wa_itab-carrid.
ELSE.
 MESSAGE ID 'BC400' TYPE 'S'
 NUMBER '047' WITH wa_itab-carrid wa_itab-carrname.

ENDIF.
Message class BC400
Message:
047: The name of the airline &1 is &2
048: Airline &1 is not available

BC400

040
041

 MESSAGE ID 'BC400' TYPE 'I'
 NUMBER '041' WITH wa_itab-carrid.

 MESSAGE ID 'BC400' TYPE 'I'
 NUMBER '040' WITH wa_itab-carrid wa_itab-carrname.

The ABAP statement MESSAGE triggers a standard message dialog. The following slides deal with the
additions to the MESSAGE statement in more detail.

Message classes are Repository objects that contain the texts for message dialogs. These texts can be
translated and are displayed in the logon language. Each message text is assigned to a message class
and given a three-digit identifier.

(C) SAP AG BC400 4-53

 SAP AG 1999

The MESSAGE Statement, Message Classes, and
Messages

Definition

Use

MESSAGE ID '<message class>' TYPE '<message type>'
 NUMBER '<message number>' .

 BC400

Message short text
040
041
002

<message class>

Message class:

Message
The name of the airline &1 is &2
Airline &1 is not available

<message number>

Attributes Messages

Double-click

Double-click

ID '<ID '<message classmessage class>'>'

NUMBER '<NUMBER '<message numbermessage number>'>'

<message class>

<message number>

<message class>

<message number>

To trigger a message dialog in a program, enter the MESSAGE statement with the following additions:

ID '<message class>' - the message class

NUMBER '<number>' the message number.

To display the message text for a MESSAGE statement in a program's source code, double-click the
message number to navigate the associated message class texts.

For information on the other syntax variants available for the MESSAGE statement, see the keyword
documentation.

(C) SAP AG BC400 4-54

 SAP AG 1999

Messages with and Without Long Texts

Message class: BC400
Self-explanatory

Definition

Short text
<short text>
<short text>

Number
000
001

Long text

<short text>

Diagnosis
 <text>
System activities
 <text>
Procedure
 <text>
Procedure for system administrator
 <text>

Long text

Message class:
Number 2

1

 : Message is self-explanatory
 : There is a long text
 explaining the message

If a message short text contains all the information the user needs, the message is described as self-
explanatory. Example: "The program has been saved."
Self-explanatory messages are flagged as such in the message class.

If you want to provide more detailed information for the user, you can do so by storing a long text with
the message. In the Message Maintenance screen, the Self-Explanatory flag is unchecked, if there is a
long text stored for a given message. To display the long text, select the message line and choose the
Long Text pushbutton. The system then displays the maintenance environment. You can display the
formatted text by choosing Screen Output. You usually create the long text from a template, which
contains the headings: Diagnosis, System Activities, Procedure, and Procedure for the System
Administrator. The system does not display the heading to the user if there is no text stored under it.

(C) SAP AG BC400 4-55

 SAP AG 1999

Messages with Place-Holders

Definition

Use

MESSAGE ID '<message class>' TYPE '<message type>'
 NUMBER <nnn>
 WITH <var1> <var2> <var3> <var4> .WITH <var1> <var2> <var3> <var4>

&1 &2 &3 &4

 BC400

Message short text
039
040
041

Message class:

Message

The name of the airline &1 is &2
Airline &1 is not available

Attributes Messages

You can include up to four place-holders in a message. (&1, &2, &3 and &4). You can then assign
current parameters to them in the MESSAGE statement using the WITH addition. You can use literals,
text symbols, or variables. You must include a space between each one. The current parameters are
assigned to the place-holders &1, &2, &3, and &4 in order.

In the long text, the place-holders are given the names &V1&, &V2&, &V3&, and &V4& and replaced at
runtime in order, in a similar way. To insert a place-holder in the long text:

Place your cursor in the text where you want to insert the place-holder.

Choose Edit->Command-> Insert command. The system displays a dialog box. In Symbols, enter
&V1& (or &V1&, &V1&, or &V1& as appropriate).

Choose Enter to confirm the settings in the dialog box.

(C) SAP AG BC400 4-56

 SAP AG 1999

The Dialog Behavior of Messages: Message Types

MESSAGE ID '<message class>' TYPE '<message type>'
 NUMBER <message number>
 WITH <var1> <var2> <var3> <var4> .

TYPE '<message type>'

Type Behavior Message appears in

S

I

W

I

A

X

Program continues without
interruption

Program interrupted when
dialog box is displayed

Depends on context

Depends on context

Program aborted

Runtime error
MESSAGE_TYPE_X

Status line in next screen

Modal dialog box

Status line (and modal dialog
box)

Status line (and modal dialog
box)

Modal dialog box

Integrated in short dump

Meaning

Status message

Information

Warning

Error

Termination

Short dump

You administer the dialog behavior of the message using the TYPE of the MESSAGE statement.

There are six different types of message: A, X, E, I, S and W. The runtime behavior of each dialog
message is context-specific. The letters have the following meaning:

A Termination Processing is terminated; the user must restart the transaction

X Exit Like a termination message, but with short dump MESSAGE_TYPE_X

E Error Runtime behavior depends on context

W Warning Runtime behavior depends on context

I Information Processing is interrupted, the message is displayed in a dialog box and
the program continues when the message has been confirmed with
ENTER.

S Set The message appears in the status bar on the next screen.

(C) SAP AG BC400 4-57

 SAP AG 1999

Runtime Behavior of Messages

Editor Help
ABAP Overview
ABAP Term
ABAP News
ABAP Docu and Examples

Help

i

ABAP Documentation and Examples
?

?
?
?

?

BC - ABAP Programming
 ABAP Introduction
 ABAP Programming Language
 ABAP Screens
 Screens
 Selection Screens
 Lists
 Messages
 Simple example for messages
 Demonstration for all message types
 ...

?
?
?

?

You can find a program for testing the runtime behavior in the sample programs of the documentation.
You can find the sample programs with transaction code ABAPDOCU or in the Editor with the
‘Information’ icon and radio button ABAP Docu and Examples.

(C) SAP AG BC400 4-58

 SAP AG 1999

Creating Message Classes and Messages

In the Object Navigator:

Create using forward navigation

MESSAGE ID '<message class>' TYPE '<message type>'
 NUMBER '<message number>' .

Message class available?

Double-click
Double-click

Create message class No

Create message

Yes

<message class>
<message number>

Development class

ZBC400_12 Create ...
Message class Programs

 ...
 Message classes
 ZBC400_MC12 ...

Change
Display

ZBC400_12

Note: Messages can
be translated. They
will then appear in
the user's logon
language.

To create your own message class, give it a name in the customer namespace. (That is, a name
beginning with Y or Z, or with the namespace prefix).

To create a message, assign a three-digit number and a message class to it.

You can create both the message class and the message itself using forward navigation from the
MESSAGE statement.

In the Object Navigator, you can create and edit a message class in any of the following ways:

From the context menu belonging to the root node in the object list of the appropriate development
class.

From the context menu belonging to the Message class node in the object list of the appropriate
development class.

From the Other object... icon. A dialog box containing several tabs appears. In the Other, enter a
message class, or a message with its message class, and then display, create, or change it by
choosing the appropriate icon.

(C) SAP AG BC400 4-59

 SAP AG 1999

You are now able to:

ABAP Statements and Data Declarations: Unit
Summary

Describe the various different data types and their
uses

Define elementary data objects, structures, and
internal tables

Use Debugging mode to observe how the values
of individual data objects change during
processing

Program several important operations involving
data objects

Find information about the various return codes
used by ABAP statements and evaluate these in
programs

(C) SAP AG BC400 4-60

Data Objects and Statements Exercises

Unit: Data Objects and Statements

Topic: Structures and Assigning Values

At the conclusion of these exercises, you will be able to:

Use the Debugger to understand how a program works and how data is
transferred between objects in the program

Use the MOVE-CORRESPONDING statement to assign values between
structures.

Debug the program that you wrote in the exercises to the last unit (or the
corresponding model solution).

Program: ZBC400_##_GETTING_STARTED

Model solution: SAPBC400WBS_GETTING_STARTED

1-1 Start the program ZBC400_##_GETTING_STARTED. On the selection screen, enter the
airline code ‘LH’. In the command field, enter ‘/h’, then choose Execute. You are now in
Debugging mode.

1-2 Check that all of the data objects are initial. Put all of the data objects declared in the program
into the field view. Find out the structure and data types of the individual data objects (if you
double-click a structured data object, the Debugger displays the components).

1-3 Step through the program using the Single step (F5) function. Which fields of the structure
WA_SCARR does the SELECT statement fill? What is the value of system field SY-SUBRC
after the statement?

1-4 Now observe how fields are copied from WA_SCARR to SBC400_CARRIER. Which field
values are copied?

1-5 The statement CALL SCREEN 100 processes screen 100. On the screen, enter appropriate
values for the user name, date, and time, and continue with the program. Now observe how
fields are copied from SBC400_CARRIER to WA_SCARR.

(C) SAP AG BC400 4-61

1-6 Finally, observe how the WRITE statement constructs the list. Note especially that an extra
button appears in the application toolbar after the first WRITE statement, which allows you to
display the current contents of the list buffer at any time.

1-7 Restart the program in Debugging mode. Set a breakpoint at the MOVE-CORRESPONDING
statement. Before the screen is processed, assign a name to the structure component
SBC400_CARRIER-UNAME from the Debugger. (Next to the input/output field is an icon that
you can use to change a field value at runtime.)

1-8 Repeat step 1-1. Now set a breakpoint (Breakpoint Breakpoint at…) for the CALL
SCREEN statement, and a watchpoint for whenever the value of a component of structure
WA_SCARR changes. Each time the program stops, use the ‘Continue’ (F8) function in the
Debugger to carry on processing.

(C) SAP AG BC400 4-62

Unit: Data Objects and Statements

Topic: Internal tables

At the conclusion of these exercises, you will be able to:

Declare internal tables with reference to a table type defined in the ABAP
Dictionary

Use the LOOP…ENDLOOP statements to process data buffered in an
internal table

Create a program to display all of the flights stored in the system on a list.
To do this, read the contents of database table SPFLI into an internal table.
Then use a LOOP … ENDLOOP structure to display the data records in a list.

Program: ZBC400_##_ITAB_LOOP

Model solution: SAPBC400TSS_ITAB_LOOP

2-1 Create a program with the name ZBC400_##_ITAB_LOOP and no TOP include. Assign your
program to development class ZBC400_## and the change request for your project
“BC400…” (## is your group number).

2-2 In your program, create an internal table with the line structure of table SPFLI. Do this by
referring to a suitable table type defined in the ABAP Dictionary (use the where-used list
function to display all table types that use the definition of database table SPFLI). You also
need to create a structure with reference to the definition of database table SPFLI.

2-3 To read the data from the database table SPFLI and place it in the internal table, use the
following ABAP statement in your program:
SELECT * FROM SPFLI INTO TABLE <itab>.
<itab> is the name of the internal table.

2-4 Display the data from the internal table in a list. Use the LOOP … ENDLOOP statements.

(C) SAP AG BC400 4-63

Unit: Data Objects and Statements

Topic: Message Classes and Messages

At the conclusion of these exercises, you will be able to:

Create a message class

Create messages and use them in the program

Extend your internal tables program. The program should read a line, using
single-record access. If it finds a record, it should display an information
message.

Program: ZBC400_##_ITAB_LOOP

Model solution: SAPBC400TSS_MESSAGE

3-1 Create a message class with the name ZBC400_##. Assign your program to development
class ZBC400_## and the change request for your project “BC400…” (where ## is your group
number).

3-2 Create a message (message number 001) with the following text: The internal table has an
record in line &1. Flag the message as self-explanatory.

3-3 In the keyword documentation on the ABAP statement READ, look for the return values
possible when reading a line of an internal table. Which value does the runtime system place in
the field sy-subrc if it finds a record? Which value does the runtime system place in the field
sy-subrc if it does not find a record?

3-4 Extend your program, ZBC400_##_ITAB_LOOP. After the SELECT statement, read the fifth
record in the internal table. Use the INDEX 5 addition to the READ statement. Find out more
about this addition from the keyword documentation on the READ statement (used to read a
line from an internal table). Get the value stored in the field sy-subrc. If a record has been
read, the program should display your message (number 001), with the message type I. Fill the
placeholder with the line number using the WITH addition to the MESSAGE statement. Display
the data from the line you have read, in a list. Separate the display of this single line from the
display of the rest of the table using an underscore (ABAP statement: ULINE). Test your
program.

3-5 Test the program in debugging mode and observe how many lines the internal table has after it
has been filled. Change the program so that, if you access a single record in the internal table,
you will not find any records. Test your program again. The message should no longer appear.

(C) SAP AG BC400 4-64

3-6 Optional: Create a message that appears if single-record access fails to find any records.
Create a long text for this message. Extend your program, so that this message appears as
information, when the runtime system fails to find a record. Test the program and the display of
the long text.

(C) SAP AG BC400 4-65

Data Objects and Statements Solutions

Unit: Data Objects and Statements

Topic: Structures and Assigning Values

1-3 Which components of the structure are filled in the statement?

MANDT, CARRID, CARRNAME, CURRCODE, URL
What value does SY-SUBRC have after the SELECT statement?
SY-SUBRC has the value 0, because the airline LH (Lufthansa) is maintained in the SCARR
table.

1-4 Which field values are copied?

MANDT, CARRID, CARRNAME, CURRCODE

(C) SAP AG BC400 4-66

Unit: Data Objects and Statements

Topic: Internal tables

Model Solution SAPBC400TSS_ITAB_LOOP

&---

*& Report SAPBC400TSS_ITAB_LOOP *

*& *

&---

REPORT sapbc400tss_itab_loop .

DATA: it_spfli TYPE sbc400_t_spfli.

DATA: wa_spfli TYPE spfli.

START-OF-SELECTION.

* read all fields of all datasets from the database table SPFLI into

* the internal table it_spfli.

 SELECT * FROM spfli INTO TABLE it_spfli.

* at least one dataset selected

 IF sy-subrc = 0.

* move each single dataset from internal table to structure WA_SPFLI

* in order to write data on list

 LOOP AT it_spfli INTO wa_spfli.

 WRITE: / wa_spfli-carrid,

 wa_spfli-connid,

 wa_spfli-cityfrom,

 wa_spfli-cityto,

 wa_spfli-deptime,

 wa_spfli-arrtime.

 ENDLOOP.

(C) SAP AG BC400 4-67

 ENDIF.

(C) SAP AG BC400 4-68

Unit: Data Objects and Statements

Topic: Message Classes and Messages

3-1, 3-2 Follow the instructions in the slides.

3-3 Does the runtime system place the value 0 in the field sy-subrc if it finds a record? The
runtime system place the value 4 in the field sy-subrc if it finds a record.

3-4 See the model solution.

Model Solution SAPBC400TSS_MESSAGE
Note: The messages of the message class BC400 are used in the model solution.

REPORT sapbc400tss_message .

DATA: it_spfli TYPE sbc400_t_spfli.

DATA: wa_spfli TYPE spfli.

CONSTANTS c_index TYPE i VALUE '5'.

START-OF-SELECTION.

 SELECT * FROM spfli INTO TABLE it_spfli.

* at least one dataset selected

 READ TABLE it_spfli INTO wa_spfli INDEX c_index.

 IF sy-subrc = 0.

 MESSAGE ID 'BC400' TYPE 'I' NUMBER '001' WITH c_index.

 WRITE: / wa_spfli-carrid,

 wa_spfli-connid,

 wa_spfli-cityfrom,

 wa_spfli-cityto,

 wa_spfli-deptime,

 wa_spfli-arrtime.

 ULINE.

 ELSE.

 MESSAGE ID 'BC400' TYPE 'I' NUMBER '002' WITH c_index.

 ENDIF.

 IF sy-subrc = 0.

(C) SAP AG BC400 4-69

* move each single dataset from internal table to structure WA_SPFLI

* in order to write data on list

 LOOP AT it_spfli INTO wa_spfli.

 WRITE: / wa_spfli-carrid,

 wa_spfli-connid,

 wa_spfli-cityfrom,

 wa_spfli-cityto,

 wa_spfli-deptime,

 wa_spfli-arrtime.

 ENDLOOP.

(C) SAP AG BC400 5-1

 SAP AG 1999

Information on Database Tables in R/3

Reading Database Tables

Authorization Checks

Outlook: Reading Multiple Database Tables

Contents:

Reading Database Tables

(C) SAP AG BC400 5-2

 SAP AG 1999

At the conclusion of this unit, you will be able to:

Reading Database Tables: Unit Objectives

Extract information about database tables from
the ABAP Dictionary

List various ways of finding database tables

Program read access to specific columns and
lines within a particular database table

Implement authorization checks

List the different kinds of read access possibilities
for database tables

(C) SAP AG BC400 5-3

 SAP AG 1999

Overview: Using Reuse Components

Information on database tables in R/3Information on database tables in R/3

Reading database tablesReading database tables

Authorization checksAuthorization checks

Outlook: Reading multiple database tablesOutlook: Reading multiple database tables

Using Reuse componentsUsing Reuse components

(C) SAP AG BC400 5-4

 SAP AG 1999

Reference Model

Yes Use Reuse components

Find a database table that contains the necessary data

Can you use a list created
using the InfoSet Query?

Yes
Use InfoSet Query

Access the database using ABAP statements

Is there a Reuse component that
would retrieve the data you need

from the database?

No

No

There are several benefits to using a Reuse component to retrieve the data you need from the database:

You do not need to find out the details of the database tables in which the data is stored.

You do not need to change your program if changes are made to the data model.

You can find information on the main techniques in the Reuse Components unit.

If there are no Reuse components available, you must start by finding out which database tables contain
the data.

You can use InfoSet Query to create a list. The ABAP code is generated automatically in the
background. For detailed information on the InfoSet Query, refer to the SAP Library under Basis-
>ABAP Workbench->SAP Query->InfoSet Query.

If the InfoSet Query does not have enough functions, you can implement a database access using ABAP
statements.

(C) SAP AG BC400 5-5

 SAP AG 1999

Overview: Available Reuse Techniques

Business
objects

Logical
databases

Objects

Interfa
ces

Functio
n

modules

Function
groups

BAPIs

Methods of
global classes

If reusable components that encapsulate complex data retrieval are available, then you must use them.
There are four techniques available for doing this:

Methods of global classes

Methods of business objects

Function modules

Logical databases - data retrieval programs delivered by SAP that return data in a hierarchically
logical sequence.

You can find information on the various techniques in the Reuse Components unit.

For more information on logical databases, see the SAP Library under Basis->ABAP Programming and
Runtime Environment->ABAP Database Access®Logical Databases

(C) SAP AG BC400 5-6

 SAP AG 1999

Information on Database Tables in R/3

Information on Database Tables in R/3Information on Database Tables in R/3

Reading database tablesReading database tables

Authorization checksAuthorization checks

Outlook: Reading multiple database tablesOutlook: Reading multiple database tables

(C) SAP AG BC400 5-7

 SAP AG 1999

Maintenance Tool: ABAP Dictionary

ABAP Dictionary

Transparent table
SCARR:

scarrscarr
Line type
Key fields
Secondary indexes
...

Database table
selections

Definition of
global types

Line type can be
used as a structure
type

Database tables in the R/3 System are administered in the ABAP Dictionary. There you can find
current information about a database table's technical attributes. Database tables that have been
created in the database using the same line type and name are called transparent tables in the ABAP
Dictionary.

There are a two ways to navigate to transparent tables in the ABAP Dictionary:

Choose Tools-> ABAP Workbench-> Development-> Dictionary to call the ABAP Dictionary directly
and insert the name of the transparent table in the appropriate input field.

Navigate directly to the ABAP Dictionary from the ABAP Editor while editing the program:
by double-clicking on the name of the transparent table in the FROM clause of the SELECT
statement.

(C) SAP AG BC400 5-8

 SAP AG 1999

Departure City

Departure Airport

Destination

Destination City

Travel Agency Tasks:
Airports available
Airlines available at desired time
Flights available on desired date
Additional flight information:
Price, Capacity, ...

Flight Data Model for ABAP Training Courses

ABAP training courses all use the same flight data model. At this time, a simple cross-section of the flight
data model will be presented; you can get more detailed information about it at any time.

As a traveler trying to get from one place to another, you expect your travel agency to be able to provide
you with the following information:

What connection offers me the best and most direct flight?

At what times are flights offered on the date that I want to travel?

How can I optimize the conditions under which I am travelling, that is, what is the cheapest flight, the
fastest connection, the connection that gets me there nearest the time I want to arrive, ...?

A travel agency's point of view is a bit different: all necessary technical flight data in a data model is
organized and stored in tables in a central database according to the database's structure. The amount
of data stored is far greater than that which a travel agency wants or needs. They are primarily
interested in which one of their customers has booked which flight, when the booking was made, how
much the customer paid, and so on. These different views and their corresponding demands on the data
model demonstrate the necessity of using programs to organize data in a manner that fulfills all of the
different demands that users make.

(C) SAP AG BC400 5-9

 SAP AG 1999

Airport

BC_AIRPORT T

Customer

BC_CUSTOM T

Airline
Carrier

BC_CARRIER T

Flight

BC_SFLIGHT T

City- Airport
Assignment

BC_CITAIRP T

City

BC_GEOCITY T

Timetable

BC_PLANFLI T

Travel Agency

BC_TRAVLAG T

Bookings

BC_BOOKING T

Sales
Office

BC_COUNTER T

Time

H

A

A

CR

CR

H

R

R

H

Data Model

R

A separate entity exists for all pieces of information that are logically dependent on each other: In the
ABAP flight data model there are individual entities for:

All cities

All airports

All airline carriers

All flight routes

All flights.

These entities all relate to each other in certain ways:

Flight routes all depart from and arrive at an airport.

A flight route is characterized by airline, departure airport, destination airport, and departure time.

Flights for a particular flight route can be offered on many different days in a given year, but the flight
route must exist before a flight can be created.

Cities must have all airports in their vicinity assigned to them.

This data model manages all the data you need without unnecessary redundancy and makes it possible
for a travel agency to access data for a customer's point of view.

(C) SAP AG BC400 5-10

(C) SAP AG BC400 5-11

 SAP AG 1999

Implementation in the Database Using the ABAP
Dictionary

Airline FlightTimetable BookingsH H H

scarrscarr spflispfli sflightsflight sbooksbook

scarrscarr spflispfli sflightsflight sbooksbookH H H

BC_CARRIER T BC_SFLIGHT TBC_PLANFLI T BC_BOOKING T

ABAP training course examples and exercises, as well as ABAP documentation, all use SAP's flight data
model. All flight data model Repository objects are located in the development class
SAPBC_DATAMODEL.

The following is a list of the flight data model tables most frequently used in ABAP training courses:

SCARR: Table of airlines

SPFLI: Flight connections table

SFLIGHT: Flights table

SBOOK: Bookings table

(C) SAP AG BC400 5-12

 SAP AG 1999

Finding Fields, Key Fields, and Secondary Indexes
in the ABAP Dictionary

Fields Key Field type... ... Short description ...

Indexes

MANDT
CARRID
CONNID
COUNTRYFR
CITYFROM
AIRPFROM
COUNTRYTO
CITYTO
AIRPTO
FLTIME
DEPTIME
ARRTIME
DISTANCE
DISTID
FLTYPE

S_MANDT
S_CARR_ID
S_CONN_ID
LAND1
S_FROM_CIT
S_FROMAIRP
LAND1
S_TO_CITY
S_TOAIRP
S_FLTIME
S_DEP_TIME
S_ARR_TIME
S_DISTANCE
S_DISTID
S_FLTYPE

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

spflispfliTransparent table

As soon as you navigate to the definition of a database table in the ABAP Dictionary, information about
all of the table's technical attributes is available.

To optimize the performance of database accesses, bear the following in mind:

Key fields: If the lines requested from the database are being retrieved according to key fields, the
Databank Optimizer can perform access using a primary index. Checkboxes are provides for all key
fields.

Secondary indexes: You may also use secondary indexes to select specific lines. These are
displayed in a dialog box whenever you choose the Indexes pushbutton. You can choose an index
from the dialog box by simply double-clicking on it. The system then displays a screen with additional
information about that index.

(C) SAP AG BC400 5-13

 SAP AG 1999

Look for the
SELECT statement

Editor

Insert Breakpoint at
SELECT statement

Start in
Debugging mode

Finding Database Tables

If you know of a program that
accesses this database table

Subroutines

Object list
Object List

F1
 Technical info
 Double-click
 on Screen Field

On a
Screen Field

If you know of a structure
field in the ABAP Dictionary

 Double-click
 on data element
 Where-Used List
 in Tables

Structure Field
in the ABAP Dictionary

 Component
 application
 component
 Repository
 Information
 System

Component
hierarchyLook for

Reuseable
components
components

You can search for database tables in several different ways:

Application hierarchy and the Repository Information System: You may choose application
components from the application hierarchy and go directly to the information system. There you can
search for database tables according to their short texts (among other criteria).

If you have the name of a program that accesses the database table:

Input field on a screen; If you know of a program that contains a screen with input fields connected to
the table you are looking for, choose F1-> Technical info. Then navigate to the ABAP Dictionary by
double-clicking the technical name of the screen field. This is often a field in a structure. Double-click
on the data element and then use the where-used list function to search for transparent tables
according to the field type.

Debugger:

If you know the name of a program that accesses the database table that you are looking
for, you can start this program in debugging mode and set a breakpoint at the SELECT statement.

Editor: Look for the SELECT statement

Object list in the Object Navigator: Pick out the subroutines that encapsulate the database
accesses.

If you know of a structure field in the ABAP Dictionary.

(C) SAP AG BC400 5-14

Double-click the data element and then use the where-used list function to search for transparent
tables according to the field type.

(C) SAP AG BC400 5-15

 SAP AG 1999

Reading Database Tables

Information on Database Tables in R/3Information on Database Tables in R/3

Reading Database TablesReading Database Tables

Authorization checksAuthorization checks

Outlook: Reading multiple database tablesOutlook: Reading multiple database tables

(C) SAP AG BC400 5-16

 SAP AG 1999

ABAP
processing
block

ABAP runtime system

ABAP program

Querying the Database

Data objects

wa_scarrwa_scarr

Database
interface

Open SQLSELECT ...
 FROM scarr

Database SQL
Database-
specific
conversion

pa_car

scarrscarr

SELECT
FROM

Open SQL statements are a subset of Standard SQL that is fully integrated in the ABAP language.
They allow you to access the database in a uniform way from your programs, regardless of the database
system being used. Open SQL statements are converted into database-specific Standard SQL
statements by the database interface.

(C) SAP AG BC400 5-17

 SAP AG 1999

Which columns? Which table(s)?

Where to?Where to?

Which lines?

SELECT <result> FROM <table>

INTO <destination>

WHERE <condition>

Specific
column

Multiple lines}
Single line

SELECT Overview

You use the Open SQL statement SELECT to read data from the database.

Underlying the SELECT statement is a complex logic that allows you to access many different types of
database table.

The statement contains a series of clauses, each of which has a different task:

The SELECT clause specifies

Whether the result of the selection is to be a single line or several lines.

Which fields should be included in the result.

Whether the result may contain two or more identical lines.

The INTO clause specifies the internal data object in the program into which you want to place the
selected data.

The FROM clause specifies the source of the data (database table or view).

The WHERE clause specifies conditions that selection results must fulfill. Thus, it actually
determines what lines are included in the results table.

For information about other clauses, refer to the keyword documentation in the ABAP Editor for the
SELECT statement.

(C) SAP AG BC400 5-18

(C) SAP AG BC400 5-19

 SAP AG 1999

Reading a Single Record

Database
table
SCARR

ABAP processing block

ABAP runtime system

ABAP program

Data objects pa_car

SELECT SINGLE *
 FROM scarr
 INTO wa_scarr
 WHERE carrid = pa_car.
IF sy-subrc = 0.
 ...

SINGLE

Database
interface

scarrscarr

wa_scarrwa_scarr

INTO

WHERE

The SELECT SINGLE * statement allows you to read a single record from a database table. To ensure
that the entry you read is unique, all the key fields must be filled by the WHERE clause. The * informs
the database interface it should read all columns in that line of the database table. If you only want to
read certain columns, you can insert a field list instead.

The name of a structure to which you want the database interface to copy a data record is inserted after
the INTO clause. The structure should have a structure identical to the columns of the database table
being read and be left-justified.

If you use the CORRESPONDING FIELDS OF addition in the INTO clause, you can fill the target work
area component by component. The system only fills those components that have identical names to
columns in the database table. If you do not use this addition, the system fills the work area from the left-
hand end without any regard for its structure.

If the system finds a table entry matching your conditions, SY-SUBRC has the value 0.

The SINGLE addition tells the database that only one line needs to be read. The database can then
terminate the search as soon as it has found that line. Therefore, SELECT SINGLE produces better
performance for single-record access than a SELECT loop if you supply values for all key fields.

(C) SAP AG BC400 5-20

 SAP AG 1999

Reading Several Records Using a SELECT Loop

Database
table

SFLIGHT

ABAP processing block

ABAP runtime system

ABAP programData objects
pa_car

wawa_sbc400focc_sbc400focc

Datenbank-
Schnittstelle

SELECT carrid connid fldate
 seatsocc seatsmax
 FROM sflight
 INTO wa_sbc400focc
 WHERE carrid = pa_car.

ENDSELECT.
IF sy-subrc = 0.
 ...

ENDSELECTENDSELECT

SELECTSELECT

Statements for every record read

If you do not use the SINGLE addition with the SELECT statement, the system reads multiple records
from the database. The field list determines the columns whose data is to be read from the database.

You should restrict the number of lines to be read by using a WHERE clause using either the database
table's key fields or a secondary index. For more information on key fields and secondary indexes, see
the ABAP Dictionary. For example, double-clicking the database table included in the FROM clause will
take you directly to the Dictionary.

The WHERE clause specifies only the fields that are to be read. The name of the database table you
want to access is specified in the FROM clause. (Example of a correct statement: SELECT ... FROM
spfli WHERE carrid = ... , Example of an incorrect statement: SELECT ...FROM spfli WHERE spfli-
carrid = ...)

Multiple logical conditions can be added to the WHERE clause using AND or OR.

The database delivers data to the database interface in packets. The ABAP runtime system copies the
data records to the target area line by line using a loop. It also provides for the sequential processing of
all of the statements between SELECT and ENDSELECT.

After the ENDSELECT statement, you can query the return value for the SELECT loop. sy-subrc = 0 if
the system was able to select at least one entry. After the SELECT statement is executed in each loop
pass, the system field sy-dbcnt contains the number of lines read.

(C) SAP AG BC400 5-21

 SAP AG 1999

Reading Several Records Using an Array Fetch

Database
table

SFLIGHT

ABAP processing block

ABAP runtime system

Data objects
pa_car

itab_itab_foccfocc

Database
interface

SELECT carrid connid fldate
 seatsmax seatsocc
 FROM sflight
 INTO TABLE itab_focc
 WHERE carrid = pa_car.

IF sy-subrc = 0.
 ...

TABLETABLE

ABAP program

The addition INTO TABLE <itab> causes the ABAP runtime system to copy the contents of the
database interface directly to the internal table itab. This is known as an array fetch.

Since an array fetch is not logically a loop, you do not use an ENDSELECT statement.

If you want add lines to the end of an internal table already filled (rather than over-writing it) use the
APPENDING TABLE <itab> addition.

SY-SUBRC = 0, provided the system was able to read at least one table entry.

For further information about array fetch and internal tables, refer to the Internal Tables unit in this
course.

(C) SAP AG BC400 5-22

 SAP AG 1999

ABAP-Programm

DATA wa_sbc400focc TYPE sbc400focc.

SELECT SINGLE carrid connid fldate seatsmax seatsocc
 FROM sflight
 INTO wa_sbc400focc
 WHERE carrid = pa_car
 AND connid = pa_con
 AND fldate = pa_date.

The Field List and Appropriate Target Structure: The INTO
Clause

Same type as
column read

INTOINTO wa wa_sbc400focc_sbc400focc

carrid connid fldate seatsmax seatsocc

For each column required from a database table, the program must contain a data object with a suitable
type . For program maintenance reasons, you must use the corresponding Dictionary objects to assign
types to the data objects. The INTO clause specifies the data object into which you want to place the
data from the database table. There are two different ways to do this:

Flat structure: You define a structure in your program that has the fields in the same sequence as the
field list in the SELECT clause. Then you enter the structure name in the INTO clause. The contents
are copied by position. The system disregards the structure's field names.

Single data objects: You enter a set of data objects in the INTO clause. Example:
DATA: gd_carrid TYPE sflight-carrid,
 gd_connid TYPE sflight-connid,
 gd_fldate TYPE sflight-fldate,
 gd_seatsmax TYPE sflight-seatsmax,
 gd_seatsocc TYPE sflight-seatsocc.
START-OF-SELECTION.
SELECT carrid connid fldate seatsmax seatsocc
 FROM sflight
INTO (gd_carrid, gd_connid, gd_fldate, gd_seatsmax, gd_seatsocc)
 WHERE ...

(C) SAP AG BC400 5-23

 SAP AG 1999

Target Structures with Identically-Named Fields for
All Columns Specified

ABAP program

Same name as
column read

DATA wa_sdyn_conn TYPE sdyn_conn.

SELECT SINGLE carrid connid deptime
 FROM spfli
 INTO CORRESPONDING FIELDS OF wa_sdyn_conn
 WHERE carrid = pa_car
 AND connid = pa_con.

mandt carrid connid ... deptime

mandt carrid connid ... deptime

INTO CORRESPONDING FIELDS OF wa_sdyn_conn

carrid connid deptime

If you use the INTO CORRESPONDING FIELDS clause, the data is placed in the structure fields that
have the same name.

Advantages of this construction:

The structure does not have to be structured in the same way as the field list

This construction is easy to maintain, since extending the field list does not require other changes to
be made to the program, as long as there is a field in the structure that has the same name and type.

Disadvantages of this construction:

INTO CORRESPONDING FIELDS is more runtime-intensive than INTO.

If you want to place data into internal table columns of the same name using an array fetch, use INTO
CORRESPONDING FIELDS OF TABLE <itab>.

(C) SAP AG BC400 5-24

 SAP AG 1999

Authorization Checks

Information on database tables in R/3Information on database tables in R/3

Reading database tablesReading database tables

Authorization checksAuthorization checks

Outlook: Reading multiple database tablesOutlook: Reading multiple database tables

(C) SAP AG BC400 5-25

 SAP AG 1999

Authorization Checks in ABAP Programs

AUTHORITY
CHECK

Yes

No

SELECT

User Master
Records

BC400-00

Profile1

Profile2

Profile S_CARRID

Profile4

Authorization for
authorization
object S_CARRID

Authorization for
authorization
object S_CARRID

Authorization for
authorization
Object S_TCODE

SY-SUBRC
= 0
?

Selection
Screen

Note

You should carry out an authorization check before accessing the database. The AUTHORITY-CHECK
statement first checks whether the user has the authorization containing all the required values. You
then read the code value in the system field SY-SUBRC. If this value is 0, the user has the required
authorization and the program can continue. If the value is not 0, the user does not possess the required
authorization and the system outputs an appropriate message.

Later in this course, you will learn how to make fields on the selection screen ready for input again if you
perform the authorization check right after the selection screen, and how to output a message if the user
does not have the required authorization.

(C) SAP AG BC400 5-26

 SAP AG 1999

Authorization Objects and Authorizations

'Display' Authorization
for Object S_CARRID

CARRID: *

ACTVT: Display

'Change' Authorization
for Object S_CARRID

CARRID: LH

ACTVT: Change

Object: S_CARRID

CARRID (Airline Carrier)

ACTVT (Activity)

Activities:
 Create
 Change
 Display

= 01
= 02
= 03

All data in the SAP system must be protected from unauthorized access by users who do not explicitly
have permission to access it.

The system administrator assigns user authorization when maintaining user master data. During this
process, you should determine exactly which data users are allowed to access and what kind of
access should be allowed. For example, you might want to allow users to display data for all airline
carriers, but only allow them to change data for certain selected ones. In this case, the system must look
for a combination of the fields 'activity' and 'airline carrier' each time it performs an authorization check.
Both fields must be filled with values during authorization creation as well (in this example, activity
'Change' and airline carrier 'LH' or activity 'Display' and airline carrier '*'). This is carried out by an
authorization object composed of the fields 'Activity' and 'Airline carrier' that has to be addressed both
during the authorization assignment process and whenever your program performs an authorization
check.

Authorization objects simply define the combination of fields that need to be addressed simultaneously
and serve as templates for both authorizations and authorization checks. They are organized into object
classes in order to make it easier to find and administer them; one object class or several may exist in
each application. You call the authorization object maintenance transaction from the 'Development'
menu in the ABAP Workbench. A complete list of all development objects, sorted according to class and
including their corresponding fields and documentation, is part of this transaction.

(C) SAP AG BC400 5-27

 SAP AG 1999

AUTHORITY-CHECK

Send back
results

01

02

03

AA AZ DL LH UA

xxxx x

ACTVT

CARRID

Set of all
authorizations
for object S_CARRIDAUTHORITY-CHECK

 OBJECT 'S_CARRID'
 ID 'CARRID' FIELD 'LH'
 ID 'ACTVT' FIELD '02'.

Check

xIF sy-subrc ne 0.
* Reaktion auf fehlende
* Berechtigung kontextabhängig

ENDIF.

When making authorization checks in programs, you specify the object and values the user needs in an
authorization to be able to access the object. You do not have to specify the name of the authorization.

The above example checks whether or not the user is authorized for the object S_CARRID, which has
the value 'LH' in the field CARRID (airline) and the value '02' for 'Change' in the field ACTVT (activity).
The abbreviations for the activities are documented in the tables TACT and TACTZ and also in the
appropriate objects.

Important: The Authority-Check statement performs the authority check and returns an appropriate
return code value. When reading this return code, you can specify yourself the consequences of a
missing authorization (for example, program terminates or skips some input lines).

(C) SAP AG BC400 5-28

 SAP AG 1999

 AUTHORITY-CHECK OBJECT 'S_CARRID'

 ID CARRID FIELD '__________'
 ID ACTVT FIELD '__________'.

 IF SY-SUBRC NE 0.

 ENDIF.

Inserting AUTHORITY-CHECK in Programs

...

...
AUTHORITY-CHECK
...
...

Insert statement

S_CARRID

Pattern

You insert
variables

and
parameters

System
generates
ABAP code

IF SY-SUBRC NE 0.

Process
return code

You must specify all fields of the object in an AUTHORITY-CHECK. Otherwise you receive a return
code not equal to zero. If you do not want to carry out a check for a particular field, enter DUMMY after
the field name.
Example: When calling a transaction to change flight data, you should check whether or not the user is
authorized to change the entries for a particular airline carrier: AUTHORITY-CHECK
OBJECT 'S_CARRID' ID 'ACTVT' FIELD '02'

ID 'CARRID' DUMMY.

The most important return codes for AUTHORITY-CHECK are:

­ 0: The user has an authorization containing the required values.

­ 4: The user does not have the required authorization.

­ 8: The check could not successfully be carried out since not all fields of the object were specified.

For a complete list of return codes, refer to the keyword documentation for the AUTHORITY-CHECK
statement.

You can only specify a single field after the FIELD addition, not a selection table. There are function
modules which carry out the AUTHORITY-CHECK for all values in the selection table.

(C) SAP AG BC400 5-29

 SAP AG 1999

Outlook: Reading Multiple Database Tables

Information on database tables in R/3Information on database tables in R/3

Reading database tablesReading database tables

Authorization checksAuthorization checks

Outlook: Reading multiple database tablesOutlook: Reading multiple database tables

(C) SAP AG BC400 5-30

 SAP AG 1999

Reading Multiple Database Tables

Mandt Carrid Connid Cityfrom...
SPFLI

... Mandt Carrid Carrname ...
SCARR

...

...

...

Prerequisite for linking A common line can be
created, provided:

spfli-mandt = scarr-mandt
spfli-carrid = scarr-carrid

Prerequisite for linkingPrerequisite for linking

Which columns are to be read, and from which database table?Which columnsWhich columns

Which database tables should be taken into account?Which database tablesWhich database tables spfli und scarr

spfli-mandt
spfli-carrid

spfli-connid.
spfli-cityfrom
scarr-carrname

You can access several database tables with one database query, provided they are logically related.
To do so, you must enter the following information:

Which database tables should be accessed?

How should the link condition appear? In this condition, columns from the database tables are linked.
A record is placed in a common line in the results table if all the field values of the linked columns
match.

Which columns are to be read? If a column appears in more than one database table, you must
specify the table from which this column is to be read.

(C) SAP AG BC400 5-31

 SAP AG 1999

ABAP program

ABAP Join and Dictionary Views

Link in the ABAP program using ABAP Join

SELECT ...
 FROM spfli INNER JOIN scarr
 ON spfli~carrid = scarr~carrid
 AND spfli~connid = scarr~connid
 WHERE ...

Static linkStatic link

ABAP Dictionary: Views

Dynamic linkDynamic link

SELECTSELECT
INNER JOININNER JOINFROMFROM

You can define the link conditions either statically or dynamically.

You can define the static link in the ABAP Dictionary. It is known as a view. There are several kinds
of views: For detailed information, refer to Basis->ABAP Workbench->BC ABAP Dictionary->Views.

You can implement a dynamic link using ABAP statements. It is known as an ABAP join. An
appropriate database query to the database used is generated in the database interface at runtime.
For more information, see the keyword documentation for the SELECT statement (FROM clause).

(C) SAP AG BC400 5-32

 SAP AG 1999

You are now able to:

Reading Database Tables: Unit Summary

Extract information about database tables from
the ABAP Dictionary

List various ways of finding database tables

Program read access to specific columns and
lines within a particular database table

Implement authorization checks

List the different kinds of read access possibilities
for database tables

(C) SAP AG BC400 5-33

Database Dialogs 1: Exercises

Unit: Reading Database Tables

Topic: SELECT Loops

At the conclusion of these exercises, you will be able to:

Use the ABAP construction SELECT...ENDSELECT to read data from a
database table into your program.

Create a program that (in this exercise) displays selected information on all
flights, in list form. In the program, you should also calculate the percentage
occupancy of each flight and display this as well.

You should extend the program so that, when the user chooses an airline on a
selection screen, only the flight data for this airline is read from the database
and displayed in a list.
The flight data is contained in the database table SFLIGHT.

Program: ZBC400_##_SELECT_SFLIGHT

Model solution: SAPBC400DDS_SELECT_SFLIGHT

1-1 Create the program ZBC400_##_SELECT_SFLIGHT without a TOP include. Assign your
program to development class ZBC400_## and the change request for your project
“BC400…” (## is your group number).

1-2 Create a structure with reference to the structure SBC400FOCC, which is defined in the ABAP
Dictionary. To find out the components of the structure, look at its definition in the ABAP
Dictionary.

1-3 To find out the fields in the database table SFLIGHT, look at its definition in the ABAP
Dictionary. Read all the flights from table SFLIGHT. Use a SELECT … ENDSELECT block.
Place the data line by line into the structure that you created in exercise 1-2. Make sure that
you only read fields from the database table for which there is also a target field in the
structure.

1-4 Within the SELECT loop, calculate the percentage occupancy using the corresponding field of
the work area. Assign the result to the PERCENTAGE field in your structure.

1-5 Create a list displaying the information you read from the database and the percentage
occupancy of each flight.

(C) SAP AG BC400 5-34

1-6 Adapt the program so that the system reads data for one airline only from the database. The
user should be able to input this airline on a selection screen.

1-6-1 Program a selection screen with a field for the airline. Use the PARAMETERS
statement. Bear in mind that the field should have the same type as the column in
the database table SFLIGHT, which contains the airline ID.
Note: You can use the short text of the data element as a descriptive text for the
input field on the selection screen. Activate your program. Navigate from the Editor
to the tool for maintaining selection texts, by choosing Goto Text elements

Selection texts. Make sure you are in Change mode and check the Dictionary
reference field. Save your changes and test the program.

1-6-2 Limit the choice of lines using the CARRID field in a WHERE clause.

1-6-3 Why is the program with the WHERE clause less runtime-intensive than the
program you extended in parts 1-1 to 1-5 of this exercise?

1-6-4 Compare the WHERE clause with the key fields of the database table SFLIGHT.
What do you notice?

(C) SAP AG BC400 5-35

Unit: Reading from the Database

Topic: SELECT Loops and Filling Internal Tables

At the conclusion of these exercises, you will be able to:

Use the ABAP construction SELECT … ENDSELECT to read data from a
database table into your program and fill an internal table.

The task is the same as in exercise 1. Display the data on the list sorted by the
percentage occupancy. To do this, you must fill an internal table with the
required data and then sort it by the occupancy field.

Program: ZBC400_##_SELECT_SFLIGHT_ITAB

Model solution: SAPBC400DDS_SELECT_SFLIGHT_TAB

2-1 Copy your program ZBC400_##_SELECT_SFLIGHT or the model solution
SAPBC400DDS_SELECT_SFLIGHT and rename it ZBC400_##_SELECT_SFLIGHT_ITAB.
Assign your program to development class ZBC400_## and the change request for your
project “BC400…” (## is your group number).

2-2 In addition to your structure that refers to the ABAP Dictionary type SBC400FOCC, create an
internal table with the line type SBC400FOCC. Use the where-used list for the ABAP
Dictionary line type SBC400FOCC to find a suitable table type in the Dictionary.

2-3 Fill the internal table line by line by using an APPEND statement in the SELECT loop.

2-4 Sort the internal table according to occupancy.

2-5 Display the sorted contents of the internal table in a list. Use a LOOP … ENDLOOP structure
to do this.

(C) SAP AG BC400 5-36

OPTIONAL:

Model solution: SAPBC400DDS_SELECT_ARRAY_FETCH

2-6 Copy the program ZBC400_##_SELECT_SFLIGHT_ITAB to program
ZBC400_##_ARRAY_FETCH_SFLIGHT.

2-7 Replace the SELECT loop with an array fetch and fill the internal table with the relevant data
from the database table SFLIGHT. The column for the percentage occupancy only contains
initial values.

2-8 Calculate the percentage occupancy for each line of the internal table using a loop, and
change the line using a MODIFY statement. To find out how to use MODIFY within a loop,
refer to the keyword documentation.

(C) SAP AG BC400 5-37

Unit: Reading from the Database

Topic: Authorization checks

At the conclusion of these exercises, you will be able to:

Perform authorization checks

Change your programs ZBC400_##_SELECT_SFLIGHT and
ZBC400_##_SELECT_SFLIGHT_ITAB so that the data can only be read from
the database and displayed in the list if the user has read authorization for the
required airline.

Program: ZBC400_##_AUTHORITY_CHECK

Model solutions: SAPBC400DDS_AUTHORITY_CHECK,

 SAPBC400DDS_AUTHORITY_CHECK_2 and

 SAPBC400DDS_AUTHORITY_CHECK_3

3-1 Change your programs ZBC400_##_SELECT_SFLIGHT and
ZBC400_##_SELECT_SFLIGHT_ITAB as follows:

 Add an authorization check that checks against the object S_CARRID. Make sure that the
database is not accessed if the user does not have authorization for the airline that he or she
entered on the selection screen. Instead, ensure that the program displays an appropriate
error message.

3-2 Restart your program. On the selection screen, try entering AA for the airline, then UA.

(C) SAP AG BC400 5-38

 Database Dialogs 1: Solutions

Unit: Reading from the Database

Topic: SELECT Loops

1-2 The structure type SBC400FOCC (maintained in the ABAP Dictionary) contains the following
fields: CARRID (type S_CARR_ID), CONNID (type S_CONN_ID), FLDATE (type S_DATE)
SEATSMAX (type S_SEATSMAX), SEATSOCC (type S_SEATSOCC), and PERCENTAGE
(type S_FLGHTOCC).

1-3 The CARRID, CONNID, FLDATE, SEATSMAX and SEATSOCC fields, in the database table
SFLIGHT have the same types as their identically-named counterparts in the structure type
SBC400FOCC. The database table SFLIGHT does not contain a percentage occupancy field.

Model solution: Program SAPBC400DDS_SELECT_SFLIGHT

&--

*& Report SAPBC400DDS_SELECT_SFLIGHT *

&--

REPORT sapbc400dds_select_sflight .

DATA: wa_flight TYPE sbc400focc.

PARAMETERS: pa_car TYPE s_carr_id.

START-OF-SELECTION.

* Select all datasets from database table SFLIGHT corresponding
* to carrier PA_CAR

 SELECT carrid connid fldate seatsmax seatsocc FROM sflight

 INTO CORRESPONDING FIELDS OF wa_flight

 WHERE carrid = pa_car.

* Calculate occupation of each flight

 wa_flight-percentage =

 100 * wa_flight-seatsocc / wa_flight-seatsmax.

* Create List

 WRITE: / wa_flight-carrid,

 wa_flight-connid,

 wa_flight-fldate,

 wa_flight-seatsocc,

(C) SAP AG BC400 5-39

 wa_flight-seatsmax,

 wa_flight-percentage,'%'.

 ENDSELECT.

1-6-1 There are two different ways to do this:
PARAMETERS pa_car TYPE s_carr_id. or
PARAMETERS pa_car TYPE sflight-carrid.

1-6-2 SELECT FROM SFLIGHT WHERE CARRID = pa_car.

1-6-3 Firstly, the quantity of data is smaller, since the system does not have to transport
all the records from the database to the application server. Secondly, the records
can be chosen using the primary key. (see 1-6-4).

1-6-4 The MANDT field of the CLNT Dictionary type, which contains the client is flagged
as a key field. The field does not appear in the WHERE condition, even though all
key fields should usually be included in this clause.
Reason: When the runtime system accesses a client-specific table, it assumes
that data should only be taken into account if it belongs to the client in which the
user is logged. Thus by default, the database interface automatically assumes the
WHERE condition to be WHERE mandt = sy-mandt. In the above example, this
allows the database to use the primary index to select lines from the table. If you
specified only the flight number instead of the airline ID, then the CARRID field
would be missing from the key sequence. This would mean that the database
could not use the primary index. This usually leads to longer runtimes. You can
measure the runtimes of the different programs you have created by choosing
Execute Runtime analysis. In the next screen, choose Execute, followed by
Evaluate. The system displays a screen with three columns, which shows clearly
what proportion of the program runtime is taken up by ABAP processing, database
accesses, and by general load on the R/3 System.

(C) SAP AG BC400 5-40

Unit: Reading from the Database

Topic: SELECT Loops and Filling Internal Tables

Model solution: Program SAPBC400DDS_SELECT_SFLIGHT_TAB

&--

*& Report SAPBC400DDS_SELECT_SFLIGHT_TAB *

*& *

&--

REPORT sapbc400dds_select_sflight_tab .

DATA: wa_flight TYPE sbc400focc,

 it_flight TYPE sbc400_t_sbc400focc.

PARAMETERS: pa_car TYPE s_carr_id.

START-OF-SELECTION.

* Select all datasets from database table SFLIGHT corresponding
* to carrier PA_CAR

 SELECT carrid connid fldate seatsmax seatsocc FROM sflight

 INTO CORRESPONDING FIELDS OF wa_flight

 WHERE carrid = pa_car.

* Calculate occupation of each flight

 wa_flight-percentage =

 100 * wa_flight-seatsocc / wa_flight-seatsmax.

* Build up internal table

* Insert single line into internal table

 APPEND wa_flight TO it_flight.

ENDSELECT.

* sort internal table

SORT it_flight BY percentage.

(C) SAP AG BC400 5-41

* Create List from sorted internal table

LOOP AT it_flight into wa_flight.

 WRITE: / wa_flight-carrid,

 wa_flight-connid,

 wa_flight-fldate,

 wa_flight-seatsocc,

 wa_flight-seatsmax,

 wa_flight-percentage,'%'.

ENDLOOP.

(C) SAP AG BC400 5-42

Unit: Reading from the Database

Topic: Array Fetch (optional)

OPTIONAL:

Model solution: Program SAPBC400DDS_SELECT_ARRAY_FETCH

&--

*& Report SAPBC400DDS_SELECT_ARRAY_FETCH *

*& *

&--

REPORT sapbc400dds_select_array_fetch .

DATA: wa_flight TYPE sbc400focc,

 it_flight TYPE sbc400_t_sbc400focc.

PARAMETERS: pa_car TYPE s_carr_id.

START-OF-SELECTION.

*--

* Optional:

* Array Fetch to fill the first 5 comumns of internal table,

*--

 SELECT carrid connid fldate seatsmax seatsocc FROM sflight

 INTO CORRESPONDING FIELDS OF TABLE it_flight

 WHERE carrid = pa_car.

* At least one dataset is selected

 IF sy-subrc = 0.

*Calculate percentage in a loop and modify internal table to fill

* 6th column of internal table

 LOOP AT it_flight INTO wa_flight.

 wa_flight-percentage =

 100 * wa_flight-seatsocc / wa_flight-seatsmax.

 MODIFY it_flight FROM wa_flight

(C) SAP AG BC400 5-43

 INDEX sy-tabix

 TRANSPORTING percentage.

 ENDLOOP.

 SORT it_flight BY percentage.

* Loop over internal table to write content of datasets on list

 LOOP AT it_flight INTO wa_flight.

 WRITE: / wa_flight-carrid,

 wa_flight-connid,

 wa_flight-fldate,

 wa_flight-seatsocc,

 wa_flight-seatsmax,

 wa_flight-percentage,'%'.

 ENDLOOP.

 ENDIF.

(C) SAP AG BC400 5-44

Unit: Database Dialogs 1

Topic: Authorization Check

Model solution:

Programs SAPBC400DDS_AUTHORITY_CHECK,

 SAPBC400DDS_AUTHORITY_CHECK_2 and

 SAPBC400DDS_AUTHORITY_CHECK_3

&--

*& Report SAPBC400DDS_AUTHORITY_CHECK *

*& *

&--

REPORT sapbc400dds_authority_check_#.

CONSTANTS actvt_display TYPE activ_auth value '03'.

DATA: wa_flight TYPE sbc400focc,

 ...

PARAMETERS: pa_car TYPE s_carr_id.

START-OF-SELECTION.

* Authority-Check: Is user authorized to read data for carrier

* PA_CAR?

 AUTHORITY-CHECK OBJECT 'S_CARRID'

 ID 'CARRID' FIELD pa_car

 ID 'ACTVT' FIELD actvt_display.

 CASE sy-subrc.

* User is authorized

 WHEN 0.

* SELECT loop or Array Fetch ...

* User is not authorized or other error of authority-check

 WHEN OTHERS.

(C) SAP AG BC400 5-45

* The message in this program is a simplified version only.
* Error messages for selection screens will be explained in
* detail in unit 'User Dialog Selection Screen'.

 MESSAGE ID 'BC400' TYPE 'I' NUMBER '045' WITH pa_car.

 ENDCASE.

(C) SAP AG BC400 6-1

 SAP AG 1999

ABAP event blocks

Subroutines

Contents:

Internal Program Modularization

(C) SAP AG BC400 6-2

 SAP AG 1999

At the conclusion of this unit, you will be able to:

Internal Program Modularization: Unit Objectives

Explain how a program containing event blocks
functions at runtime using INITIALIZATION and
START-OF-SELECTION as examples

Encapsulate functions in a simple subroutine with
an interface

(C) SAP AG BC400 6-3

 SAP AG 1999

Possible Elements in an ABAP Program

Event
block

 Subroutine

interface

Event
block

Screen

Process
Before
Output

Process
After
Input

Local type and field
definitions

Selection screen

Module

Module

Event
block

Event
block

An ABAP program is a collection of processing blocks. A processing block is a passive section of
program code that is processed sequentially when called.

Processing blocks are the smallest units in ABAP. They cannot be split, which also means that they
cannot be nested.

There are various kinds of ABAP processing blocks:

Event blocks are ABAP processing blocks that are called by the runtime system. Event blocks can
logically belong to the executable program, to the selection screen, to the list or to the screen. This
unit deals with event blocks that belong to the executable program. You can find information on event
blocks that belong to the selection screen, the list or the screen in the units on user dialogs.

Subroutine processing is triggered by an ABAP statement. Parameters can be passed to subroutines
using an interface and subroutines can contain local variables.

Modules are special ABAP processing blocks for processing screens. Therefore modules are dealt
with in the User Dialogs: Screens unit.

Memory areas are made available for all a program's global data objects when that program is started.
Declarative ABAP statements are therefore not components of ABAP processing blocks but are
collected from the overall source code using a search when the program is generated. The exceptions to
this are local data objects in subroutines.

(C) SAP AG BC400 6-4

 SAP AG 1999

Event Blocks

Event BlocksEvent Blocks

SubroutinesSubroutines

(C) SAP AG BC400 6-5

 SAP AG 1999

Example: ABAP Program with Event Blocks and a
Selection Screen

Local type and field definitions

Selection screen
generated by
the system

INITIALIZATION.

pa_date = pa_date - 7.

START-OF-SELECTION.

WRITE pa_date.

PARAMETERS pa_date LIKE sy-datum
 DEFAULT sy-datum.

Event block

Event block

In all of the programs that we have seen so far in this course, there has only been one processing block
in addition to the data declaration. In this case, there is no need to declare the processing block
explicitly. However, in more complex programs, we will require several different processing blocks and
will need to specify the type and name.

The program shown above is an example of event blocks. It contains an input value for a date on a
selection screen. The default value is the date from the week before. This cannot be realized by a
default value from the PARAMETERS statement, since a calculation is required. The DEFAULT addition
to the PARAMETERS statement ensures that the data object is filled with the default value at the start of
the program. Default values can be literals or fields from the sy structure. The runtime system fills the
sy-datum field with the current date at the start of the program. You can use the INITIALIZATION event
block to change variables at runtime but before the standard selection screen is sent. START-OF-
SELECTION is an event block for creating lists.

All global declarations are recognized as such by the system by the declarative ABAP key words that
they use, and these form a logical processing block (regardless of where they are placed in the program
code). When you generate the program, the system searches the entire program code for declarative
statements. However, for the sake of clarity, you should place all declarative statements together at the
beginning of your programs. The PARAMETERS statement is one of the declarative language elements.
When the program is generated, a selection screen is also generated along with the information on the
elementary data object of the type specified.

(C) SAP AG BC400 6-6

 SAP AG 1999

Sample Program Runtime Behavior

ABAP runtime system

ABAP program

INITIALIZATION.
pa_date = pa_date - 7.

START-OF-SELECTION.

WRITE pa_date.

Program
start

Time

List
buffer
for
basic list

pa_date

20000101

19991225

??

The easiest events to understand are those for an executable program (type 1).

The ABAP runtime system calls event blocks in a sequence designed for generating and processing
lists:

First, the INITIALIZATION event block is called

Then a selection screen is sent to the presentation server

After the user leaves the selection screen, START-OF-SELECTION is called

If the START-OF-SELECTION event block contains the ABAP statements WRITE, SKIP or ULINE,
a list buffer is filled.

The list buffer is subsequently sent to the presentation server as a list.

(C) SAP AG BC400 6-7

 SAP AG 1999

Event Blocks in Executable Programs

ABAP runtime system

ABAP program

INITIALIZATION.

START-OF-SELECTION.

Time

Introduced with an event
keyword

Delimited by the start of
the next processing
block

Different event blocks
have different tasks

The sequence in which
the event blocks are
processed is determined
by the runtime system

Default event block:
START-OF-SELECTION

Event blocks are processing blocks that are called by the ABAP runtime system. The sequence if which
they are processed is determined by the runtime system.

In executable programs, there are different event blocks for the various tasks involved in creating lists.

(C) SAP AG BC400 6-8

 SAP AG 1999

Syntax: Event Blocks

REPORT ...

PARAMETERS: pa_date LIKE sy-datum DEFAULT sy-datum.

INITIALIZATION. " Default values for selection screen

pa_date = pa_date - 7.

START-OF-SELECTION. " Start of data processing

 WRITE pa_date.

The sequence of event blocks in the
source code has no effect on the sequence in
which they are called by the ABAP runtime system.
call

INITIALIZATION.INITIALIZATION.

START-OF-SELECTION.START-OF-SELECTION.

In an ABAP program, an event block is introduced with an event key word. It ends when the next
processing block starts. There is no ABAP statement that explicitly concludes an event block.

Event blocks are called by the ABAP runtime system. The order in which you arrange the event blocks in
your program is irrelevant - the system always calls them in a particular order.

START-OF-SELECTION is the first event for processing data and generating a list. It is called by the
ABAP runtime system as soon as you have left the standard selection screen.

INITIALIZATION is an event that you can use if you need to set a large number of default values. This
event block allows you to set default values that can only be determined at runtime. In the above
example, the date 'A week ago' is calculated and placed in data object pa_date. The ABAP runtime
system then sends a selection screen to the presentation server containing the calculated value as a
default. The value can, of course, still be changed.

(C) SAP AG BC400 6-9

 SAP AG 1999

Subroutines

EventsEvents

SubroutinesSubroutines

(C) SAP AG BC400 6-10

 SAP AG 1999

Example: Flow Chart

Fill internal table itab1 with flight data
for airline1

Display content of itab1 in
a list

Display ranked list for airline1

Fill internal table itab2 with flight data
for airline2

Sort itab2 by percentage occupied

Sort itab1 by percentage occupied

Source code
almost

identical

Display ranked list for airline2

You will be creating a ranked list of data for two different airlines. To make sure the program is flexible,
keep the data for each airline in an internal table. You should create a three-part list.

The source code for generating the list from the content of the internal tables is almost identical in each
case. This means that, if the program is extended - for example, to add another column and display the
contents in a list - you must change the source text in three different places.

(C) SAP AG BC400 6-11

 SAP AG 1999

Concept: Encapsulating Output in a Subroutine

Fill internal table itab1 with flight data
for LH

Lines 1-imax from
internal table

it_spfli displayed

imax: Number of
 lines to be displayed

it_flightocc:
 Internal table of
 line type sbc400focc

All lines itab1

n lines itab1

m lines itab2

Sort ranked list by percentage

Fill internal table itab2 with flight data
for airline AA and sort by percentage

The bigger the program, the more important it is to modularize it. The main advantages of this approach
are that you can:

Reuse the program: If identical (or very similar) source code sections occur several times in a
program, it would be nice to be able to implement them just once, and then branch to this source text
from different parts of the program. Generically speaking, this is often possible using subroutines. That
is, you implement a solution so that, when this subroutine is called, specific variables are filled with
values using interface parameters. These values can come from different program variables,
depending on the call made.

Extend the program: For example, if you have modularized the display of an internal table (see
graphic), you can extend the program with very little effort to display another internal table with an
identical line type, but for a different airline. You could also extend the program to allow the user to
interact with it and thus change the display.

Read and maintain the program more easily: It is easier to find your way round a program, if it has
been encapsulated in logical sections. Each subroutine can then be seen as a black box, until the
programmer has to implement it in detail. Ideally, the purpose of the subroutine should be clear from
its name, interface, and from comments.

(C) SAP AG BC400 6-12

 SAP AG 1999

Data objects

Calling Subroutines

Main program

Call the subroutine

Subroutine

Interface
parameters

Source code

Source code

Copy the actual parameters
to the formal parameters1

Analyze the Sample
Program Source Code

2

First we will focus on a subroutine that only receives data when called.

When the subroutine is called, a temporary runtime object is generated for the subroutine. For the
runtime of the subroutine, memory is made available for the interface parameters and local data objects.
All import parameters of the subroutine must be assigned to type-compatible data objects of the calling
program.

When the subroutine is called, the values are copied to the interface parameters.

The subroutine source code is then processed sequentially.

After the subroutine has been processed, the system continues to execute the source code of the
calling program, immediately after the call.

(C) SAP AG BC400 6-13

 SAP AG 1999

Syntax Example: Calling the Subroutine

CONSTANTS: c_ten TYPE i VALUE 10,
 c_seven TYPE i VALUE 7,
 c_thousand TYPE i VALUE 1000.
DATA: itab_flightocc TYPE sbc400_t_sbc400focc.

SELECT carrid connid fldate seatsmax seatsocc
 FROM sflight INTO TABLE itab_flightocc.
* ... calculate percentage and change itab
...

PERFORM output USING c_thousand itab_spfli.

SORT itab_sbc400focc BY percentage.

PERFORM output USING c_ten itab_spfli.

FORM output USING ...

...
ENDFORM.

Call identically-named
subroutine

Parameters assigned in
order

output

output

Subroutine processing is triggered by the PERFORM statement.
PERFORM <name of subroutine>
 USING <data object 1> <data object 2><...><data object n>.
The name of the subroutine must be identical to the name in the PERFORM statement. The subroutine
must be defined in the program. The data objects are assigned to the interface parameters in strict
order.

The next slides discuss defining a subroutine.

(C) SAP AG BC400 6-14

 SAP AG 1999

Implementation: Generic Subroutine to Display the
First n Lines of an Internal Table

imax: Number of lines to be displayed (integer)

it_flightocc :
Internal standard table of line type
sbc400_t_sbc400focc

Interface parameters

Subroutine

LOOP AT it_flightocc INTO lwa_flightocc FROM 1 TO imax .
 WRITE: / lwa_flightocc-carrid,
 lwa_flightocc-connid,
 ...
ENDLOOP.

Local data objects:

lwa_sflightocc Typ: sbc400focc

Source code

it_flightocc

it_flightocc :

imax

imax

When you define a subroutine, you specify which interface parameters are to be offered. You enter a
name for each interface parameter and specify its type attributes.

You define the data objects using the ABAP statement DATA. The memory for these data objects is
made available as soon as the subroutine is called. At the end of the subroutine's runtime, the memory
is released again.

In the subroutine's source code, you can access the local data objects and interface parameters by
name, a technique with which you should already be familiar.

(C) SAP AG BC400 6-15

 SAP AG 1999

Syntax: Generic Subroutine to Display the First n
Lines of an Internal Table

Interface parameters

Local data objects

FORM write_list USING VALUE(imax) TYPE i
 VALUE(it_flightocc) TYPE sbc400_t_sbc400focc.

 DATA: lwa_flightocc TYPE spfli.

 LOOP AT it_flightocc INTO lwa_flightocc FROM 1 TO imax.
 WRITE: / lwa_flightocc-carrid,
 lwa_flightocc-connid,
 lwa_flightocc-fldate,
 lwa_flightocc-seatsocc,
 lwa_flightocc-seatsmax,
 lwa_flightocc-percentage.
 ENDLOOP.
ENDFORM " FILL_ITAB

USINGFORM

ENDFORM.

VALUE()
VALUE()

You define the subroutine by reserving a source code section for it at the end of the program, using the
FORM ... ENDFORM statements. FORM <name of subroutine> USING <parameter1><parameter2>.

<name of subroutine> specifies the name of the subroutine. The name must be a single word and
begin with a letter, not a digit.

After USING, you list all of the parameters that the subroutine only needs to read.<parameter> is
made up of the following:
VALUE(<parameter name>) TYPE <type>.

­ You use VALUE(...)to specify that the value of the data object assigned to the interface parameter
at runtime should be passed to the subroutine. (This is known as passing by value).

­ You can choose any name for the interface parameter <parameter name>. In the subroutine you
can then use this name to access the value passed from the calling program.

­ After the name of the parameter you specify the type attributes of the interface parameter.
In the PERFORM statement, if the assigned data object is not compatible with the type of the
interface parameter, the syntax check returns an error.

(C) SAP AG BC400 6-16

 SAP AG 1999

Generating a Call Using Drag&Drop

PERFORM fill_itab
 USING
 IV_CARRID
 CHANGING
 CT_FLIGHTOCC.

ZBC400_12_SUBROUTINE
 Fields
 Events
 Subroutines
 fill_itab
 write_itab

Drag&Drop

Program

ZBC400_12_SUBROUTINE

Replace interface parameters
with the variable names
of the calling program

REPORT ZBC400_12_SUBROUTINE.
DATA: itab_flight TYPE sbc400_t_sbc
PARAMETERS pa_carr TYPE s_carr_id.
START-OF-SELECTION.

You can use the context menu for a subroutine to generate a where-used list for it. The system displays
a list showing all the lines in the source code where the subroutine is called. You can double-click from
any line in this list to the relevant line in the source code.

You can call any available subroutine using:

Drag&Drop: In the tool area display the source code to which you want to add the subroutine call.
(Make sure you are in change mode). In the navigation area, display the program object list and
expand the Subroutines node. Now drag&drop the subroutine to the point where you want to call it.
Replace the name of each interface parameter with the name of the data object that is to be assigned
to each interface parameter.

Pattern statement in the Editor: In the tool area display the source code to which you want to add
the subroutine call. (Make sure you are in change mode). Place your cursor in the source code where
you want to insert the call. Choose the Pattern pushbutton and enter the name of the subroutine in the
appropriate field. If you want you can use the possible entries help, which contains all the subroutines
belonging to the program. Choose Continue to confirm your entries and replace the name of the
interface parameters with the appropriate data objects.

(C) SAP AG BC400 6-17

 SAP AG 1999

Subroutines in the Debugging Mode

Return

Execute

Single Step

Calling
program

The program will be executed one
step at a time. After PERFORM, the first line of
the subroutine will be displayed

The subroutine will be executed
as a whole. After PERFORM, the next line of
the calling program will be displayed

The subroutine will be executed until the
ENDFORM statement. The next line of the calling
program, after the PERFORM statement, will be
displayed

Subroutine

Display variables

itab_spfli

p_carrid

Display in Debugger
in the main program:
Local data object
or interface parameters
not in the subroutine

You can investigate subroutines in debugging mode as follows:

If you analyze the program step-by-step, each line of the subroutine is displayed in the order in which
it is executed.

If you choose the Execute function, immediately before a PERFORM statement, the system executes
the whole subroutine. The Debugger stops at the line immediately under the PERFORM statement.

If you choose the Return function inside a subroutine, this subroutine is executed until the ENDFORM
statement. The Debugger stops at the line immediately after PERFORM.

You can trace both the global and local variables of the subroutine in the field view. Since local data
objects only exist for as long as the subroutine is being processed, and are only visible within the
subroutine, local variables can only be displayed while the subroutine is running. If a variable is not
visible, the system indicates this by displaying a yellow lightning bolt beside the input field.

(C) SAP AG BC400 6-18

 SAP AG 1999

Data objects

Subroutines That Return Data

Main program

Subroutine

Interface parameters

Source code

Source code

USING

CHANGING

Read-only

 Copy the actual
parameters to the formal
parameters

1

Execute the source
code of the subroutine
2

Call the Subroutine

 Copy the CHANGING
parameters back to the
actual parameters

3

Generally, you also need to be able to change variables in subroutines. CHANGING interface
parameters are available for this purpose. The runtime behavior of a subroutine call will then be as
follows:

When the subroutine is called, a temporary runtime object is generated for the subroutine. For the
runtime of the subroutine, memory is made available for the interface parameters and local data objects.
All USING (read-only access) and all CHANGING parameters of the subroutine must be assigned to
type-compatible data objects of the calling program.

When the subroutine is called, the actual values are copied to the interface parameters.
(This applies to both USING and CHANGING parameters).

The subroutine source code is then processed sequentially.

After the subroutine has been processed, the values of all the CHANGING parameters are copied
back to the actual parameters and the system continues to execute the source code of the calling
program, immediately after the call.

(C) SAP AG BC400 6-19

 SAP AG 1999

Syntax Example: Subroutines with USING and
CHANGING Parameters

&--
*& Form FILL_ITAB
&--
* Filling internal table with records of sflight with
* carrid = p_carrid, calculate percentage

* -->iv_carrid carrier id
* <--ct_flightocc internal standard table with line type sbc400focc

FORM fill_itab USING value(iv_carrid) TYPE s_carr_id
 CHANGING value(ct_flightocc) TYPE sbc400_t_sbc400focc.

 ...

ENDFORM. " FILL_ITAB

USING
CHANGING

When you define a subroutine, you list all the USING parameters after the USING addition. You then
add the CHANGING addition, followed by all the CHANGING parameters. Enter the following for each
parameter: The VALUE addition (if necessary), parameter name, and type attributes.

FORM <name of subroutine>
 USING <u-parameter 1> <...><u-parameter n>
 CHANGING <c-parameter 1> <...> <c-parameter m>.
 ...
ENDFORM.

Note: When specifying whether a parameter is only copied to the interface parameter when the program
is called, or whether it is also copied back to the actual parameter after the subroutine has been
executed, the main factor is the assignment to USING or CHANGING in the subroutine interface
definition. You also specify the type attributes at this point.

When you call a subroutine with USING and CHANGING parameters, the actual parameters should be
listed appropriately after the USING and CHANGING additions.
PERFORM <name of subroutine>
 USING <actual parameter 1><...><actual parameter n>
 CHANGING <actual parameter n+1><...><actual parameter n+m>.
The assignment is always in strict order. For historical reasons, you can also omit the CHANGING
addition when calling the subroutine.

(C) SAP AG BC400 6-20

Literals and constants can only be assigned to USING parameters when the subroutine is called.

(C) SAP AG BC400 6-21

 SAP AG 1999

Data objects

Copying Large Internal Tables

Main program

Subroutine

Interface
parameters

Source code

Source code

ct_flightocc

The copying
process is runtime-
intensive

Call the Subroutine

Large memory areas must
be allocated temporarily

Passing values during the copying process is very runtime-intensive for large data objects, particularly
for large internal tables.

(C) SAP AG BC400 6-22

 SAP AG 1999

Data objects

Solution: Reference Parameters

Main program

Subroutine

Interface parameters
Source code

Source code

ct_flightocc

Reference
parameter points to
the internal table
while the
subroutine runs

Call the subroutine

Passing values during the copying process is very runtime-intensive for large data objects, particularly
for large internal tables. For this reason, you can also pass references to global data objects to the
subroutine, just as you can in other programming languages. Changes to the variable in the subroutine
then cause the same change in the global data object.

Within the subroutine, the variable is addressed using the interface parameter name while values are
being passed.

(C) SAP AG BC400 6-23

 SAP AG 1999

Syntax Example: Subroutine with Interface
Reference Parameters

If the VALUE addition is not
included for a parameter
when an interface is defined,
the interface parameter is a
reference parameter

FORM fill_itab USING value(iv_carrid) TYPE s_carr_id

 CHANGING ct_flightocc TYPE sbc400_t_sbc400focc .
 DATA: lwa_flightocc LIKE LINE OF ct_flightocc.
 SELECT carrid connid fldate seatsmax seatsocc FROM sflight
 INTO TABLE ct_flightocc
 WHERE carrid = iv_carrid.
 LOOP AT ct_flightocc INTO lwa_flightocc.
 lwa_flightocc-percentage =
 100 * lwa_flightocc-seatsocc
 / lwa_flightocc-seatsmax.
 MODIFY ct_flightocc FROM lwa_flightocc INDEX sy-tabix.
 ENDLOOP.
ENDFORM. " FILL_ITAB

ct_flightocc

Interface reference variables are used
in subroutines like "normal" interface
parameters of the declared type.

ct_flightocc

ct_flightocc

ct_flightocc

You define a reference parameter in the interface, by omitting the VALUE addition.

Reference parameters can be used as both USING and CHANGING parameters. Note that changes to
reference parameters in the subroutine will also change the content of the data object in the main
program. For this reason, USING reference parameters in subroutines must not be changed. Note that, if
you do, the system will not return a syntax error, for compatibility reasons.

(C) SAP AG BC400 6-24

 SAP AG 1999

You are now able to:

Internal Program Modularization: Unit Summary

Explain how a program containing event blocks
functions at runtime using INITIALIZATION and
START-OF-SELECTION as examples

Encapsulate functions in a simple subroutine with
interface

(C) SAP AG BC400 6-25

Modularization in Programs Exercises

Unit: Internal Program Modularization

Topic: Subroutines

At the conclusion of these exercises, you will be able to:

Create subroutines

Use the subroutine interface to pass data

Change your program ZBC400_##_SELECT_SFLIGHT_ITAB (or the
corresponding model solution) so that both the authorization check and the data
output are encapsulated in subroutines.

Program: ZBC400_##_FORMS

Model solution: SAPBC400PBS_FORMS

1-1 Copy your program ZBC400_##_SELECT_SFLIGHT_ITAB or the corresponding model
solution SAPBC400DDS_AUTHORITY_CHECK_2 to the new program ZBC400_##_FORMS.
Assign your program to development class ZBC400_## and the change request for your
project “BC400…”. (where ## is your group number.)

1-2 Encapsulate the authorization check in a subroutine. Pass the airline code and the value
required for the authorization field ACTVT in the interface. Pass SY-SUBRC, which is set by
the authorization check, back to the main program via the interface. Specify types for the
interface parameters of the subroutine. Possible ABAP Dictionary types are:

Airline code: Data element S_CARR_ID

Return value: System field SY-
SUBRC

Value of the authorization field ACTVT: Data element ACTIV_AUTH

1-3 Change the parts of the program that depend on the result of the authorization check: You can
no longer query the value of SY-SUBRC. Instead, find out the value of the corresponding
interface parameter from the subroutine.

1-4 Encapsulate the data output in a subroutine. Call the subroutine after the SELECT loop. Pass
the internal table containing the read data using the interface. Specify the types of the

(C) SAP AG BC400 6-26

interface parameters. Display the data from the subroutine using a LOOP… ENDLOOP
structure. To do this, create the required table work area as a local data object in the
subroutine. To specify the type of the local structure, use the ABAP statement DATA: <WA >
LIKE LINE OF <ITAB>.

(C) SAP AG BC400 6-27

Internal Program Modularization Solutions

Unit: Internal Program Modularization

Topic: Subroutines

Model solution SAPBC400PBS_FORMS

&--

*& Report SAPBC400PBS_FORMS *

*& *

&--

REPORT sapbc400pbs_forms.

CONSTANTS actvt_display TYPE activ_auth VALUE '03'.

DATA: wa_flight TYPE sbc400focc,

 it_flight TYPE sbc400_t_sbc400focc.

PARAMETERS: pa_car TYPE sflight-carrid.

DATA: returncode LIKE sy-subrc.

START-OF-SELECTION.

* Authority-Check:

 PERFORM authority_scarrid USING pa_car actvt_display

 CHANGING returncode.

 CASE returncode.

* User is authorized

 WHEN 0.

 SELECT carrid connid fldate seatsmax seatsocc FROM sflight

 INTO CORRESPONDING FIELDS OF wa_flight

 WHERE carrid = pa_car.

 wa_flight-percentage =

 100 * wa_flight-seatsocc / wa_flight-seatsmax.

 APPEND wa_flight TO it_flight.

 ENDSELECT.

 PERFORM write_list USING it_flight.

(C) SAP AG BC400 6-28

* User is not authorized or other error of authority-check

 WHEN OTHERS.

 WRITE: / 'Authority-Check Error'(001).

 ENDCASE.

(C) SAP AG BC400 6-29

&--

*& Form AUTHORITY_SCARRID

&--

* text

* -->P_PA_CAR text

* -->P_LD_ACTVT text

* <--P_RETURNCODE text

FORM authority_scarrid USING value(p_carrid) TYPE s_carr_id

 value(p_ld_actvt) TYPE activ_auth

 CHANGING p_return LIKE sy-subrc.

 AUTHORITY-CHECK OBJECT 'S_CARRID'

 ID 'CARRID' FIELD p_carrid

 ID 'ACTVT' FIELD p_ld_actvt.

 p_return = sy-subrc.

ENDFORM. " AUTHORITY_SCARRID

&--

*& Form WRITE_LIST

&--

* text

* -->P_IT_FLIGHT text

FORM write_list USING p_it_flight TYPE sbc400_t_sbc400focc.

 DATA: wa LIKE LINE OF p_it_flight.

 LOOP AT p_it_flight INTO wa.

 WRITE: / wa-carrid COLOR COL_KEY,

 wa-connid COLOR COL_KEY,

 wa-fldate COLOR COL_KEY,

 wa-seatsocc,

 wa-seatsmax,

 wa-percentage,'%'.

 ENDLOOP.

ENDFORM. " WRITE_LIST

(C) SAP AG BC400 7-1

 SAP AG 1999

List attributes and strengths

Basic lists

List events

Interactive lists

Example with syntax: detail lists

Contents:

User Dialogs: Lists

(C) SAP AG BC400 7-2

 SAP AG 1999

At the conclusion of this unit, you will be able to:

User Dialogs: Lists: Unit Objectives

Describe list attributes and strengths,

Write a program that displays the details of a
specific line from your basic list to an interactive
list whenever the user double clicks on that
particular line, and

Explain the runtime behavior of your program
during the AT LINE-SELECTION event

(C) SAP AG BC400 7-3

 SAP AG 1999

FormattedFormatted
display:display:

PrintPrint Formatted display:Formatted display:

CA ID PRICE
AA 2602 2400
AA 2602 2500

Total 7800

ScreenScreen Display language-Display language-
specific texts in logonspecific texts in logon

languagelanguage

List Attributes

According to fixedAccording to fixed
user settingsuser settings

20000721

21.07.2000

Amounts byAmounts by
their currencytheir currency

Lengths byLengths by
their unittheir unit

DateDate

The main purpose of a list is to output data in a manner that can be easily understood by the user; this
output often takes the form of a table. Lists in R/3 take into account special business data requirements:

They are language-independent. Texts and headers appear in the logon language whenever the
appropriate translation is available.

They can output monetary values in numerous currencies.

You can output list data in the following ways:

­ To the screen; here you can add colors and icons

­ To the printer

­ To the Internet/intranet: automatic conversion to HTML

you can also save lists in the R/3 System or output them for processing by external commercial
software applications like spreadsheet programs

(C) SAP AG BC400 7-4

 SAP AG 1999

Back/Exit/Cancel

Scroll

Print

Find (in list)

Save

:
List
:

System ...

Standard List Functions

The standard list interface offers the user several navigation features:

Back

Exit

Cancel

Print

Find (in list)

Save: saves the list either as a file, in a report tree, or to the buffer

Send: sends the list in e-mail form

For further information on how you can adjust the standard list interface to fit your individual needs see
the relevant section in the Dialogs: Interfaces unit.

(C) SAP AG BC400 7-5

 SAP AG 1999

List header

Column header

Save

:
List
:

System ... Text elements

Title/Headers

From within a list: From the ABAP Editor:

Column Header in the Default Page Header

Each list can have a list header and up to four lines of column headers. You can create these
elements in two different ways:

From within the Editor using the text element maintenance functions

From within the list itself. If you save your program, activate it and then run it to create the list, you
can enter both list and column headers by choosing the menu path System -> List -> List Header ->
Maintain Lists and Column Headers. The main advantage of using this method is that the list is still
displayed on the screen. This makes it easier to position column headers.

The next time you start the program, the new headers will appear in the list automatically.

When no header text is entered, the program title is inserted in the header.

(C) SAP AG BC400 7-6

 SAP AG 1999

WRITE: /15 text-001,
 35 sy-datum,
 /15 text-002,
 35 sy-uname.

Source code Text elements

Title/HeadersTitle/Headers

Program

Text symbolsText symbols

DE Erstellungsdatum
EN Creation Date
FR ...

DE Erstellungsdatum
EN Creation Date
FR
 :
DE Ersteller

001

002

List header

Creation Date: 01.01.2000
Created By: WALTERS

Multilingual Capability

text-001

text-002

Titles and headers are part of a program's text elements. You can translate all text elements into other
languages. The logon language setting on the logon screen determines the language in which text
elements will be displayed.

Text symbols are another kind of text element. Text symbols are text literals that can be translated and
which are assigned to the program. Text symbols allow you to create lists independent of language.

You can write text symbols into your program in either of the following ways:

- TEXT-<xxx> (where xxx is a three-character sequence)

- '<Text>'(<xxx>) (where xxx is a three-character sequence).

You can display texts in the Editor by choosing Goto -> Text elements-> Text symbols or by double-
clicking the number of a text symbol.

(C) SAP AG BC400 7-7

 SAP AG 1999

Lists in Executable Programs

Program
Start

Database
Tables

Data objects

ABAP Runtime System

ABAP program

List
buffer

START-OF-SELECTION

In executable programs (type 1), lists are automatically displayed after their corresponding event blocks
have been processed. These processing blocks must, however, contain a statement that writes to the list
buffer. These statements include WRITE, SKIP, and ULINE.

Event blocks are called in a sequence designed for list processing:

Prior to sending the selection screen: INITIALIZATION

After leaving the selection screen: START-OF-SELECTION

All output from START-OF-SELECTION event blocks, subroutines, and function modules that is
processed before a list is displayed is temporarily stored in the list buffer.

Once all list creation processing blocks (for example START-OF-SELECTION) have been processed, all
data from the list buffer is output in the form of a list.

(C) SAP AG BC400 7-8

 SAP AG 1999

Detail Lists

Time

Database
Tables

Data objects

START-OF-SELECTION

ABAP Runtime System

ABAP program

List
buffer
for
basic list

AT LINE-SELECTION
List
buffer
for
detail
list

In executable programs, you can use the event block AT LINE-SELECTION to create details lists.

The ABAP runtime system:

Displays basic lists after the appropriate event blocks have been processed (for example, after
START-OF-SELECTION). In this case, system field sy-lsind contains the value 0.

Processes the event block AT LINE-SELECTION using the function code 'PICK' each time you
double-click on an entry or choose an action for the system to perform. If you are using a standard
status, this happens automatically every time you choose an icon, a menu function, or the function
key F2.

Displays details lists after the AT LINE-SELECTION event block has been processed and
increases the value contained in sy-lsind by one.

Displays the details list from the previous level in the list hierarchy (n-1) every time you choose the
green arrow icon from the current details list (n).

(C) SAP AG BC400 7-9

 SAP AG 1999

Basic list

Detail list 1

Demo program ...

Basic listBasic list
sy-lsind 0

Detail listsDetail lists

sy-lsind

Detail list 2

Detail listsDetail lists

sy-lsind

Up to twenty
detail lists

1

2

Example: A Simple Detail List

The lists in the example program should behave as follows:

The basic list should display the text 'Basic List' and system field sy-lsind.

The user can navigate to a detail list by using any of the following:

­ Double-click

­ The Detail list icon (a magnifying glass) in the pushbutton bar

­ A menu function

­ The F2 function key
Then the Detail list appears and the system field sy-lsind has the value 1.

Repeating this action should call the second details list, where system field sy-lsind contains the
value 2 instead (representing the current details list level).

sy-lsind is incremented by 1 each time the user repeats this action (until sy-lsind reaches 20).

Choosing the green arrow takes the user back a single detail list level at a time until he or she reaches
the basic list .

(C) SAP AG BC400 7-10

 SAP AG 1999

REPORT sapbc400udd_secondary_list_a.

START-OF-SELECTION.
 WRITE: / text-001 COLOR col_heading,
 / 'sy-lsind',
 sy-lsind color 2.

AT LINE-SELECTION.
 WRITE: / text-002 COLOR col_heading.
 ULINE.
 WRITE: / 'sy-lsind',
 sy-lsind color 4.

Text symbols:

001

002

Basic list

Detail Lists

Syntax: A Simple Detail List

AT LINE-SELECTION.

A details list can be programmed as follows:

You create a basic list by filling the basic list buffer at an appropriate event block (here START-OF-
SELECTION) using either WRITE, SKIP, or ULINE.

Use the event block AT LINE-SELECTION when programming details lists. Whenever you use
WRITE, SKIP, or ULINE with this event block, you fill the details list buffer for the next level (the
details list buffer with a level value one greater than the level on which the user performed his or
her action).

You can manage the different levels of the detail list by querying the sy-lsind field in the AT LINE-
SELECTION event block.

(C) SAP AG BC400 7-11

 SAP AG 1999

Flight From To Departing atFlight From To Departing at
LH 0400 FRA Frankfurt JFK New York 10:10:00
LH 0402 FRA Frankfurt JFK New York 01:30:00 PM
...
SQ 0002 SIN Singapore SFO San Francisco 09:30:00

You have chosen LH 0402
Flight date

19.12.1998
20.12.1998
24.12.1998

Max.

380
380
380

Occ.

240
270
380

Example: Detail lists

TimetableTimetable

Detail:Detail: FlightsFlights

We will now write a program using both basic lists and details lists:

The basic list in your program should contain flight data such as carrier ID and flight numbers, departure
city and airport, destination city and airport, as well as departure and arrival times. This data is stored in
the database table SPFLI.

The user should be able to access information about any particular flight by double-clicking its carrier ID
and flight number. Flight date and occupancy should be displayed. This data is stored in the database
table SFLIGHT. You must use the SPFLI key fields in this details list in order to read the appropriate
data in SFLIGHT. The following slides demonstrate how this is done.

The sample program is named SAPBC400UDD_DETAIL_LIST and is part of development class
BC400.

(C) SAP AG BC400 7-12

 SAP AG 1999

AA 0017 JFK SFO 13:30:00
LH 0400 FRA JFK 10:10:00
LH 0402 FRA JFK 13:30:00
 : : : : :

Placing Global Data in the HIDE Area

HIDE <fieldname>.

SELECT carrid connid
 airpfrom airpto deptime
 FROM spfli
 INTO CORRESPONDING FIELDS OF
 wa_spfli.

WRITE: / wa_spfli-carrid,
 wa_spfli-airpfrom,
 wa_spfli-airpto,
 wa_spfli-deptime.

 : wa_spfli-carrid,
 wa_spfli-connid.

ENDSELECT.

AT LINE-SELECTION.

Line

3
3
4
4
5
5
:

 Field name

wa_spfli-carrid
wa_spfli-connid
wa_spfli-carrid
wa_spfli-connid
wa_spfli-carrid
wa_spfli-connid
 :

Value

 AA
0017
LH

0400
LH

0402
 :

HIDE area

HIDE

1
2
3
4
5
:

Current list buffer

Flight ID From To DepartFlight ID From To Depart

55

55
55

When the event AT LINE-SELECTION is processed, a program's data objects contain the same values
as before basic list display. A detail list, however, often needs data selected within the basic list itself.
You can use the HIDE area to store certain data from the line that you have selected and then
automatically insert where you need it in the corresponding data object for a details list.
You can specify in advance which information should be classified by its line position, when you are
creating the basic list.

To do this, you use the ABAP keyword HIDE followed by a list of the data objects that you need. The
runtime system automatically records the name and contents of the data object in relation to its line
position in the list currently being created.

The HIDE global_field statement stores the content of the global data field global_field with reference
to the current display line.

When this line is selected, the data field is filled automatically with the stored values.

You do not have display the field beforehand, with a WRITE statement.

The data field can also be a structure. However, the HIDE area does not support deep structures - that
is, structures whose components include tables.

(C) SAP AG BC400 7-13

 SAP AG 1999

REPORT sapbc400udd_example_2.

AT LINE-SELECTION.
 WRITE: text-001,
 wa_spfli-carrid,
 wa_spfli-connid.

Flight ID From To Depart

AA 0017 JFK SFO 13:30:00
LH 0400 FRA JFK 10:10:00
LH 0402 FRA JFK 01:30:00 PM
...
SQ 0002 SIN SFO 09:30:00

wa_spfliLH 0402 ?? ?? ????

Text symbols:

001 Flights for connection

Line Selection

AT LINE-SELECTION.

Line

3
3
4
4
5
5
:

14
14

 Field name

wa_spfli-carrid
wa_spfli-connid
wa_spfli-carrid
wa_spfli-connid
wa_spfli-carrid
wa_spfli-connid
 :
wa_spfli-carrid
wa_spfli-connid

Value

 AA
0017
LH

0400
LH

0402
 :
SQ

0002

HIDE area

Flight ID From To DepartFlight ID From To Depart

As soon as interactive event (AT LINE-SELECTION in this example) is called by placing the cursor on a
specific line and then either double-clicking or choosing a pushbutton, the values for this line stored in
the HIDE area are inserted into their corresponding data objects.

(C) SAP AG BC400 7-14

 SAP AG 1999

REPORT sapbc400udd_example_2.
...

AT LINE-SELECTION.
IF sy-lsind = 1.

 WRITE: text-001,
 wa_spfli-carrid,
 wa_spfli-connid.

 SELECT fldate seatsmax seatsocc
 FROM sflight
 INTO CORRESPONDING FIELDS OF wa_sflight
 WHERE carrid = wa_spfli-carrid
 AND connid = wa_spfli-connid.

 WRITE:/ wa_sflight-fldate,
 wa_sflight-seatsmax,
 wa_sflight-seatsocc.
 ENDSELECT.
 ENDIF.

Text symbols:

001 Flights for connection
AT LINE-SELECTION.

Line Selection: Syntax

You create a details list by filling the details list buffer at the AT LINE-SELECTION event block using
either WRITE, SKIP, or ULINE. In this sample program, the key fields for the airline are displayed and
the flights available for this airline in the database table SFLIGHT are read using a SELECT loop. Note
that the line-specific information on the airline is only available by double-clicking in the data objects if
the relevant data objects have been placed in the HIDE area when the basic list was created.

(C) SAP AG BC400 7-15

 SAP AG 1999

You are now able to:

User Dialogs: Lists: Unit Summary

Describe list attributes and strengths,

Write a program that displays the details of a
specific line from your basic list to an interactive
list whenever the user double clicks on that
particular line, and

Explain the runtime behavior of your program
during the AT LINE-SELECTION event

(C) SAP AG BC400 7-16

User Dialogs – Lists: Exercises

Unit: User Dialogs: Lists

Topic: Detail Lists

At the conclusion of these exercises, you will be able to:

Create a detail list in a program

Extend your program ZBC400_##_SELECT_SFLIGHT or the corresponding
model solution as follows:
Once the user has selected a flight on the basic list (double-click or F2 on the
relevant list line), display a detail list containing all of the bookings for the
selected flight.

Program: ZBC400_##_DETAIL_LIST

Model solution: SAPBC400UDS_DETAIL_LIST

1-1 Copy your program ZBC400_##_SELECT_SFLIGHT or the corresponding model solution
SAPBC400DDS_AUTHORITY_CHECK to the new program ZBC400_##_DETAIL_LIST.
Assign your program to development class ZBC400_## and the change request for your
project “BC400…” (## is your group number).

1-2 Make sure that the key fields of the database table SFLIGHT are available to you for building
up the detail list when the user selects a flight from the basic list (double-click or F2 on the
corresponding list line).

1-3 Add the AT LINE-SELECTION event to your program to allow you to construct a detail list.

1-4 In the first line of the detail list, display key information from the selected line of the basic list.
Under this line, display a horizontal line and a blank line.

1-5 Read all of the bookings from database table SBOOK for the selected flight. Make sure that
you only read fields from the database table that you want to display in the list. to display the
following fields of the database table SBOOK on the detail list:

BOOKID,
CUSTOMID,
CUSTTYPE

(C) SAP AG BC400 7-17

CLASS,
ORDER_DATE,
SMOKER,
CANCELLED.

1-6 Optional: Display the fields LOCCURAM and LOCCURKEY on the detail list: Ensure that the
currency amount LOCCURAM is displayed with the appropriate formatting for the currency
LOCCURKEY. Use the addition CURRENCY <currency_key> in the WRITE statement.

Example:
WRITE: wa_sflight-price CURRENCY wa_sflight-currency,

wa_sflight-currency.

1-7 Optional: Display the BOOKID field in the color COL_KEY.

(C) SAP AG BC400 7-18

User Dialogs – Lists Solutions

Unit: User Dialogs – Lists

Topic: Detail Lists

Model solution without optional exercises: SAPBC400UDS_DETAIL_LIST

&--

*& Report SAPBC400UDS_DETAIL_LIST *

*& *

&--

REPORT sapbc400uds_detail_list.

CONSTANTS: actvt_display TYPE activ_auth VALUE '03'.

DATA: wa_flight TYPE sbc400focc,

 wa_sbook TYPE sbook.

PARAMETERS: pa_car TYPE s_carr_id.

START-OF-SELECTION.

 AUTHORITY-CHECK OBJECT 'S_CARRID'

 ID 'CARRID' FIELD pa_car

 ID 'ACTVT' FIELD actvt_display.

 CASE sy-subrc.

 WHEN 0.

 SELECT carrid connid fldate seatsmax seatsocc FROM sflight

 INTO CORRESPONDING FIELDS OF wa_flight

 WHERE carrid = pa_car.

 wa_flight-percentage =

 100 * wa_flight-seatsocc / wa_flight-seatsmax.

 WRITE: / wa_flight-carrid,

 wa_flight-connid,

(C) SAP AG BC400 7-19

 wa_flight-fldate,

 wa_flight-seatsocc,

 wa_flight-seatsmax,

 wa_flight-percentage,'%'.

* Hide key field values corresponding to the actual line

 HIDE: wa_flight-carrid, wa_flight-connid,

 wa_flight-fldate.

 ENDSELECT.

 WHEN OTHERS.

 WRITE: / 'Authority-Check Error'(001).

 ENDCASE.

 CLEAR wa_flight.

* Program continues here, if a line is selected on basic list

AT LINE-SELECTION.

 IF sy-lsind = 1.

* Key fields transported back from hide area to ABAP dataobjects

 WRITE: / wa_flight-carrid,

 wa_flight-connid,

 wa_flight-fldate.

 ULINE.

 SKIP.

* Selection of bookings, which depend on selected flight

 SELECT bookid customid custtype class order_date

 smoker cancelled loccuram loccurkey

 FROM sbook INTO CORRESPONDING FIELDS OF wa_sbook

 WHERE carrid = wa_flight-carrid

 AND connid = wa_flight-connid

 AND fldate = wa_flight-fldate.

* Creation of detail list

 WRITE: / wa_sbook-bookid,

 wa_sbook-customid,

 wa_sbook-custtype,

 wa_sbook-class,

 wa_sbook-order_date,

 wa_sbook-smoker,

 wa_sbook-cancelled.

 ENDSELECT.

(C) SAP AG BC400 7-20

 ENDIF.

 CLEAR wa_flight.

(C) SAP AG BC400 7-21

Model solution with optional exercises: SAPBC400UDS_DETAIL_LIST1

&--

*& Report SAPBC400UDS_DETAIL_LIST1 *

*& *

&--

REPORT sapbc400uds_detail_list1.

CONSTANTS: actvt_display TYPE activ_auth VALUE '03'.

DATA: wa_flight TYPE sbc400focc,

 wa_sbook TYPE sbook.

PARAMETERS: pa_car TYPE s_carr_id.

START-OF-SELECTION.

 AUTHORITY-CHECK OBJECT 'S_CARRID'

 ID 'CARRID' FIELD pa_car

 ID 'ACTVT' FIELD actvt_display.

 CASE sy-subrc.

 WHEN 0.

 SELECT carrid connid fldate seatsmax seatsocc FROM sflight

 INTO CORRESPONDING FIELDS OF wa_flight

 WHERE carrid = pa_car.

 wa_flight-percentage =

 100 * wa_flight-seatsocc / wa_flight-seatsmax.

 WRITE: / wa_flight-carrid,

 wa_flight-connid,

 wa_flight-fldate,

 wa_flight-seatsocc,

 wa_flight-seatsmax,

 wa_flight-percentage,'%'.

* Hide key field values corresponding to the actual line

 HIDE: wa_flight-carrid, wa_flight-connid, wa_flight-fldate.

(C) SAP AG BC400 7-22

 ENDSELECT.

 WHEN OTHERS.

 WRITE: / 'Authority-Check Error'(001).

 ENDCASE.

 CLEAR wa_flight.

* Program continues here, if a line is selected on basic list

AT LINE-SELECTION.

 IF sy-lsind = 1.

* Key fields transported back from hide area to ABAP dataobjects

 WRITE: / wa_flight-carrid, wa_flight-connid, wa_flight-fldate.

 ULINE.

 SKIP.

* Selection of bookings, which depend on selected flight

 SELECT bookid customid custtype class order_date

 smoker cancelled loccuram loccurkey

 FROM sbook INTO CORRESPONDING FIELDS OF wa_sbook

 WHERE carrid = wa_flight-carrid

 AND connid = wa_flight-connid

 AND fldate = wa_flight-fldate.

* Creation of detail list

 WRITE: / wa_sbook-bookid COLOR COL_KEY,

 wa_sbook-customid,

 wa_sbook-custtype,

 wa_sbook-class,

 wa_sbook-order_date,

 wa_sbook-smoker,

 wa_sbook-cancelled,

 wa_sbook-loccuram CURRENCY wa_sbook-loccurkey,

 wa_sbook-loccurkey.

 ENDSELECT.

 ENDIF.

 CLEAR wa_flight.

(C) SAP AG BC400 8-1

 SAP AG 1999

Selection screen attributes and strengths

Defining selection screens

Evaluating user input to restrict database selection

Selection screen events

Example with syntax: additional input checks with error
dialog

Contents:

User Dialogs: Selection Screens

(C) SAP AG BC400 8-2

 SAP AG 1999

At the conclusion of this unit, you will be able to:

Selection Screens: Unit Objectives

Describe selection screen attributes and
strengths

Write a program that allows the user to input
intervals on a selection screen that can be used to
restrict the number of data records retrieved from
the database

Write a program containing additional input
checks on its selection screen which re-send the
selection screen when an error occurs

(C) SAP AG BC400 8-3

 SAP AG 1999

Use of Selection Screens

Database
table

ABAP
processing
block

ABAP runtime system

ABAP program

Selection criteria

Selection screens allow users to enter selection criteria required by the program.

For example, if you create a list containing data from a very large database table, you can use a
selection screen to restrict the amount of that data that is selected. At runtime, the user can enter
intervals for one of the key fields, and only data in this interval is read from the database and displayed
in the list. This considerably reduces the load on the network.

(C) SAP AG BC400 8-4

 SAP AG 1999

Screen Attributes

Selection screen attributesSelection screen attributes

Single fields (PARAMETERS)Single fields (PARAMETERS)

Value sets (SELECT-OPTIONS)Value sets (SELECT-OPTIONS)

Selection screen eventsSelection screen events

(C) SAP AG BC400 8-5

 SAP AG 1999

ValueValue
setssets

Multilingual CapacityMultilingual Capacity

VariantsVariants

PossiblePossible
entries helpentries help

Type checksType checks

The Selection Screen

Input helpInput help
?

Selection screens are designed to present users with an input template. This allows them to enter
selections, which reduce the amount of data that has to be read from the database. The user has the
following options:

Enter values in single fields

Make complex entries: intervals, operations, patterns

Save selections fields filled with values as variants

Access input help and search helps by choosing the F4 function key or the possible entries
pushbutton

You can translate selection texts into other languages so that they are then displayed in the language
in which the user is logged on.

The system checks types automatically. If you enter a value with an incorrect type, the system displays
an error message and makes the field ready to accept your corrected entry.

(C) SAP AG BC400 8-6

 SAP AG 1999

SELECT-OPTIONS ...

PARAMETERS ...

Single value
Greater than or equal

Greater than
Less than
Not equal

Less than or equal

Departing
from

Airline LH

Airline

Select

Airline

Multiple single values,
intervals,
single value exclusion,
interval exclusion

Entering Selections

to

Maintain Selection Options

Exclude from selection

Selection screens allow you to enter complex selections as well as single-value selections. The syntax
for programming selection options, dealt with in this unit, includes the following topics:

Setting selection options

Entering multiple values or intervals

Defining a set of exclusionary criteria for data selection

Every selection screen contains an information icon. Choose this icon to display additional information.

(C) SAP AG BC400 8-7

 SAP AG 1999

Using the Semantic Information of Dictionary
Types

Selection screen

Airline
Global types

• Field label
• Input help
• Search help [Search help]

Data elementData element
StructureStructure

ABAP program

PARAMETERS pa_carr TYPE spfli-carrid.

• Technical type

Semantic
information

Layout
information

Formatting
rules

If an input field is typed with a data element, the following semantic information is available:

You can use the field name as a selection text

Input help (F1 help) from the data element is available automatically

Possible entries help (F4 help) is available automatically, provided the data element has been
coupled with a search help. A search help is a standalone object defined in the Dictionary, which
controls the dialog with and data retrieval for the possible entries help.

If an input field is typed with a structure field, the following semantic information is available:

Field names and input help (F1 help) are copied from the data element that has been used to type
the Dictionary structure field.

If a structure field is coupled with a search help, then this is the search help that is used for the
possible entries help (F4 help) - that is, it obscures the data element search help. If there is search
help coupled with the structure field, the system uses the data element search help.

Bear in mind the Dictionary type you choose to provide a type for an input field affects the semantic
information available to the user.

For more information, refer to the online documentation for the ABAP Dictionary.

(C) SAP AG BC400 8-8

 SAP AG 1999

Source code Text elements

Program

Text symbols

SO_CARR

PA_CITY

Selection texts

EN Airline carrier
DE

EN Departing from
DE

Multilingual capacityMultilingual capacity

REPORT bc400td_selection_screen.
 :
SELECT-OPTIONS so_carr FOR ...
PARAMETERS pa_city TYPE ...

Selection Texts

Dictionary referenceDictionary reference
Departing
from

Airline LH

Title/headers

to

On the selection screen, the names of the variables appear next to the input fields. However, you can
replace these with selection texts, which you can then translate into any further languages you require.
Selection texts are displayed in the user's logon language.

If the input field is typed directly or indirectly with a data element, you can copy the field name from one
of the texts stored in the Dictionary.

(C) SAP AG BC400 8-9

 SAP AG 1999

Variants

Variante anlegen:
• Fill out the selection screen fields
• Save as a variant

• Enter a variant name: <Name>
• Meaning: Enter a <descriptive short text>
• You can also choose other attributes

Create a variant:

Create a variant:
• Start the program
• Choose the icon

•Choose a variant by name
• The system copies the values to the input fields

Use the variant:

Departing
from

Airline LH to

If you want to save the values (or some of the values) on a selection screen that you have filled out, you
can do so by creating a variant. When you start the program again later, you can get these values from
the variant and display them in the selection screen.

You can define and save variants for any selection screen. You do this by starting the program and
choosing Variants -> Save as variant.

Variants allow you to make selection screens easier to use by:

Pre-assigning values to input fields

Hiding input fields

Saving these settings for reuse

A single variant can refer to more than one selection screen.

Variants are client-specific.

If you choose the information icon (on any selection screen), the system will display more information
about variants. You can also find out more in course BC405 Techniques of List Processing and InfoSet
Query.

(C) SAP AG BC400 8-10

 SAP AG 1999

Single Fields (PARAMETERS)

Selection screen attributesSelection screen attributes

Single fields (PARAMETERS)Single fields (PARAMETERS)

Value sets (SELECT-OPTIONS)Value sets (SELECT-OPTIONS)

Selection screen eventsSelection screen events

(C) SAP AG BC400 8-11

 SAP AG 1999

Effect of the PARAMETERS Statement

PARAMETERS pa_car
 TYPE s_carr_id.

ABAP program

PARAMETERSPARAMETERS

pa_car

Locally defined types and fields

Selection
screen

Reference to the
ABAP Dictionary

s_carr_id

In an executable program, a single PARAMETERS statement is sufficient to generate a standard
selection screen.

The PARAMETERS <name> TYPE <type> and PARAMETERS <name> LIKE <data object>
statements generate a simple input field on the selection screen, and a data object <name> with the type
you have specified.

If the user enters a value and chooses Execute, that value is placed in the internal data object <name>
in the program. The system will only permit entries with the appropriate type.

(C) SAP AG BC400 8-12

 SAP AG 1999

Runtime Behavior and Data Transport (1)

ABAP runtime system

ABAP program

ABAP
processing
block

pa_car

Time

Selection
screen

Description of
selection screen

papa__carcar

Once the INITIALIZATION event block has been processed, the selection screen is sent to the
presentation server. The runtime system transports the data object values that are defined using
PARAMETERS to the selection screen input fields of the same name.

The user can then change the values in the input fields. If the user then clicks on the Execute function,
the input field values are transported to the program data objects with the same name and can be
evaluated in the ABAP processing blocks.

(C) SAP AG BC400 8-13

 SAP AG 1999

Using Parameters When You Access the Database

REPORT ...
DATA wa_spfli TYPE spfli.
PARAMETERS pa_car TYPE s_carr_id.
...
SELECT carrid connid cityfrom cityto ...
 FROM spfli
 INTO CORRESPONDING FIELDS OF wa_spfli
 WHERE carrid = pa_car .

WRITE: / wa_spfli-carrid, wa_spfli-connid,
wa_spfli-fldate,

ENDSELECT .

WHERE carrid = pa_car

SELECT

ENDSELECT

If you have used the PARAMETERS statement to program an input field as a key field for a database
table, you can use a WHERE clause in the SELECT statement to limit data selection to this value.

In the example above, the system only reads a record from the database table SPFLI if that record's key
field CARRID has the same value as is contained in data object pa_car at runtime.

(C) SAP AG BC400 8-14

 SAP AG 1999

Value Sets (SELECT-OPTIONS)

Selection screen attributesSelection screen attributes

Single fields (PARAMETERS)Single fields (PARAMETERS)

Value sets (SELECT-OPTIONS)Value sets (SELECT-OPTIONS)

Selection screen eventsSelection screen events

(C) SAP AG BC400 8-15

 SAP AG 1999

Effect of SELECT-OPTIONS

ABAP program

so_carr

Selection
screen

gd_carrid

DATA gd_carrid TYPE s_carr_id.
SELECT-OPTIONS so_carr
 FOR gd_carrid.

Locally-defined types and fields

SELECT-OPTIONSSELECT-OPTIONS

Sign low high
option

Reference to the
ABAP Dictionary

s_carr_id

FORFOR

The statement SELECT-OPTIONS <name> FOR <data_object> defines a selection option: This places
two input fields on the selection screen, with the same type that you have defined in the reference. This
enables users to enter a value range or complex selections. The statement also declares an internal
table <name> within the program, with the following four columns:

sign: This field designates whether the value or interval should be included in or excluded from the
selection.

option: This contains the operator: For a list of possible operators, see the keyword documentation
for the SELECT-OPTIONS statement.

low: This field contains the lower limit of a range, or a single value.

high: This field contains the upper limit of a range.

Selection table <name> always refers to a data object that has already been defined. The data object is
used as a target field during database selection, while the selection table is a set of possible values. For
this reason, a special version of the WHERE clause exists for database selection. It determines whether
or not the database contains the corresponding field within the value set.

(C) SAP AG BC400 8-16

 SAP AG 1999

Runtime Behavior and Data Transport (2)

ABAP runtime system

ABAP program

ABAP
processing
block

so_carr

Selection
screen

Selection
screen

Time

gd_carrid

so_so_carrcarr

If the user enters several values or intervals for a selection option and chooses Execute, the system
places them in the internal table.

(C) SAP AG BC400 8-17

 SAP AG 1999

Using Value Sets When You Access the Database

REPORT ...
DATA WA_SPFLI TYPE SPFLI.
SELECT-OPTIONS so_carr FOR wa_spfli-carrid.
...
SELECT carrid connid cityfrom cityto ...
 FROM spfli
 INTO CORRESPONDING FIELDS OF wa_spfli
 WHERE carrid IN so_carr .

WRITE: / wa_spfli-carrid, wa_spfli-connid,
wa_spfli-cityfrom, wa_spfli-cityto,

ENDSELECT.

WHERE carrid IN so_carr

SELECT

ENDSELECT

The above example shows how you can restrict database selection to a certain range using a selection
table.

Conditions in an internal table declared using SELECT-OPTIONS are interpreted as follows:

If the internal table is empty, the condition <field> IN <selname> is always true.

If the internal table only contains simple inclusive conditions i1, ..., in, the result is the composite
condition (i1 OR ... OR in).

If the internal table only contains simple exclusive conditions e1, ..., em, the result is the composite
condition (NOT e1) AND ... AND (NOT em).

If the internal table contains both the simple inclusive conditions i1, ..., in and the simple exclusive
conditions e1, ..., em, the result is the composite condition (i1 OR ... OR in) AND (NOT e1) AND
... AND (NOT em).

(C) SAP AG BC400 8-18

 SAP AG 1999

Selection screen events

Selection screen attributesSelection screen attributes

Single Fields (PARAMETERS)Single Fields (PARAMETERS)

Value sets (SELECT-OPTIONS)Value sets (SELECT-OPTIONS)

Selection screen eventsSelection screen events

(C) SAP AG BC400 8-19

 SAP AG 1999

Selection Screen Events

Time

ABAP runtime system

ABAP program

INITIALIZATION.

START-OF-SELECTION

AT SELECTION-SCREEN.

No

Yes

Program
start

In an executable program, the ABAP runtime system generates a standard selection screen as long as
you have written at least one PARAMETERS or SELECT-OPTIONS statement. The selection screen
belongs to the event block AT SELECTION-SCREEN.

The selection screen is displayed after the INITIALIZATION event block .

Each time the user chooses Enter, a pushbutton, a function key, or a menu function, the system carries
out a type check. If the entries do not have the correct type, the system displays an error message, and
makes the fields ready for input again. When the data types have been corrected, the system triggers
the AT SELECTION-SCREEN event.

Subsequent program flow depends on the user's actions:

If the user chose F8 or Execute, the next event block is called: In this case, START-OF-SELECTION.

If the user chose any other function, the selection screen is redisplayed.

(C) SAP AG BC400 8-20

 SAP AG 1999

Error Messages in AT SELECTION-SCREEN

Time

Program
start

ABAP runtime system

ABAP program

INITIALIZATION.

START-OF-SELECTION

AT SELECTION-SCREEN.

MESSAGE e001.

No

Yes

MESSAGE ID 'BC400' TYPE 'E'
 NUMBER '045' WITH pa_car.

Message text

No authorization...

Use the event block AT SELECTION-SCREEN whenever you want to program additional input checks
for a standard selection screen.

The event block AT SELECTION-SCREEN is triggered by each user action. If an error dialog is
triggered, the system jumps back to the selection screen and automatically resets all input fields to ready
for input and displays a message in the status line.

Input errors can be caught using the MESSAGE statement. See the following slides for an example of
this.

For more detailed information on the MESSAGE statement, refer to the keyword documentation.

Additional information can be found in the keyword documentation for AT SELECTION-SCREEN.

(C) SAP AG BC400 8-21

 SAP AG 1999

Syntax Example for AT SELECTION-SCREEN

PARAMETERS: pa_car TYPE s_carr_id.

* First event processed after leaving the selection screen
AT SELECTION-SCREEN.
 AUTHORITY-CHECK OBJECT 'S_CARRID'
 ID 'CARRID' FIELD pa_car
 ID 'ACTVT' FIELD actvt_display.
 IF sy-subrc <> 0.
* Show selection screen again and show message in status bar
 MESSAGE e045(bc400) WITH pa_car.
 ENDIF.

AT SELECTION-SCREEN.

MESSAGE ID 'BC400' TYPE 'E' NUMBER '045' WITH pa_car.

As an example of an additional input check with error dialog, you need to add an input field for the airline
ID to the program:

The system carries out an authorization check on the selection screen.

If the user has display authorization for the airline entered, the program continues.

If the user does not have display authorization, then the selection screen is displayed again and an
error message appears in the status bar.

(C) SAP AG BC400 8-22

 SAP AG 1999

You are now able to:

Selection Screens: Unit Summary

Describe selection screen attributes and strengths

Write a program that allows the user to input
intervals on a selection screen that can be used to
restrict the number of data records retrieved from
the database

Write a program containing additional input
checks on its selection screen that re-send the
selection screen when an error occurs

(C) SAP AG BC400 8-23

Selection Screen: Exercises

Unit: Selection Screen

At the conclusion of these exercises, you will be able to:

Use the ABAP statement SELECT-OPTIONS to enter complex values on a
standard selection screen.

Take account of complex values in a database selection.

Program an error message for a standard selection screen

Extend your program ZBC400_##_DETAIL_LIST or the corresponding model
solution as follows:
Provide the user with a means of entering a complex value set for the flight
number. Take the values into account in your database selection.
Additionally, change your program so that the user can only progress from the
selection screen if the authorization check for the desired airline is successful.

Program: ZBC400_##_SEL_SCREEN

Model solution: SAPBC400UDS_SEL_SCREEN

1-1 Copy your program ZBC400_##_DETAIL_LIST or the corresponding model solution
SAPBC400_UDS_DETAIL_LIST to the program ZBC400_##_SEL_SCREEN. Assign your
program to development class ZBC400_## and the change request for your project
“BC400…” (## is your group number).

1-2 Extend your selection screen to allow the user to enter a complex value range for the flight
number CONNID.

1-3 Use the complex value selection to restrict the amount of data selected from the database
table SFLIGHT.

1-4 Change your program so that the user cannot progress from the selection screen if the
authorization check against the authorization object S_CARRID fails. If the authorization
check fails, display a suitable error message from message class BC400, and allow the user to
enter a different value on the selection screen.

(C) SAP AG BC400 8-24

Selection Screen Solutions

Unit: Selection screen

Model solution: Program SAPBC400UDS_SEL_SCREEN

&--

*& Report SAPBC400UDS_SEL_SCREEN *

*& *

&--

REPORT sapbc400uds_sel_screen.

CONSTANTS: actvt_display TYPE activ_auth VALUE '03'.

DATA: wa_flight TYPE sbc400focc,

 wa_sbook TYPE sbook.

PARAMETERS: pa_car TYPE s_carr_id.

* Data field for complex restrictions applied to connection id

SELECT-OPTIONS: so_con FOR wa_flight-connid.

* First event processed after leaving the selection screen

AT SELECTION-SCREEN.

 AUTHORITY-CHECK OBJECT 'S_CARRID'

 ID 'CARRID' FIELD pa_car

 ID 'ACTVT' FIELD actvt_display.

 IF sy-subrc <> 0.

* Return to selection screen again and display message in status * bar

 MESSAGE ID 'BC400' TYPE 'E' NUMBER '045' WITH pa_car.

 ENDIF.

(C) SAP AG BC400 8-25

START-OF-SELECTION.

 SELECT carrid connid fldate seatsmax seatsocc FROM sflight

 INTO CORRESPONDING FIELDS OF wa_flight

 WHERE carrid = pa_car

 AND connid IN so_con.

 wa_flight-percentage =

 100 * wa_flight-seatsocc / wa_flight-seatsmax.

 WRITE: / wa_flight-carrid,

 wa_flight-connid,

 wa_flight-fldate,

 wa_flight-seatsocc,

 wa_flight-seatsmax,

 wa_flight-percentage,'%'.

 HIDE: wa_flight-carrid, wa_flight-connid, wa_flight-fldate.

 ENDSELECT.

AT LINE-SELECTION.

IF sy-lsind = 1.

 WRITE: / wa_flight-carrid, wa_flight-connid, wa_flight-fldate.

 ULINE.

 SKIP.

 SELECT bookid customid custtype class order_date

 smoker cancelled loccuram loccurkey

 FROM sbook INTO CORRESPONDING FIELDS OF wa_sbook

 WHERE carrid = wa_flight-carrid

 AND connid = wa_flight-connid

 AND fldate = wa_flight-fldate.

 WRITE: / wa_sbook-bookid,

 wa_sbook-customid,

 wa_sbook-custtype,

 wa_sbook-class,

 wa_sbook-order_date,

 wa_sbook-smoker,

 wa_sbook-cancelled,

 wa_sbook-loccuram CURRENCY wa_sbook-loccurkey,

 wa_sbook-loccurkey.

 ENDSELECT.

ENDIF.

(C) SAP AG BC400 8-26

(C) SAP AG BC400 9-1

 SAP AG 1999

Screen attributes and strengths

Creating screens

Layout

Field attributes

Flow logic

Data transport

Using pushbuttons and evaluating user actions

Contents:

User Dialogs: Screens

(C) SAP AG BC400 9-2

 SAP AG 1999

At the conclusion of this unit, you will be able to:

Screens: Unit Objectives

Describe screen attributes and strengths

Write a program that:

Displays data on a screen

Allows the user to change some of that data

Allows the user to influence further program
processing using pushbuttons

(C) SAP AG BC400 9-3

 SAP AG 1999

FlexibleFlexible
program flowprogram flow

200

120

140

100

300

Type checksType checks

Consistency checksConsistency checks
when data is enteredwhen data is entered

PossiblePossible
entries helpentries help

Input helpInput help
?

Selection Screen Attributes

FormattingFormatting
optionsoptions

Screens are made up of more than just a monitor display with input and output fields.

Screens' integration with the ABAP-Dictionary allows the system to perform consistency checks for their
input fields automatically. These checks include required input check, type checks, foreign key checks,
and fixed value checks. All of these checks rely upon ABAP Dictionary information.

Checks like the ones above can be complemented by other program specific checks. There are
techniques available for screens that allow you to control the order in which checks are performed and, if
errors occur, to make the fields input-ready again when appropriate.

Screen layout is also very flexible. Input fields, output fields, radio buttons, check boxes, and even
pushbuttons can be placed on screens. They allow users to determine the direction in which the program
will proceed.

On the whole, such user influence on program progression allows for more program flexibility in those
programs that do contain screens.

If an input field is typed with a global Dictionary type, you can use any search help or input help
(assigned using a data element) associated to it.

Screens offer the same formatting options as lists and selection screens: Fixed point numbers and dates
are formatted according to the settings in the user master record; the time is set to hh:mm:ss; sums of
money are formatted according to the currency field; and lengths, weights, and so on are formatted
according to the content of a unit field.

(C) SAP AG BC400 9-4

 SAP AG 1999

Options for Calling Screens

100

200

300

120

140

Transaction code

CALL SCREEN 100.

You can call screens from any ABAP processing block that you want.

You can create sequences of screens and call them as a unit by calling an initial screen. You must then
implement the subsequent program flow by means of the screens' flow logic. There are two ways to call
an initial screen:

Create a transaction code of the Dialog transaction type and enter the initial screen number with the
program name. You then add this transaction code to the SAP Easy Access Menu or enter it directly
in the input field in the toolbar, which then triggers the sequence of screens.

You can call the initial screen for a program from any ABAP processing block.

(C) SAP AG BC400 9-5

 SAP AG 1999

Flight ID Departing from DestinationFlight ID Departing from Destination
LH 0400 FRA Frankfurt JFK New York
LH 0402 FRA Frankfurt JFK New York
...
SQ 0002 SIN Singapore SFO San Francisco

Timetable

Change flight dataChange flight data

Airline
Flight number

Departure airport
Destination

Flight time
Departure time

Change
in

database

Screen

Objective of the Example Program

LH

0400

8:24

10:10:00

FRA

JFK

Save Back

In the following units you will develop a program step-by-step, which changes standard flight data.

Double-click on an entry in the basic list timetable to reach a screen. This screen displays data from
the line you selected, as well as additional information about the airline. You can change flight and
departure times.

Choosing Back takes the user back to the basic list without changing any data

Choosing Save changes the data in the database.

Changes to the database can be made using function modules. See the unit on the Database Dialogs for
more about this process.

(C) SAP AG BC400 9-6

 SAP AG 1999

Parts of a Screen

Screen
attributes

Element
list

Flow control

Screen number
Short description
Screen type
Next screen
 ...

PROCESS BEFORE OUTPUT.
 MODULE CLEAR_OK_CODE.

PROCESS AFTER INPUT.
 MODULE USER_COMMAND_0100.

Screen
Painter

Which elements are
displayed on screen,
where are they, and
which attributes do
they have?

Which elements

where
which attributes

Each project requires the following information:

Screen attributes contain, for example, a four-digit number (the screen "name"), a short text, and the
screen type (normal for full screen, or modal dialog box otherwise).

The element list contains information on which elements appear on the screen, where, and what
attributes they have. Elements that are displayed on the screen are called screen objects.

The Flow logic contains information on the logic that the system must execute before sending the
screen to the presentation server, along with the logic that it must execute after control returns to the
application server (that is, after the user has performed an action).

(C) SAP AG BC400 9-7

 SAP AG 1999

Editing Screens

Screen
attributes

Element
list

Flow
logic

Screen
Painter

Graphic
Layout Editor

Graphic Layout Editor

Automatic
conversion
in the
element list

 Layout

Element list

Screen
Painter

 Flow logic

 Element list

 Screen attributes

Technically, all the data that belongs to a screen is stored in the screen attributes, the element list, and
the flow logic.

You can use the Graphic Layout Editor to create the screen layout. In the Screen Painter, choose
Layout. The Graphic Layout Editor appears. As soon as you leave it - for example, by choosing the
Previous icon (the blue arrow pointing left) - the system copies the graphical information from the Editor
to the technical values and you can continue working in the Screen Painter.

Note: To avoid inconsistencies, the Screen Painter is locked for input while you are using the Graphic
Layout Editor (that is, the system displays an egg-timer).

(C) SAP AG BC400 9-8

 SAP AG 1999

The Editing Window in the Graphical Layout Editor

Graphical Layout Editor

attributes

Element list

Create a field with
reference to the
Dictionary

Toolbar

Layout area

There are three additional dialog boxes available in the Graphic Layout Editor:

Element attributes: displays all the attributes for a screen object, some of which you can change in
this dialog box. For example, you can specify whether or not an input/output field is to be input-ready.

Dictionary/program fields: Allows you to generate fields that have either a global type or the same
type as a data object in the program.

Element list: shows all the elements displayed on the screen (screen objects) with their attributes.
You can also change attributes here.

(C) SAP AG BC400 9-9

 SAP AG 1999

Flight ID Departing from DestinationFlight ID Departing from Destination
LH 0400 FRA Frankfurt JFK New York
LH 0402 FRA Frankfurt JFK New York
...
SQ 0002 SIN Singapore SFO San Francisco

Timetable

Change flight dataChange flight data

Airline
Flight number

Departure airport
Destination

Flight time
Departure time

Example, Step 1: Creating a Screen

Screen

Your first step is to create a screen, specify its layout, and define its field attributes. The fields: Airline,
Flight Number, Departure Airport, and Arrival Airport should appear as output fields, Flight Time and
Departure Time as input fields.

You should be able to call your screen by double-clicking a line within the basic list and you should be
able to return to the basic list by choosing the appropriate function key on the screen.

(C) SAP AG BC400 9-10

 SAP AG 1999

 CancelYes No

Create object

Screen 100 does not exist.
Do you want to create the object?

Creating a Screen: Screen Attributes

 :
AT LINE-SELECTION.
 :
 CALL SCREEN 100.
 :

Short description

Next screen 0

ABAP

100 Double-click

Screen Attributes

Supplemental data display

Screen type

Normal
Subscreen
Modal dialog box

Screen
Painter

There are several ways to create screens:

Forward Navigation: You can create screens from within the ABAP Editor by double-clicking on
the screen number. This transfers you into Screen Painter automatically

Object Navigator: You can also create a screen from the object list in the Object Navigator

When creating a screen for the first time the system will ask you to enter screen attributes. Enter a
short description of the screen, select screen type Normal and enter the number of the subsequent
screen in the Next Screen input field.

If you enter 0 or leave the Next Screen field blank, the system first processes your screen completely
and then returns to processing the program at the point immediately following the screen call. Be aware
that in the input field of the next screen 0 is suppressed as an initial value during display.

In this example the screen you create is supposed to be called from within a basic list. Therefore CALL
SCREEN 100 must belong to the event block AT LINE-SELECTION.

(C) SAP AG BC400 9-11

 SAP AG 1999

Input Fields with Reference to Fields of a
Dictionary Structure

T

X

Airline
Flight number

Departure airport
Destination

Flight time
Departure time

sdyn_conn

There are two ways of assigning field attributes to screen fields:

Adopt them from the Dictionary: You can adopt types and field attributes from existing ABAP
Dictionary structures. This makes all information about the object available to you, including
semantic information about its data elements and foreign key dependencies. The name of the
Dictionary field is automatically adopted as a field name.

Adopt them from a program: You can adopt field attributes from data objects already defined
within a program. To do this, however, an activated copy of the program must already exist. The
name of the data object is automatically adopted as a field name.

The Graphical Screen Painter's interface allows you to define screen elements (for example, input and
output fields, keyword texts, borders, and so on) with relative ease. Choose the desired screen element
from the column on the left and then place it on the screen using your mouse.

You can delete screen elements simply by selecting them with your mouse and then choosing Delete.

You can move screen elements by holding down your left mouse button and dragging them to a new
position.

(C) SAP AG BC400 9-12

 SAP AG 1999

Changing the Element Attributes of a Field: The
Attribute Window

T

X

AttributesAttributes

Dict

FCode FType

Line Column

Name
Text

Prog Disp

Airline
Flight number

Departure airport
Destination

Flight time
Departure time

Input field
Output field
Required field
 . . .

SDYN_CONN-CARRID

You can maintain screen field attributes by selecting a field and choosing Attributes.

You can classify certain fields as 'mandatory' (Required field). A question mark is displayed at runtime if
the field is initial.

If not all required fields have been filled at runtime and a user action is performed, an error dialog is
triggered and all input fields are once again displayed ready for input.

(C) SAP AG BC400 9-13

 SAP AG 1999

Flight ID Departing from DestinationFlight ID Departing from Destination
LH 0400 FRA Frankfurt JFK New York
LH 0402 FRA Frankfurt JFK New York
...
SQ 0002 SIN Singapore SFO San Francisco
 Change flight dataChange flight data

Airline
Flight number

Departure airport
Destination

Flight time
Departure time

Screen

Example, Step 2: Displaying Data

Timetable

LH

0400

8:24

10:10:00

FRA

JFK

In step two you will learn how to program data transport from a basic list onto your screen.

For the user, the program works in the following manner:

By double-clicking on a line in the basic list the user branches to a screen. On this screen the most
important bits of information for the connection he or she has chosen are displayed. The flight time
and departure time are displayed in a field that is ready for input and hence can be changed.

The user can return to the basic list in one of several ways.

With this in mind, this part of the unit will deal with:

Prerequisites for automatic data transport between programs and screen fields

Defining the screen interface and programming data transport to the interface's data objects

(C) SAP AG BC400 9-14

 SAP AG 1999

Screen Interfaces

Screen 100

Data objects

ABAP
processing
block

ABAP program

DATA wa_spfli TYPE spfli.
TABLES sdyn_conn.TABLESTABLES

Local program types and fields

wa_spfli
sdyn_conn

sdyn_conn

sdynsdyn__connconn

Process
Before
Output

Process
After
Input

The statement TABLES declares an internal data object that is used as an interface for the screen.
TABLES always refers to a structure defined in the ABAP Dictionary.

If a TABLES statement and a screen field both refer to the same Dictionary structure, this data object's
data is transported to the screen fields every time the screen is called. Any new entries or changes that
the user makes on the screen are then transferred back into this data object.

Normally the ABAP Dictionary contains structures with fields that correspond to several different tables.
These tables in turn correspond to the business view of particular applications. The flight data programs
being created in this course use one structure for master data maintenance (sdyn_conn) and another
for bookings data (sdyn_book). Using your own structures as interfaces usually helps make a program
easier to understand and help you avoid errors.

(C) SAP AG BC400 9-15

 SAP AG 1999 Time

Data Transport from the Program to the Screen

Data objects

ABAP runtime system

ABAP program

DATA wa_spfli TYPE spfli.
TABLES sdyn_conn

Local program types and fields

wa_spfli

sdyn_connsdyn_connsdyn_conn

ABAP
processing
block

CALL SCREEN 100.

Screen 100

Process
Before
Output

Process
After
Input

Data transport takes place automatically between screens and program data objects of the same name:

Immediately before a screen is sent to the presentation server (after all PBO event modules have
been processed) the system copies field contents out of the ABAP work area into their
corresponding fields in the screen work area.

ABAP statements facilitate data transport between program data objects and the work area designated
as the screen interface.

(C) SAP AG BC400 9-16

 SAP AG 1999 Time

Data Transport from the Screen to the Program

Data objects

ABAP runtime system

ABAP program

DATA wa_spfli TYPE spfli.
TABLES sdyn_conn

Local program types and fields

wa_spfli

sdyn_connsdyn_connsdyn_conn

ABAP
processing
block

CALL SCREEN 100.

Screen 100

Process
Before
Output

Process
After
Input

Data transport takes place automatically between screens and program data objects of the same name:

Immediately after a user action (before the first PAI module has been processed) the system
copies field contents out of the screen work area and into their corresponding fields in the ABAP
work area.

ABAP statements facilitate data transport between program data objects and the work area designated
as the screen interface.

(C) SAP AG BC400 9-17

 SAP AG 1999

Data Transport in the Example Program

ABAP runtime system

Time

Automatic
data transport

HIDE area
in data objects

TABLES structures
in screen fields

Screen fields in
TABLES structures

ABAP program

Fill the TABLES
structure with current
data for the line
selected

CALL SCREEN 100.

AT LINE-SELECTION.

The example program should display data appropriate to the line selected in the basic list.

If data objects and their values were stored in the HIDE area when the basic list was created, the data
belonging to the selected line will be placed in the corresponding data objects.

You must copy the data to be displayed to a TABLES structure. which you can do in any ABAP
processing block processed before the screen is sent to the presentation server. There are two ways of
doing this:

You start by reading all the data to be displayed before retrieving the basic list from the database and
displaying it. You then place all the necessary data in the HIDE area. Then, at the AT LINE-
SELECTION event, you only after to copy the data from other data objects into the TABLES structure.
Advantage: You only have to read data from the database into the program once.
Disadvantage: You have to read data from the database that the user may not even look at. If
detailed data has changed between creating the basic list and displaying the screen, the system will
display the wrong data.

You store the key fields in the basic list in the HIDE area when you create the basic list, and read the
data for the selected key from the database using SELECT SINGLE.
Advantage: You reduce the volume of data that you need to read from the database when you create
the basic list. The detailed data on the screen is up-to-date.
Disadvantage: The system sends a query to the database every time the user double-clicks the list.

(C) SAP AG BC400 9-18

The data is copied from the TABLES structure to the identically-named screen fields immediately before
the screen is sent to the presentation server.

(C) SAP AG BC400 9-19

 SAP AG 1999

Data Availability

Fields:

MANDT
CARRID
CONNID
COUNTRYFR
CITYFROM
AIRPFROM
COUNTRYTO
CITYTO
AIRPTO
FLTIME
DEPTIME
ARRTIME
DISTANCE
DISTID
FLTYPE

Basic
list HIDE area

Screen:
Output Field Input Field

Before calling the screen:
SELECT SINGLE * FROM spfli ...

wa_spfliStructure: sdyn_conn

As a last step, we will extend the program so that users can change data in the database - specifically,
the fields FLTIME and DEPTIME. To allow the user to change data for several airlines, the system
should display a basic list of all airlines that he or she is authorized to change. The user reaches the
maintenance screen by double-clicking. Once the changes have been made successfully, he or she
returns to the basic list. However, the system does not create a new basic list. Therefore the data that
can be changed should not appear on the basic list.

In order to ensure that the database data that is displayed on the screen is up-to-date, the record is read
again from the database at the beginning of AT LINE-SELECTION.

The main advantages of this method are:

For the basic list, only those columns of the database table that are displayed on the list need to be
read. This can improve performance with large lists.

The data that is displayed on the screen is always up-to-date, even if the data record selected has
only just been changed using this program. This would not happen if all screen data was placed in the
HIDE area when the basic list is created.

Changes made to the database using the screen do not lead to incorrect values in the basic list, as
the modifiable fields are not contained in the list.

Looking ahead to the lock concept: The lock times can be shortened. You can find more detailed
information on this topic in the Database Dialogs unit.

(C) SAP AG BC400 9-20

The program can be extended: You can display additional information from the data record on the
screen without having to make many changes.

(C) SAP AG BC400 9-21

 SAP AG 1999

START-OF-SELECTION.
*
 SELECT carrid connid airpfrom cityfrom airpto cityto
 INTO CORRESPONDING FIELDS OF wa_spfli
 FROM spfli.
 WRITE: / wa_spfli-carrid COLOR COL_KEY,
 wa_spfli-connid COLOR COL_KEY,

* Buffering key fields
 HIDE: wa_spfli-carrid, wa_spfli-connid.

 ENDSELECT.

AT LINE-SELECTION.

 SELECT SINGLE * FROM spfli
 INTO wa_spfli
 WHERE carrid = wa_spfli-carrid
 AND connid = wa_spfli-connid.

 CALL SCREEN 100.

HIDE:HIDE: wa wa_spfli-carrid,_spfli-carrid, wa wa_spfli-connid._spfli-connid.

SELECT SINGLE * FROM spfli SELECT SINGLE * FROM spfli
 INTO INTO wawa_spfli_spfli
 WHERE carrid = WHERE carrid = wa wa_spfli-carrid_spfli-carrid
 AND connid = AND connid = wawa_spfli-connid._spfli-connid.
MOVE-CORRESPONDING MOVE-CORRESPONDING wawa_spfli to sdyn_conn._spfli to sdyn_conn.

Syntax: Example Program with Data Transport

To display data on the screen, the TABLES structure must be filled with current data before the screen
is sent to the presentation server. The example above shows one way of doing this.

The HIDE statement is used to place key fields of database tables with reference to the list line in the
HIDE area. Then the current data for the line selected is available in fields wa_spfli-carrid and
wa_spfli-connid at event AT LINE-SELECTION.

The data record is read from the database using SELECT SINGLE. This ensures that the structure
contains current data, even if the user has just changed the data. The structure is assigned the same
type as the database table line type, so that suitable fields are available for all data in the data record.

The corresponding fields are copied to the TABLES structure sdyn_conn using MOVE-
CORRESPONDING. The system transports the structure data to the screen fields automatically.

Alternatively, you can place the data in the TABLES structure directly when the database is accessed,
using the INTO CORRESPONDING FIELDS addition.

(C) SAP AG BC400 9-22

 SAP AG 1999

Flight ID Departing from DestinationFlight ID Departing from Destination
LH 0400 FRA Frankfurt JFK New York
LH 0402 FRA Frankfurt JFK New York
...
SQ 0002 SIN Singapore SFO San Francisco
 Change flight dataChange flight data

Airline
Flight number

Departure airport
Destination

Flight time
Departure time

ScreenScreen

Example, Step 3: Defining Pushbuttons

Message2 in
Status bar

Message1 in
Status bar

TimetableTimetable

LH

0400

8:24

10:10:00

FRA

JFK

Save Back

In step three you will learn how to designate pushbutton functions. These functions allow different kinds
of program logic to be processed according to user choice.

For the user, the program works in the following manner:

When the user double-clicks a line in the basic list, the system displays a new screen. he most
important bits of information for the connection he or she has chosen are displayed on this screen.
The flight time and departure time can be changed.

When the user chooses the Back pushbutton, he or she returns to the basic list without writing any
changes to the database. The message 'Screen was left without any changes being made' is
displayed in the status bar of the basic list.

When the user chooses Save, the system writes all his or her changes to the database. We will
take a closer look at this step in the unit Database Dialogs. In the following section, the pushbutton
has already been prepared. After choosing the pushbutton, the user should return to the basic list
and the sysetm should display a message in the status bar.

After pressing Enter, the screen is displayed again.

Changes to the database are discussed in the unit Database Dialogs.

With this in mind, this part of the unit deals with:

Flow logic in PBO and PAI event blocks

(C) SAP AG BC400 9-23

Using PBO and PAI modules as ABAP processing blocks for screen programming

How to control how the program continues according to the pushbutton chosen by the user.

(C) SAP AG BC400 9-24

 SAP AG 1999

Runtime Behavior When User Chooses a
Pushbutton

Time

Global data object

ABAP runtime system

ABAP program

Back

BACK function code

ok_code BACK

CASE ok_code .
 WHEN 'BACK'.
 ...

ENDCASE.

If the user chooses a pushbutton, the runtime system copies the associated function code to a special
program data object This data object is usually called the ok_code. The content of this ok_code field is
then evaluated in an ABAP processing block, which allows you to create a program flow that depends on
the user's actions. The following slides deal with: how you declare the ok_code field; how you create
pushbuttons and assign function codes to them; and how you can, for example, change the sequence of
screens depending on the user's actions.

(C) SAP AG BC400 9-25

 SAP AG 1999

Defining Pushbuttons / Assigning Function Codes

T

X

AttributesAttributes

Dict

FCode FType

Line colum
n

Name
Text

Prog Disp

Airline
Flight number

Departure airport
Destination

Flight time
Departure time

Back

Input field
Output field
 . . .

BUTTON2

Save

BACK

Back

To define functions for specific pushbuttons, you must assign them to function codes first. You can do
this either on the attributes screen or in the field list in the graphical Layout Editor.

(C) SAP AG BC400 9-26

 SAP AG 1999

Making the Command Field Usable

Screen PainterScreen Painter: : Element listElement list

BUTTON1
BUTTON2
OK_CODEOK

Save
Back

SAVE
BACK

Field name

... ...

TABLES: sdyn_conn.
DATA: ok_code like sy-ucomm.

ABAP
Editor

Screen
Painter

Function codeField text

General attributes

DATA: ok_code LIKE sy-ucomm.

1

2

OK_CODE

The OK_CODE field is a data object which the system fills with the corresponding function codes after
every user action.

The name OK_CODE must be inserted as the last line in every screen's field list. Generally, you use
the name OK_CODE.

If you define a corresponding data object of the same name in a program's declaration area, the system
places the function code of the pushbutton chosen by the user in the data object at runtime. You can use
field sy-ucomm as a reference field.

(C) SAP AG BC400 9-27

 SAP AG 1999 Time

Modules

ABAP runtime system

CALL SCREEN 100.

MODULE <name>
 OUTPUT.
ENDMODULE.

MODULE <name>
 INPUT.
ENDMODULE.

Data objects

100

PBO

MODULE
 <name>.

PAI
MODULE
 <name>.

ABAP program

The ABAP statement CALL SCREEN <nnnn> interrupts processing block processing and calls a
screen.

Each screen has two corresponding event blocks:

­ PROCESS BEFORE OUTPUT (PBO) is processed immediately before a screen is displayed. At
this time modules are called that take care of tasks such as inserting recommended values into
input fields.

­ PROCESS AFTER INPUT (PAI) is processed immediately after a user action. All program logic
that is influenced by user action must be processed at PAI.

Note: The code for the events PBO and PAI is written using the Screen Painter and not the ABAP
Editor. These two event blocks make up a screen's flow logic.
When programming flow logic, use the set of commands called Screen ABAP. MODULE <ABAP module
name> is the most important Screen ABAP command. It calls a special ABAP processing block called a
module.

Modules are ABAP processing blocks with no interface that can only be called from within a program's
flow logic. Modules begin with the ABAP statement MODULE and end at ENDMODULE.

Program logic that logically belongs to a specific screen should normally be processed at the screen's
PBO and PAI events.

(C) SAP AG BC400 9-28

 SAP AG 1999

PROCESS BEFORE OUTPUT.

ABAP
Editor

Screen
Painter

BackSave

The user_command_<nnnn> PAI Module

MODULE user_command_0100 INPUT.
* PROGRAMMLOGIK

 CASE ok_code.
 WHEN 'BACK'. ...
 WHEN 'SAVE'. ...
 ENDCASE.
ENDMODULE.

MODULE user_command_0100 INPUT.

ENDMODULE.

CASE
PROCESS AFTER INPUT.

 MODULE user_command_0100. MODULE user_command_0100.

You evaluate user actions in a PAI module, usually called the user_command_<nnnn> (where <nnnn>
is the screen number). To do this, you evaluate the function code in the command field.

Note: You cannot include any ABAP statements in the flow logic. Instead, you must call an ABAP
module using the MODULE statement. For historical reasons, modules have no interface and no local
variables. You can access all the ABAP program's global data in modules.

(C) SAP AG BC400 9-29

 SAP AG 1999

PROCESS AFTER INPUT.
MODULE user_command_100.

MODULE user_command_100 INPUT.

ENDMODULE.

ABAP
Editor

Screen
Painter

Creating Modules Using Forward Navigation

 CancelYes No

Create object

PBO module USER_COMMAND_100 does not exist.
Do you want to create the object?

Double-click

USER_COMMAND_0100PAI module

New include
Main program

Include selection

ZBC400_00_DYNPRO

Create PAI module

You can implement calls such as MODULE within a screen's flow controls (PBO and PAI events). The
modules themselves are, however, created using ABAP.

There are two ways to create a module:

Using forward navigation: Double-click the module name from within the Screen Painter Editor to
create the module.

Using the Object Navigator: If you want to create a module using the object list in the Object
Navigator, first display your program, then choose 'PBO module' or 'PAI module' in the
ProgramObjects display and create a new development object by selecting the create icon.

A module can be called from more than one screen. (Reusability)

Be aware that modules called at PBO events must be defined using the MODULE ... OUTPUT
statements whereas modules defined using MODULE ... INPUT are defined at PAI.

(C) SAP AG BC400 9-30

 SAP AG 1999Time

Next Screen (Set Statically) = 0

ABAP runtime system

CALL SCREEN 100.

Next Screen 0

Data objects

Screen attributes

Next screen 0

100

PBO

PAI

ABAP program

If you enter 0 or leave the Next Screen field blank, the system first processes your screen completely
and then carries on processing the program from where the screen was called.

(C) SAP AG BC400 9-31

 SAP AG 1999 Time

Next Screen (Set Statically) = Screen Number

ABAP runtime system

CALL SCREEN 100.

Next screen 100

ABAP programData objects

100

PBO

PAI

Screen attributes

Next screen 100

If you set the Next screen of screen 100 to 100, the system processes the screen again, after it has
finished processing the PAI module.

(C) SAP AG BC400 9-32

 SAP AG 1999Time

Setting the Next Screen Dynamically

ABAP runtime system

100

PBO
CALL SCREEN 100.

PAI

Screen attributes

Next screen 100

SET SCREEN 0.SET SCREEN 0SET SCREEN 0

 0 0

Next screen 0

Data objects ABAP program

You can use the ABAP statement SET SCREEN <nnnn> within a PAI module to set the Next screen
value automatically.

Often the same screen number is entered in both the Screen number and Next screen fields. In this
case, when you choose Enter, a field check is performed and the system returns you to the same
screen. In order to leave the screen, an appropriate pushbutton must be defined that then triggers a Next
screen change within the PAI module.

Note that, if the system processes the same screen again, it also runs through all the PBO modules
again. If you decide to fill the TABLES structure by means of a PBO module, you must make sure that
you do not overwrite changes that the user has made on screen to the data, if the module gets called
twice.

(C) SAP AG BC400 9-33

 SAP AG 1999

Syntax Example: The user_command_100 Module

DATA: ok_code LIKE sy-ucomm.

 .
 .

MODULE USER_COMMAND_100 INPUT.
CASE ok_code.
 WHEN 'BACK'.
 SET SCREEN 0.
 MESSAGE ID 'BC400' TYPE 'S' NUMBER '057'.
 WHEN 'SAVE'.
* Calling a function module to save changes is left out for
* didactical reasons until chapter 'Database Dialogs 2'
 SET SCREEN 0.
 MESSAGE ID 'BC400' TYPE 'S' NUMBER '058'.
 ENDCASE.
ENDMODULE.

CASE ok_code.
WHEN 'BACK'.

WHEN 'SAVE'.

In this example program two pushbuttons should trigger changes in the Next screen value:

Choosing 'BACK' should automatically set this value to 0. This sends the user back to the last
screen called before the present one. In your sample program, you return to a basic list if the detail
list buffer has not been filled, or, if it has been filled, a detail list is displayed. Message 057 appears
in the status bar of the screen subsequently displayed.

Choosing 'SAVE' causes an S message to be displayed and the system then displays a basic list or
a detail list, the same as when the user chooses 'BACK'. We will write these changes to the
database in the unit on Database Dialogs II.

(C) SAP AG BC400 9-34

 SAP AG 1999

Exceptional Runtime Behavior
When ENTER Is not Assigned to a Function Code

Screen field
OK_CODE

Basic list

Data object
ok_code

BACK

BACK
BACK

Screen 0100

ABAP
processing block

ABAP program

Double-click

back

BACK

Double-click

?
?T

im
e

At runtime, the behavior is as follows:

The user starts the program and double-clicks to display detailed information on the screen. It is clear
that all the data is correct so he or she returns to the basic list by choosing the green arrow.

The system stores the function code 'BACK', assigned to the pushbutton, in the command field. This
function code is then evaluated in a PAI module. The next screen is set to 0. Then AT LINE-
SELECTION is processed further. If there is no WRITE statement, the system displays the basic list
again.

The user then displays details for another record by double-clicking it. Automatic field transport copies
the data object, ok_code, to the identically-named screen field and the appropriate screen is displayed.

If the user now chooses ENTER, he or she should once again branch to that screen. However, ENTER
has not been assigned to a function code so the command field has not been over-written. The function
code BACK remains in the command field and is copied to the program command field at the beginning
of he PAI event. This function code is then evaluated in a PAI module. Consequently (as described
above) the system goes back to the basic list, instead of re-displaying the screen as the user expected.

(C) SAP AG BC400 9-35

 SAP AG 1999

Possible Solution: Deleting the Command Field in
a PBO Module

PROCESS BEFORE OUTPUT.
 MODULE clear_ok_code.

PROCESS AFTER INPUT.

 MODULE user_command_0100.

ABAP
Editor

MODULE clear_ok_code OUTPUT.
 CLEAR ok_code.
ENDMODULE.

MODULE user_command_0100 INPUT.
* PROGRAMMLOGIK

 ENDMODULE.

Screen
Painter

BackSave

MODULE clear_ok_code INPUT.

ENDMODULE.

CLEAR ok_code.

MODULE clear_ok_code.

If the command field (the OK_CODE) field is not initialized, errors can occur, since the system does not
force you to assign a function code to every pushbutton. There are two ways of initializing the command
field:

In a PBO module. Then it is set to the initial value at PAI, unless the user has carried out a user action
to which a function code is assigned. In this case, the OK_CODE field contains the function code.

Use an auxiliary field and copy the contents of the OK_CODE field to the auxiliary field in a PAI
module, and then initialize the OK_CODE field. In this case, the auxiliary field must be queried in the
PAI module for the function code evaluation.

(C) SAP AG BC400 9-36

 SAP AG 1999

You are now able to:

Screens: Unit Summary

Describe screen attributes and strengths

Write a program that:

Displays data on a screen

Allows the user to change some of that data

Allows the user to influence further program
processing using pushbuttons

(C) SAP AG BC400 9-37

Screens: Exercises

Unit: Screens

Topic: Creating Screens

At the conclusion of these exercises, you will be able to:

Create screens

Call existing from the program

Program SAPBC400UDT_DYNPRO_A displays all bookings made by one
agency as a list.
Extend the program as follows:
Double-clicking on a line in the basic list should call a screen. This screen
should contain input fields for specific booking data that is not displayed on the
list. This screen should also contain output fields for booking information that is
already displayed on the list. Any user action should result in the basic list being
displayed again

Program: ZBC400_##_DYNPRO

Model solution: SAPBC400UDS_DYNPRO_A

Template: SAPBC400UDT_DYNPRO_A

1-1 Copy the template SAPBC400UDT_DYNPRO_1 to your program ZBC400_##_DYNPRO.
Assign the program to development class ZBC400_## and the change request for the project
“BC400…” (replacing ## with your group number).

1-2 Become familiar with the program. Test the program using the agency number 1## (## is your
group number).

1-3 Selecting a line on the basic list (by double-clicking or using F2) should call a screen. Create
this screen (screen number 100) using forward navigation.

1-4 For the attributes, assign screen number 0 as the number of the next screen, so that after any
user action on screen 100, the user returns to the basic list.

1-5 Create input/output fields on the screen. When you are assigning field types, refer to ABAP
Dictionary structure SDYN_BOOK.

The booking table key fields CARRID, CONNID, FLDATE, and BOOKID should be copied with their
field labels.

(C) SAP AG BC400 9-38

The customer name NAME should be copied without a field label and be displayed next to the
customer number.

The fields CUSTOMID, CUSTTYPE, SMOKER, CLASS, LOCCURAM, and LOCCURKEY should be
copied with field labels.

1-6 Maintain the screen field attributes:

Fields CARRID, CONNID, FLDATE, BOOKID and CUSTOMID should be displayed as output fields
(Output field attribute).

The customer name NAME should be displayed next to the customer number without text (Output only
attribute).

The fields CUSTOMID CUSTTYPE, SMOKER, CLASS, LOCCURAM and LOCCURKEY are
input/output fields (Input field/Output field attribute).

(C) SAP AG BC400 9-39

Unit: Screens

Topic: Data transport

At the conclusion of these exercises, you will be able to:

Fill the screen fields with data from the program

Extend your program, ZBC400_##_ DYNPRO:
Double-clicking on a line of the basic list displays details of the selected booking
on the screen. If the user changes data on the screen, then these changes
should be available in the program once the user has left the screen.

Program: ZBC400_##_DYNPRO

Model solution: SAPBC400UDS_DYNPRO_B

2-1 Extend your program, ZBC400_##_DYNPRO, or copy the relevant model solution
SAPBC400UDS_DYNPRO_A and give it the name ZBC400_##_DYNPRO_B. Assign your
program to the development class ZBC400_## and to the transport request for this project,
BC400… (replacing ## with your group number).

2-2 Use a work area as an interface between the program and the screen. Since you used a
reference to a Dictionary structure type when assigning screen field types, you must use the
TABLES declarative statement.

2-3 Ensure that the SBOOK database table key fields and the customer name are still available
(HIDE: ...) in the AT LINE-SELECTION event block after a line has been selected on the basic
list (double click or F2).

2-4 You should then extend your program so that data can be changed on the database. Ensure
that the screen can only be processed if the user has change authorization for the airline
selected.
In order to ensure that double-clicking a line in the basic list displays up-to-date data, the data
record must be read from the database table SBOOK before the screen is processed.
Therefore, before calling the screen, copy the most recent data for the booking selected from
the database table SBOOK to a structure that has the same line structure as the database

(C) SAP AG BC400 9-40

table. If the data record cannot be read, the system must display information message 176
from message class BC400. If the record is successfully read, call the screen.

2-5 Immediately before calling the screen, copy the relevant data to the TABLES work area that
serves as an interface to the screen.

Unit: Screens

Topic: Field Transports and Next Screen Processing

At the conclusion of these exercises, you will be able to:

Create pushbuttons on screens

Process the system code triggered when the user clicks on a pushbutton and
control the program flow

Set the next screen dynamically

(C) SAP AG BC400 9-41

Extend your program, ZBC400_##_ DYNPRO:
The user should be given a choice of two pushbuttons on the screen that control
the program flow.

Program: ZBC400_##_DYNPRO

Model solution: SAPBC400UDS_DYNPRO_C

3-1 Extend your program, ZBC400_##_DYNPRO, or copy the relevant model solution
SAPBC400UDS_DYNPRO_B and give it the name ZBC400_##_DYNPRO_C. Assign your
program to the development class ZBC400_## and the task that has already been created for
you (replacing ## with your group number).

3-2 Define two pushbuttons on the screen that allow the user to either return to the basic list
(PUSH_BACK) or to save changes to data (PUSH_SAVE):

Name of pushbutton Text Function code
PUSH_BACK Back BACK

PUSH_SAVE Save

or icon

ICON_SYSTEM_SAVE

SAVE

3-3 Name the OK_CODE field on the screen and define a data object of the same name (and
corresponding type) in the program.

3-4 Navigate in the flow logic. Create a module for function code processing (using forward
navigation) at PROCESS AFTER INPUT:

Function code Action Next screen
BACK None List

SAVE First:

Information message No.

060(BC400)

List

Other None Screen 100

3-5 Ensure that pressing 'Enter' always displays screen 100, regardless of the navigation history.
Initialize the OK_CODE field in a PBO module.

(C) SAP AG BC400 9-42

Screens Solutions

Unit: Screens

Topic: Creating Screens

Model solution: Program SAPBC400UDS_DYNPRO_A

&--

*& Report SAPBC400UDS_DYNPRO_A *

*& *

*& Define and Call a Screen *

&--

REPORT sapbc400uds_dynpro_a.

CONSTANTS actvt_display TYPE activ_auth VALUE '03'.

* Definition of selection screen

PARAMETERS pa_anum TYPE sbook-agencynum.

* workarea for select

DATA: wa_booking TYPE sbc400_booking.

START-OF-SELECTION.

* selecting data using a dictionary view to get the data from sbook and

* the customer name from scustom

 SELECT carrid connid fldate bookid customid name

 FROM sbc400_booking

 INTO CORRESPONDING FIELDS OF wa_booking

 WHERE agencynum = pa_anum.

 AUTHORITY-CHECK OBJECT 'S_CARRID'

 ID 'CARRID' FIELD wa_booking-carrid

(C) SAP AG BC400 9-43

 ID 'ACTVT' FIELD actvt_display.

 IF sy-subrc = 0.

*Output

 WRITE: / wa_booking-carrid,

 wa_booking-connid,

 wa_booking-fldate,

 wa_booking-bookid,

 wa_booking-name.

 ENDIF.

 ENDSELECT.

AT LINE-SELECTION.

 CALL SCREEN 100.

1-3 Create a screen using forward navigation

 (double-click “100” in the CALL SCREEN 100 statement).

1-4 Maintain screen attributes

 Enter a descriptive short text

 Set the next screen to 0

1-5 Layout

 - Navigate to the graphical Layout Editor

 Choose Dict/Program fields

 - Enter SDYN_BOOK

 Choose the Get from Dictionary icon

 - Check the fields you want,

 choose Enter to confirm, and drag these fields to the screen

 Block 1

 Key fields: CARRID, CONNID, FLDATE and BOOKID

 Copy with field names

 Block 2

 Customer name NAME

 Copy without a field name (choose the Without text radio button)

 Block 3

 Copy the fields: CUSTOMID, CUSTTYPE, SMOKER, CLASS,

(C) SAP AG BC400 9-44

 LOCCURAM, and LOCCURKEY

 with field names

1-6 Change the field attributes -

 for example, by double-clicking the input field

 - Adapt the short texts:

 The fields CARRID, CONNID, FLDATE, BOOKID, and CUSTOMID

 should be displayed as output fields (the Output field) attribute.

 The customer name NAME should be displayed next to the customer number without text
(Output only attribute).

 The fields CUSTTYPE, SMOKER, CLASS, LOCCURAM, and

 LOCCURKEY should both input-ready and output-ready (the Input/Output field attribute).

(C) SAP AG BC400 9-45

Unit: Screens

Topic: Data transport

Model solution: Program SAPBC400UDS_DYNPRO_B

&--

*& Report SAPBC400UDS_DYNPRO_B *

*& *

*& Define and Call a Screen and display data on the screen *

&--

REPORT sapbc400uds_dynpro_b.

CONSTANTS: actvt_display TYPE activ_auth VALUE '03',

 actvt_change TYPE activ_auth VALUE '02'.

* Definition of selection screen

PARAMETERS pa_anum TYPE sbook-agencynum.

* workarea for list

DATA wa_booking TYPE sbc400_booking.

* workarea for single booking to be changed

DATA wa_sbook TYPE sbook.

* workarea for dynpro

TABLES sdyn_book.

START-OF-SELECTION.

* selecting data using a dictionary view to get the data from sbook and

* the customer name from scustom

 SELECT carrid connid fldate bookid customid name

 FROM sbc400_booking

 INTO CORRESPONDING FIELDS OF wa_booking

 WHERE agencynum = pa_anum.

(C) SAP AG BC400 9-46

 AUTHORITY-CHECK OBJECT 'S_CARRID'

 ID 'CARRID' FIELD wa_booking-carrid

 ID 'ACTVT' FIELD actvt_display.

 IF sy-subrc = 0.

*Output

 WRITE: / wa_booking-carrid,

 wa_booking-connid,

 wa_booking-fldate,

 wa_booking-bookid,

 wa_booking-name.

 HIDE: wa_booking-carrid,

 wa_booking-connid,

 wa_booking-fldate,

 wa_booking-bookid,

 wa_booking-name.

 ENDIF.

 ENDSELECT.

AT LINE-SELECTION.

 IF sy-lsind = 1.

 AUTHORITY-CHECK OBJECT 'S_CARRID'

 ID 'CARRID' FIELD wa_booking-carrid

 ID 'ACTVT' FIELD actvt_change.

 IF sy-subrc = 0.

 SELECT SINGLE *

 FROM sbook

 INTO wa_sbook

 WHERE carrid = wa_booking-carrid

 AND connid = wa_booking-connid

 AND fldate = wa_booking-fldate

 AND bookid = wa_booking-bookid.

 IF sy-subrc = 0.

 MOVE-CORRESPONDING wa_sbook TO sdyn_book.

 MOVE wa_booking-name TO sdyn_book-name.

(C) SAP AG BC400 9-47

 CALL SCREEN 100.

 ENDIF.

 ELSE .

 MESSAGE ID 'BC400' TYPE 'S' NUMBER '047' WITH wa_booking-carrid.

 ENDIF.

 ENDIF.

* INCLUDE bc400uds_dynpro_bo01.

* INCLUDE bc400uds_dynpro_bi01.

(C) SAP AG BC400 9-48

Unit: Screens

Topic: Field Transports and Next Screen Processing

Model solution: Program SAPBC400UDS_DYNPRO_C

&--

*& Report SAPBC400UDS_DYNPRO_C *

*& *

*& Define and Call a Screen and display data on the screen *

&--

REPORT sapbc400uds_dynpro_c.

CONSTANTS: actvt_display TYPE activ_auth VALUE '03',

 actvt_change TYPE activ_auth VALUE '02'.

* Definition of selection screen

PARAMETERS pa_anum TYPE sbook-agencynum.

* workarea for list

DATA wa_booking TYPE sbc400_booking.

* workarea for single booking to be changed

DATA wa_sbook TYPE sbook.

* workarea for dynpro

TABLES sdyn_book.

* variable for function code of user action

DATA ok_code LIKE sy-ucomm.

START-OF-SELECTION.

* selecting data using a dictionary view to get the data from sbook and

* the customer name from scustom

 SELECT carrid connid fldate bookid customid name

 FROM sbc400_booking

(C) SAP AG BC400 9-49

 INTO CORRESPONDING FIELDS OF wa_booking

 WHERE agencynum = pa_anum.

 AUTHORITY-CHECK OBJECT 'S_CARRID'

 ID 'CARRID' FIELD wa_booking-carrid

 ID 'ACTVT' FIELD actvt_display.

 IF sy-subrc = 0.

*Output

 WRITE: / wa_booking-carrid,

 wa_booking-connid,

 wa_booking-fldate,

 wa_booking-bookid,

 wa_booking-name.

 HIDE: wa_booking-carrid,

 wa_booking-connid,

 wa_booking-fldate,

 wa_booking-bookid,

 wa_booking-name.

 ENDIF.

 ENDSELECT.

 CLEAR wa_booking.

AT LINE-SELECTION.

 IF sy-lsind = 1.

 AUTHORITY-CHECK OBJECT 'S_CARRID'

 ID 'CARRID' FIELD wa_booking-carrid

 ID 'ACTVT' FIELD actvt_change.

 IF sy-subrc = 0.

 SELECT SINGLE *

 FROM sbook

 INTO wa_sbook

 WHERE carrid = wa_booking-carrid

 AND connid = wa_booking-connid

 AND fldate = wa_booking-fldate

 AND bookid = wa_booking-bookid.

(C) SAP AG BC400 9-50

 IF sy-subrc = 0.

 MOVE-CORRESPONDING wa_sbook TO sdyn_book.

 MOVE wa_booking-name TO sdyn_book-name.

 CALL SCREEN 100.

 ENDIF.

 ELSE .

 MESSAGE ID 'BC400' TYPE 'S' NUMBER '047' WITH wa_booking-carrid.

 ENDIF.

 ENDIF.

 CLEAR: wa_sbook, wa_booking.

 INCLUDE bc400uds_dynpro_co01.

 INCLUDE bc400uds_dynpro_ci01.

&--

*& INCLUDE BC400UDS_DYNPRO_CO01 . *

&--

*& Module CLEAR_OK_CODE OUTPUT *

&--

*& text *

&--

module clear_ok_code output.

clear ok_code.

endmodule. " CLEAR_OK_CODE OUTPUT

(C) SAP AG BC400 9-51

&--

*& INCLUDE BC400UDS_DYNPRO_CI01 . *

&--

*& Module USER_COMMAND_0100 INPUT *

&--

*& text *

&--

MODULE user_command_0100 INPUT.

 CASE ok_code.

 WHEN 'BACK'.

 LEAVE TO SCREEN 0.

 WHEN 'SAVE'.

 MOVE-CORRESPONDING sdyn_book TO wa_sbook.

 MESSAGE ID 'BC400' TYPE 'I' NUMBER '060'.

 LEAVE TO SCREEN 0.

 ENDCASE.

ENDMODULE. " USER_COMMAND_0100 INPUT

(C) SAP AG BC400 10-1

 SAP AG 1999

Creating interfaces using the Menu Painter

Title

Menu bar

Standard toolbars

Application toolbars

Contents:

Interfaces

(C) SAP AG BC400 10-2

 SAP AG 1999

At the conclusion of this unit, you will be able to:

Interfaces: Unit Objectives

Create a GUI title

Create GUI statuses for lists and screens that
contain the following:

Menu bars

Standard toolbars

Application toolbars

Function key settings

(C) SAP AG BC400 10-3

 SAP AG 1999

Overview of Screen Objects

Flight data Edit Goto System Help

Help F1
Choose F2
Back F3
.
.
.

Menu bar
Standard toolbar
Application toolbar
Key settings

GUI title
SET TITLEBAR <n>.

GUI-Status
SET PF-STATUS <n>.

All user interfaces include the following elements:

A title bar containing the title of the screen, selection screen, or list currently being displayed

A menu bar with expandable menus

Menus containing the executable functions for the current program. Menus can also contain
submenus. The menus 'System' and 'Help' can be found on every screen in R/3 and always contain
the same functions. Neither of these menus may be changed or hidden.

A standard toolbar containing icons for those functions most often used. The R/3 standard toolbar
always contains the same icons with standard functions assigned to them. Those standard functions
that cannot be accessed from a particular interface are grayed out.

Function key settings, which can be displayed by clicking on your right mouse button. Ideally, you
should be able to execute all menu functions by way of function keys as well.

An application toolbar containing icons and pushbuttons for those functions most often used on the
current screen.

Each program is created with an interface containing all of the tools/objects listed above. Different views
of this interface (GUI statuses) are then created for a program's individual screens, selection screens,
and lists.

(C) SAP AG BC400 10-4

 SAP AG 1999

Evaluating Functions After User Actions

Time

Global data object

ABAP runtime system

ABAP program

BACK function code

data_object (usually ok_code
 or sy-ucomm)

BACK

CASE data_object.
 WHEN 'BACK'.
 ...

ENDCASE.

The principles you learnt for processing screens also apply to lists and selection screens. und Dynpro.

A function code is assigned to each pushbutton and menu entry that the user can choose to trigger a
user action.

When this user action is triggered, the function code is stored in the corresponding data object, known
as the command field or ok_code field. In screen processing, you generally use a data object with the
name ok_code. In list processing, you use the system field sy-ucomm (for User COMMand).

The runtime system then triggers sequential processing of an ABAP processing block that evaluates
the command field.

Apart from the traditional techniques for user dialogs, you can also use Controls technology. A great deal
of the screen display logic is stored at the front end. It can be managed using methods of objects of
global classes called from ABAP programs. When you use this technique, user actions can trigger
events. If you have implemented a special method in your program to handle an event, then this event
triggers the processing of this method.

(C) SAP AG BC400 10-5

 SAP AG 1999

Evaluating Standard List Functions Using a
System Program

Time

Global data object

ABAP runtime system

Function code P-

sy-ucommP-

CASE sy_ucomm.
 WHEN 'P-'.
* eine Seite
* nach unten
* blättern
...
 WHEN ...
...
ENDCASE.

ABAP programBasis program used to evaluate
standard list functions

Basic list

The same principle applies as to processing standard list functions - system programs evaluate the
command field sy-ucomm.

If you want to extend the interface for a list by adding your own functions, you must ensure that the
standard functions are assigned to the icons for the standard list functions. If this is not the case, the
system will not perform the correct function when the user chooses the icon.

(C) SAP AG BC400 10-6

 SAP AG 1999

Functions in ABAP Programs

List of functionsList of functions

ABAP program

Screen

Process
Before
Output

Process
After
Input

Define local types and fields

Module

Selection screen

Event
block

%PC RW
PICK

Standard
list

functions
BACK

PRI %EX

P++ P--P+ P-

You can create functions
for each program

Event
block

Subroutine

Interface

Text elements
(can be translated)

In the program, you create each function that you want to make available - either as a menu function, or
in a toolbar - as a "standalone" function. This also applies to the standard list functions, which you can
generate automatically.

(C) SAP AG BC400 10-7

 SAP AG 1999

Status: Functions in Screens

List of functionsList of functions

ABAP program

%PC RW
PICK

Standard
list

functions
BACK

PRI %EX

P++ P--P+ P-

Menu entry
Function key
Icon

Menu entry
Function key
Icon Status

You can assign a function
from the function list to
each control element

Each status contains all the control elements
of a screen You can set each

assigned function to
active or inactive

A status is the actual form that a menu bar, a standard toolbar, and an application toolbar take on for a
particular screen within your program. A status determines which functions are active or executable or
inactive and not able to be executed for a particular screen. You can change a screens status at PBO:
Example: If you use the ABAP Editor, which is itself written in ABAP, you can toggle between Display
and Change mode. This both alters the background color of the ABAP source code and determines
which menu functions are active. You implement this by changing the status dynamically.

You can create several statuses
for each program

(C) SAP AG BC400 10-8

 SAP AG 1999

Runtime Behavior: Setting a Status before
Displaying a Screen

Time

ABAP runtime system

PBO
CALL SCREEN 100.

PAI

SET PF-STATUSSET PF-STATUS
'DYNPRO100'.'DYNPRO100'.

100

Data objects ABAP program

START-OF-SELECTION

SET PF-STATUSSET PF-STATUS
'LIST_STATUS'.'LIST_STATUS'.

WRITE ...

You can set a status in ABAP processing blocks that are processed before the screen is sent to the
presentation server. That is, you choose a status that already exists for the program, by name. This
status then specifies the menu, the application toolbar, and the standard toolbar for the screen to be
displayed.

You set a status using the ABAP statement.
SET PF-STATUS <status name>.
You can create the name of the status as a text literal in upper-case. You can also create a constant that
contains the name of the status in upper-case, or you can assign the name of a variable.

(C) SAP AG BC400 10-9

 SAP AG 1999

GUI status The status LIST_STATUS does not exist.
Do you want to create the object?

 CancelYes No

Creating GUI Statuses for Lists

START-OF-SELECTION.

SET PF-STATUS .

Create Status

xxxxx

LIST_STATUS

Status for flight list

Program

Status

 Status attributes

Short text

 Status type
Online status
Dialog box
Context menu

'LIST_STATUS'Double-clickCreate object

You can create and maintain statuses in one of three different ways:

By using the object list of the Object Navigator

By using forward navigation in the ABAP Editor

By directly using the Menu Painter.

When creating a status you can either create a new menu bar, application toolbar, and new key settings
yourself (top down), or use existing objects for your interface (bottom up), or a use combination of both
methods.

Status names can have a maximum of 20 characters. (Letters must be upper-case).

By choosing a status type, you determine whether a status refers to a normal screen (Online status in
Release 4.6C), a dialog box, or a context menu. The functions you can use subsequently depend on the
status type you have chosen.

(C) SAP AG BC400 10-10

 SAP AG 1999

Adjusting Statuses

Adjust status template

LIST_STATUS

Include template in

Status

Status template ...

List status
Selection screen
...

• Standard list functions copied
• Standard description for menu bar
and key settings entered

Menu bar Line selection listi

i
i

Application toolbar

Line selection listKey settings

List Edit Goto

You can change the
description

You can change the
description

List of functions

Standard list functionsStandard list functions
Standard descriptionStandard description

The Adjust template function in the Extras menu allows you to include standardized function codes in
your status. This function also allows you to include objects from a status of your choice with the existing
status. This allows you to choose norms for list statuses and selection screens or use any other status
you want from another ABAP program.

If you choose Adjust status->List status, the system generates the standard entries for the menu,
application toolbar, and function keys settings. Each menu bar, application toolbar, and function key
setting is also given a default name, which you should replace with an explanatory text.

You can display the functions that have been generated by choosing the Information icon.

(C) SAP AG BC400 10-11

 SAP AG 1999

Statuses in the Menu Painter: Key Settings

F2
F9
...

Standard toolbar
%EXBACK RW

PICK

%PRI %SC P--

Menu bar Flight data menu bar

Application toolbar i
Key settings Flight data key settingsi

Flight data application toolbar

P- P+ P++

i

?

%SC+

Choose

Recommended function key settings

Freely assigned function keys
F5
F6
...

<...> Select

Key settings can be divided into three areas:

Standard toolbar: Certain pre-defined function codes are mandatory for the functions Save, Back,
Exit program, Cancel, Print, the Scroll icons, and the Enter pushbutton. Simply assign these codes to
the standard toolbar icon and they will be automatically assigned to their corresponding pushbutton.

Recommended function key settings: The system proposes the functions that you should generally
assign to specific function keys.

Freely assigned function keys: The system lists all the remaining function codes that are not
assigned to a standard function key. You can then choose appropriate function keys from this list, for
your program-specific functions.

You can also define buttons on a button bar for those function keys that are used most often. These
pushbuttons can either be icons or pushbuttons with text.

(C) SAP AG BC400 10-12

 SAP AG 1999

Statuses in the Menu Painter: The Menu Bar

Menu bar Flight data menu bar

Application toolbar i
Key settings Flight data key settingsi

Flight data application toolbar

Flight data

Code Text

Edit Goto

Code Text Code Text
PICK

%SC

%SC+

RW

i

Choose

Find

Find again

Cancel

PRI

%EX

BackBACK Print

Save/send

Exit

>

If you want, you can make the system suggest texts for your menu bar. You can then modify them as
appropriate.

Menu bars can contain up to eight menus. You can define up to six of these yourself, but the System
and Help menus are added automatically by the system.

(C) SAP AG BC400 10-13

 SAP AG 1999

Technical View of Basic Interface Elements

%PC

%EX

PICK

%SC+

PRI

%SC

P++

P--

P+

P-

Flight data

Flight data Flight data

Edit

Goto

RW

BACK

Status
STATUS_LIST

List of functionsMenu bar

Save

Status

Menu bar

Key settings

%ST

%SL

The above slide shows a technical view of the interface that you have created so far. You have created
the sub-objects by adding a list standard status. You have renamed the menu bar and function key
settings. Ideally, you should be able to execute all menu functions using function keys as well. You have
not yet added pushbuttons to the application toolbar.

From a technical point of view, a status is always a reference to a particular menu bar, standard toolbar,
and application toolbar.

(C) SAP AG BC400 10-14

 SAP AG 1999

Objective: Example Program Interface

List

Print
Save / Send
Save Ctrl+S
Exit

Screen
0100Office

Report tree
File...

Flight data Edit Goto System HelpFlight data Edit Goto System Help

Print
Save / Send
Save Ctrl+S
Exit

Office
Report tree
File...

Flight data Edit Goto System HelpFlight data Edit Goto System Help

As a final step, we will define an interface for the entire example program. The various statuses will have
the following characteristics:

The same menu bar will be available both in the list and on the screen. Only those menu functions
that can be executed will appear in black.

In the standard toolbar, only those functions that can be executed will appear in color. Screen
functions will not be altered in any way.

The screen will have its own title.

(C) SAP AG BC400 10-15

 SAP AG 1999

MODULE status_0100 OUTPUT.
 SET PF-STATUS 'SCREEN' .
* SET TITLEBAR 'XXX'.
ENDMODULE.

Creating GUI Statuses for a Screen

GUI status: The status DYNPRO100 does not exist.
Do you want to create the object?

 CancelYes No

xxxxx

DYNPRO100

Status for flight list

Program

Status

 Status attributes

Short text

 Status type
Online status
Dialog box
Context menu

'DYNPRO100'
Double-click

Create object

Create Status

To create a status for a screen:

Create a PBO module containing the statement SET PF-STATUS '<NAME>'. <NAME> can contain
up to twenty digits or letters (which must be upper-case). This statement is pre-generated whenever
you create the module status_nnnn using forward navigation.

Create the status using forward navigation

Choose Online dialog (that is, a normal screen) as your status type

(C) SAP AG BC400 10-16

 SAP AG 1999

Including Existing Elements

Menu bar

SCREEN

SCREEN

SCREENi
i
i

List of functions Displays existing
objects and
allows you

to select them

Application toolbar

Key settings

The screen status must reference the same menu bar and function key assignment as the list status.
You can display all the menu bars and function key assignments that are already defined using the icon
shown above. The example program shows only one menu bar and one function key assignment, which
you can choose by double-clicking.

(C) SAP AG BC400 10-17

 SAP AG 1999

Technical View of an Interface with Two Statuses

%PC

%EX

PICK

%SC+

PRI

%SC

P++

P--

P+

P-

Flight data

Flight data Flight data

Edit

Goto

RW

BACK

List of functionsMenu bar

Save

Menu bar

Key settings

%ST

%SL
Status
STATUS_LIST
Status

Status
STATUS_100
Status

The above slide shows a technical view of the interface that you have created so far. In addition to the
basic list status, you have created created another status and a title for the screen. If you have also
created references to the existing menu bar and key settings using icons, then the status will reference
the same functions as the list status. The menu entries are also identical, which makes it easier for users
to find their way round the system.

This techniques allows you to fulfil fundamental ergonomic requirements simply:

You should be able to execute all menu functions by way of function keys as well. Within each
program, functions should be assigned consistently to function keys. This is why you should create
a set of function key settings for each program, and assign each function to a function key there. You
can create different statuses for different screens and have them reference these (function) key
settings.

All functions should be available in the menu (except in the template, where you can only browse
from the standard toolbar). Functions are generally distributed in discrete sets in different menu lists.
Always follow ergonomic guidelines when assigning functions. You can then create one or more menu
bars, which contain the menus whose functions can be executed. Each menu bar is referenced in one
status. Within each program, functions should be assigned consistently to menu entries.

(C) SAP AG BC400 10-18

 SAP AG 1999

%PC

%EX

PICK

%SC+

PRI

%SC

P++

P--

P+

P-

Flight data

Flight data Flight data

Edit

Goto

RW

BACK

List of functions
Menu bar

Save

Menu bar

Key settings

%ST

%SL

Status
STATUS_100
Status

Each Status References Functions (Indirectly)

(C) SAP AG BC400 10-19

 SAP AG 1999

Each Referenced Function Has the Attribute Active
or Inactive in the Status

%PC

%EX

PICK

%SC+

PRI

%SC

P++

P--

P+

P-

RW

BACK

List of functions

%ST

%SL

Status
STATUS_100
Status

%PC

%EX

PICK

%SC+

PRI

%SC

P++

P--

P+

P-

RW

BACK

%ST

%SL

Inactive

Inactive

Inactive

Inactive

Inactive

Inactive

Inactive

Inactive

Inactive

Inactive

Inactive

Active

Inactive

Inactive

You can specify whether each function is active or inactive in the status. The system then behaves as
follows:

In the menu, the short text for each active function is displayed in black. The user can perform these
functions. If they choose a menu entry in black type, its function code is sent to the command field. On
screens, PAI is triggered and in lists, the system program is triggered. In the menu, the short text for
each inactive function is displayed in gray. Nothing happens if the user chooses one of these menu
entries.

If the user chooses a function key associated with an active function, the PAI and system list program
are triggered and the function code is stored in the command field. If, however, he or she chooses an
inactive function, nothing happens.

Icons associated with inactive functions in the application toolbar are always grayed out. Again, if the
user chooses an inactive icon, nothing happens.

Note: You assign the attribute active or inactive to functions, not to a menu entry or function key. The
Menu Painter tool ensures that possible user actions are interpreted consistently.

Note: If you create a status with reference to an existing menu bar and key settings, all the functions are
set to inactive. You then set the functions you want to active. (See also the slide entitled Setting
Functions to Active or Inactive in the Status).

(C) SAP AG BC400 10-20

 SAP AG 1999

Setting Functions to Active or Inactive in the
Status

Function code

Flight data Edit Goto
Code Text

1: Select function code

2: Toggle between active and
inactive using the button

BackBACK

Application toolbar

Key settings Flight data key settingsi

Flight data application toolbar

Menu bar Flight data menu bari

i

The status for the screen contains the same objects as the basic list status, but initially all these objects
are inactive. Activate the attribute for the BACK function, which will be evaluated in the
USER_COMMAND_0100 PAI module, as follows:

Choose Change mode by double-clicking the Display/Change button.

Then place the cursor on the function code you wish to activate and choose the Active/Inactive icon
on the button bar.

Later, we will need to activate the SAVE function, which will be evaluated in the PAI module, but which is
not part of the standard list functions. For more details, refer to Adding an Additional Function
Subsequently.

(C) SAP AG BC400 10-21

 SAP AG 1999

Adding an Additional Function Subsequently

%PC

%EX

PICK

%SC+

PRI

%SC

P++

P--

P+

P-

Flight data

Flight master data Flight data

Edit

Goto

RW

BACK

List of functionsMenu bar

Save
Status
STATUS_LIST
Status

Menu bar

Key settings

%ST

%SL

Status
STATUS_100
Status

SAVE ?

There are several ways to add a function to a status subsequently.

Normally: You want to insert the function in the same place in all your statuses. You carry out this
change in one status. The function is active there. A modal dialog box then appears, asking you whether
you want to change all referenced statuses. Choose Continue to confirm that you do. Technically, the
following then occurs: You create a new function using forward navigation. (You can check the codes
available using the information icon). You also change a referenced menu or key settings using forward
navigation. The change takes effect in all statuses that reference the menu or key settings. In the other
statuses, the new function is set to inactive but you can now change this in each status as necessary.

In exceptional cases: You want to change one status only. In this case, you create copies of objects.
For more detailed information, refer to the documentation or the training course BC410: Developing User
Dialogs.

(C) SAP AG BC400 10-22

 SAP AG 1999

Outlook: Title

Time

Data objects

ABAP runtime system

ABAP program

PBO
CALL SCREEN 100.

PAI

SET TITLEBARSET TITLEBAR
'TITLE_100'.'TITLE_100'.

100

START-OF-SELECTION

SET TITLEBARSET TITLEBAR
'LIST_TITLE'.'LIST_TITLE'.

WRITE ...

You can create a title for a screen using the ABAP statement SET TITLEBAR <title name>, where <title
name> is a technical name for the title (of up to 20 characters), to which you can then assign texts in
various languages. Selection texts are displayed in the user's logon language.

(C) SAP AG BC400 10-23

 SAP AG 1999

Creating GUI Titles for a Screen

MODULE status_0100 OUTPUT.
SET PF-STATUS 'DYNPRO100'.

 SET TITLEBAR '100'.
ENDMODULE.

Title code

Title

Flight connections

Save

Program

Title code

Title

Create Title

xxxxx

100

Change flight times

GUI status: Title 100 does not exist.
Do you want to create the object?

 Cancel

Create object

Yes No

'100'
Double-click

Continue

You can create and maintain titles in one of three different ways:

By using the object list of the Repository Browser

By using forward navigation in the ABAP Editor

By using the Menu Painter.

Status names can have a maximum of 20 characters.

Note: If you create the suggested PBO module status_nnnn using forward navigation, the SET
TITLEBAR 'XXX' statement is automatically generated in the module. It is commented out, however.
You activate the statement by erasing the star and entering the number of the title. Now you can create
the title using forward navigation.

(C) SAP AG BC400 10-24

 SAP AG 1999

You are now able to:

Interfaces: Unit Summary

Create a GUI title

Create GUI statuses for lists and screens that
contain the following:

Menu bars

Standard toolbars

Application toolbars

Function key settings

(C) SAP AG BC400 10-25

Interfaces Exercises

Unit: Interfaces

At the conclusion of these exercises, you will be able to:

Create user interfaces for a program

Include a GUI status and GUI title in a program

Extend your program, ZBC400_##_DYNPRO:
The system displays the texts that belong to the list and screen in the title bar.
You must specify the correct status for the list and screen.

Program: ZBC400_##_DYNPRO

Model solution: SAPBC400UDS_DYNPRO_D

1-1 Extend your program, ZBC400_##_DYNPRO, or copy the relevant model solution
SAPBC400UDS_DYNPRO_C and give it the name ZBC400_##_DYNPRO_D. Assign your
program to the development class ZBC400_## and to the transport request for this project,
BC400… (replacing ## with your group number).

1-2 Status for the list:
First define a status for the list. Create the status (type: dialog status) using forward navigation.
Include the appropriate ABAP statement in the START-OF-SELECTION processing block.
The status you create must correspond to the standard list status. To create your function key
assignment, button bar, and menu bar, choose Extras Adjust template List status and
add your function codes. Change the name of the left menu list from List to Postings.

1-3 Status for the screen

1-3-1
Assign a status to the screen (type: online status). Call a module at PROCESS BEFORE OUTPUT,

and include the appropriate ABAP statement in it.

 Do not create a new function key assignment, button bar, or menu bar. Instead,

(C) SAP AG BC400 10-26

reference them to the objects you created in the last exercise (1-2).
 Activate the function code BACK. Save the interface.

1-3-2 Add the function code SAVE. The user should be able to trigger this by choosing
the Save icon in the standard toolbar or by choosing the correct entry in the Bookings menu.

1-4 Check the status for the list:
The SAVE function should appear, inactive, in the same place on each menu.
Activate the program with all its subobjects and test it.

1-5 Optional:

Assign a GUI title to the basic list and screen (using forward navigation) and generate the
interface.

(C) SAP AG BC400 10-27

InterfacesSolutions

Unit: Interfaces

1-2 In the program source text, add the SET PF-STATUS 'LIST' statement to the START-OF-
SELECTION event.

(Note: Text between the two apostrophes must be in uppercase).

In the program line SET PF-STATUS 'LIST'double-click the LIST status name.

 The system displays a dialog box containing the words “The GUI interface status ‘LIST’
does not exist. Do you want to create it?”

 Choose

to confirm.

 Enter a short text.

 Choose the Online status status type.

Choose Extras Adjust template List status

Adapt the name of the menu bar and function key assignment to your own needs.

Change the name of the menu list to Bookings.

Activate the status.

1-3

1-3-1 Display screen 100 in change mode (by selecting the screen number in the program
object list and using the alternate mouse button). In the flow logic for the PROCESS
BEFORE OUTPUT event, add the statement:

 MODULE set_status_0100.

- Create the module using forward navigation. Double-click the name of the module and choose Yes to
confirm the settings in the dialog box. In the next dialog box, choose Main program and add the
following source text:

 &--

 *& Module SET_STATUS_0100 OUTPUT

 &---

 MODULE set_status_0100 OUTPUT.

 SET PF-STATUS 'DYNPRO'.

 ENDMODULE.

Create the status using forward navigation. (Double-click 'DYNPRO' in the SET PF-STATUS
'DYNPRO' statement).

Choose Yes to confirm the settings in the dialog box.

In the next dialog box that appears, enter a short text and choose Online status.

(C) SAP AG BC400 10-28

Place the cursor on the menu bar and choose the

icon. Create the reference to the existing menu

bar by double-clicking.

Place the cursor on the function key and choose the

icon Create the reference to the existing

function key assignment by double-clicking.

Activate the two functions SAVE and BACK by placing the cursor on the function code in the menu or
on the function key assignment and
choosing .

Save your entries and activate the status.

Activate the screen.

1-3-2 Navigate to the DYNPRO status. Make sure you are in Change mode.

Double-click the function-key assignment. Enter the function code SAVE in the standard toolbar above
the icon.

To make the function available in the Bookings menu:

- Double-click the Bookings menu in the menu bar.

- Create a new line in the menu.

- Enter the code SAVE

- Confirm your entries.

- Choose to leave the dialog box.

(C) SAP AG BC400 10-29

1-5 Extend the program source text in the
START-OF- SELECTION. event:

SET PF-STATUS 'LIST'.

SET TITLEBAR 'LIST'.

Create the title using forward navigation and enter the text in the dialog box that appears.

Extend the source text of the SET_STATUS_0100 module as follows:

 &--

 *& Module SET_STATUS_0100 OUTPUT

 &--

 MODULE set_status_0100 OUTPUT.

 SET PF-STATUS 'DYNPRO'.

 SET TITLEBAR 'DYNPRO'.

 ENDMODULE.

Create the title using forward navigation and enter the text in the dialog box that appears.

Activate the status and the program.

Source text for the program SAPBC400UDS_DYNPRO_D

&--

*& Report SAPBC400UDS_DYNPRO_D *

*& *

&--

REPORT sapbc400uds_dynpro_d.

CONSTANTS: actvt_display TYPE activ_auth VALUE '03',

 actvt_change TYPE activ_auth VALUE '02'.

* Definition of selection screen

PARAMETERS pa_anum TYPE sbook-agencynum.

* workarea for list

DATA wa_booking TYPE sbc400_booking.

* workarea for single booking to be changed

DATA wa_sbook TYPE sbook.

* workarea for dynpro

TABLES sdyn_book.

* variable for function code of user action

DATA: ok_code LIKE sy-ucomm.

(C) SAP AG BC400 10-30

START-OF-SELECTION.

 SET PF-STATUS 'LIST'.

* selecting data using a dictionary view to get the data from sbook and

* the customer name from scustom

 SELECT carrid connid fldate bookid customid name

 FROM sbc400_booking

 INTO CORRESPONDING FIELDS OF wa_booking

 WHERE agencynum = pa_anum.

 AUTHORITY-CHECK OBJECT 'S_CARRID'

 ID 'CARRID' FIELD wa_booking-carrid

 ID 'ACTVT' FIELD actvt_display.

 IF sy-subrc = 0.

*Output

 WRITE: / wa_booking-carrid,

 wa_booking-connid,

 wa_booking-fldate,

 wa_booking-bookid,

 wa_booking-name.

 HIDE: wa_booking-carrid,

 wa_booking-connid,

 wa_booking-fldate,

 wa_booking-bookid,

 wa_booking-name.

 ENDIF.

 ENDSELECT.

 CLEAR wa_booking.

AT LINE-SELECTION.

 IF sy-lsind = 1.

 AUTHORITY-CHECK OBJECT 'S_CARRID'

(C) SAP AG BC400 10-31

 ID 'CARRID' FIELD wa_booking-carrid

 ID 'ACTVT' FIELD actvt_change.

 IF sy-subrc = 0.

 SELECT SINGLE *

 FROM sbook

 INTO wa_sbook

 WHERE carrid = wa_booking-carrid

 AND connid = wa_booking-connid

 AND fldate = wa_booking-fldate

 AND bookid = wa_booking-bookid.

 IF sy-subrc = 0.

 MOVE-CORRESPONDING wa_sbook TO sdyn_book.

 MOVE wa_booking-name TO sdyn_book-name.

 CALL SCREEN 100.

 ENDIF.

 ELSE .

 MESSAGE ID 'BC400' TYPE 'S' NUMBER '047' WITH wa_booking-carrid.

 ENDIF.

 ENDIF.

 CLEAR: wa_sbook, wa_booking.

 INCLUDE bc400uds_dynpro_do01.

 INCLUDE bc400uds_dynpro_di01.

* INCLUDE BC400UDS_DYNPRO_DO01 . *

&--

*& Module STATUS_0100 OUTPUT *

&--

* text *

MODULE STATUS_0100 OUTPUT.

 SET PF-STATUS 'DYNPRO'.

 SET TITLEBAR '100'. "optional

(C) SAP AG BC400 10-32

ENDMODULE. " STATUS_0100 OUTPUT

&--

*& Module CLEAR_OK_CODE OUTPUT *

&--

*& text *

module clear_ok_code output.

clear ok_code.

endmodule. " CLEAR_OK_CODE OUTPUT

&--

*& INCLUDE BC400UDS_DYNPRO_DI01 . *

&--

&--

*& Module USER_COMMAND_0100 INPUT *

&--

*& text *

&--

MODULE user_command_0100 INPUT.

 CASE ok_code.

 WHEN 'BACK'.

 LEAVE TO SCREEN 0.

 WHEN 'SAVE'.

 MOVE-CORRESPONDING sdyn_book TO wa_sbook.

 MESSAGE ID 'BC400' TYPE 'I' NUMBER '060'.

 LEAVE TO SCREEN 0.

 ENDCASE.

(C) SAP AG BC400 10-33

ENDMODULE. " USER_COMMAND_0100 INPUT

(C) SAP AG BC400 11-1

 SAP AG 1999

Function Groups and Function Modules

Objects and Methods

Business Objects and BAPIs

Contents:

Reuse Components

(C) SAP AG BC400 11-2

 SAP AG 1999

At the conclusion of this unit, you will be able to:

Reuse Components: Unit Objectives

Find and use function modules

Display a simple list using the ALV grid control
(objects from global classes in the Class Builder)

Use a BAPI and find BAPIs using the BAPI
Browser

(C) SAP AG BC400 11-3

 SAP AG 1999

Techniques for Encapsulating Business Logic

Reuse
components

Business
objects

Reuse components
encapsulate
business
logic

ABAP:
Technical

possibilities

Object

Function
group

The R/3 System offers several techniques that you can use to make business logic available for reuse.

Function modules can be called from any ABAP program. Parameters are also passed to the interface.
Function modules that belong together are combined to form function groups. Program logic and user
dialogs can be encapsulated in function modules.

Objects: You can use the compatible extension "ABAP objects" to create objects at runtime, with
reference to central classes.

BAPIs are business objects that are made available using the Business Object Repository (BOR).

(C) SAP AG BC400 11-4

 SAP AG 1999

Overview: Function Groups and Function Modules

Function Groups and Function ModulesFunction Groups and Function Modules

Business Objects and BAPIsBusiness Objects and BAPIs

Objects and MethodsObjects and Methods

(C) SAP AG BC400 11-5

 SAP AG 1999

Describe the various ways of finding a function
module

Find out important information about a function
module using the Function Builder

Write a program containing a standard user
dialog that is encapsulated in a function module

At the conclusion of this topic, you will be able to:

Function Groups and Function Modules: Course
Objectives

(C) SAP AG BC400 11-6

 SAP AG 1999

Function Groups

F
un

ct
io

n
m

od
ul

e
F

M
3

In
te

rf
ac

e
In

te
rf

ac
e

Interface

Interface

Function module

FM2

Interfa
ce

Interfa
ce

Functi
on m

odule

FM1

F
unction m

odule

F
M

5

Interface
Interface

Function module
FM4

InterfaceInterface

 Import parameters

Export parameters

Changing parameters

Exceptions

 Subroutine

Interface

A function group is an ABAP program with type F, which is a program created exclusively for
containing function modules. Function modules are modular units with interfaces that can be called from
any ABAP Program. Function modules that operate on the same objects are combined to form function
groups.

Each function group can contain:

Data objects, which can be seen and changed by all the function modules in the group. These data
objects remain active as long as the function group remains active.

Subroutines, which can be called by any of the function modules in the group.

Screens, which can be called by any of the function modules in the group.

(C) SAP AG BC400 11-7

 SAP AG 1999

Function Modules

InterfaceInterface

Import parametersImport parameters

sy-subrc

Function moduleFunction module
AdministrationAdministration

 Local data objectsLocal data objects

Source codeSource code

GlobalGlobal
data objectsdata objects

Function groupFunction group

Export parametersExport parameters Changing parametersChanging parameters ExceptionsExceptions

Interface

 Subroutine

Function modules are modular units with interfaces. The interface can contain the following elements:

Import parameters are parameters passed to the function module. In general, these are assigned
standard ABAP Dictionary types. Import parameters can also be characterized as optional.

Export parameters are passed from the function module to the calling program. Export parameters
are always optional and for that reason do not need to be accepted by the calling program.

Changing parameters are passed to the function module and can be changed by it. The result is
returned to the calling program after the function module has executed.

Exceptions are used to intercept errors. If an error triggers an exception in a function module, the
function module stops. You can assign exceptions to numbers in the calling program, which sets the
system field SY-SUBRC to that value. This return code can then be handled by the program.

Each function module can contain local data objects and access global data objects belonging to its
function group. All the subroutines and screens in the function group can be called by the function
module.

(C) SAP AG BC400 11-8

 SAP AG 1999

Function Groups: Data Flow

F
un

ct
io

n
m

od
ul

e
F

M
3

In
te

rf
ac

e
In

te
rf

ac
e

Interface

Interface

Function module

FM2

Interfa
ce

Interfa
ce

Functi
on m

odule

FM1

F
unction m

odule

F
M

5

Interface
Interface

Function module
FM4

InterfaceInterface

The global data in the function group remains after the function module has been called. The function
group remains active for as long as the calling program is active. Thus, if a function module is called that
writes values to the global data, other function modules in the same function group can access this data
when they are called by the program.

(C) SAP AG BC400 11-9

 SAP AG 1999

<Context-Specific Title>

Example: The Cancel Dialog Box

!

<context-specific text>

"Data will be lost."

NoYes

In many programs a standard dialog box appears after the user has chosen Cancel. This dialog box
always contains the sentence: "Data will be lost." The two lines following it are context-specific, as is the
title. The user can choose from one of two options - "Yes" or "No."

This dialog box is encapsulated in a function module.

(C) SAP AG BC400 11-10

 SAP AG 1999

answer

Requirement: Function Module for Standard Dialog

textline
title

ABAP
Program

STO1

! <textline>

Yes No

! <textline>

answer

You can avoid programming this dialog box, if you can find an existing function module with the following
properties:

Import parameters for the title and the two variable text lines

An export parameter to record whether the user has chosen "Yes" or "No"

The ability to call a screen in the function group that displays the two variable text lines and the title,
and contains the "Yes" and "No" buttons.

(C) SAP AG BC400 11-11

 SAP AG 1999

Finding the Function Module

Look for
CALL FUNCTION
CALL FUNCTION

Editor

Insert Breakpoint at
CALL FUNCTION or
CALL SCREEN
statement

Start in
Debugging mode

You know that a certain program
uses the function module

F1
 Technical info
 Name of screen
 and main program
 Look at function group
 in Object Navigator

 Where-used list for
 screen number

On a screen called
by the function module

 Select
 application
 component
 Repository
 Information
 System

Component
hierarchy

Examine flow logic
in Process After
Input event

On the screen
on which the user

chose "Cancel"

Scenario: You are creating a program in the Object Navigator and leave the Attributes screen. You want
to know if it is encapsulated in reusable form You can use the following methods:

In the Debugger, set a breakpoint at 'CALL SCREEN', if successful, under 'CALL' identify the program
and subroutine as well as the function module. Then, display the call and the data that is passed to
the interface in the Object Navigator.

In the Debugger, set a breakpoint at "CALL FUNCTION". If successful, the result is the same as in
method 1.

Click a text field in the standard dialog box, then press F1 and choose "Technical info". Navigate to
the screen and display a where-used list for programs, then look at the function modules that use it.

In the Save dialog box, display the F1 help and then Technical info. Navigate to the screen, then
examine the flow logic and its modules.

In the application hierarchy, determine the component (Basis Services), select it, navigate to the
Repository Information System, look under Programming -> Function Library -> Function modules,
and select Only released.

(C) SAP AG BC400 11-12

 SAP AG 1999

Source codeExceptionsChangingExport

Function Module Interface

Function Modules POPUP_TO_CONFIRM_LOSS_OF_DATA

Attributes

Non-optional
parameters of the

Constructor method
must be

passed at
CREATE OBJECT

Import

Parameters
TEXTLINE1
TEXTLINE2
TITEL
START_COLUMN
START_ROW

ValueOptional...Ref. type Description...
Non-optional

parameters of the
function module

must be
passed at

CREATE OBJECT

Once you have found a function module, you must find out more about its interface.

Non-optional parameters in the function module must be passed in the CALL FUNCTION statement. To
find out handling the other parameters, refer to the function module documentation and the
documentation on interface parameters.

If the documentation is not specific enough, or is not available in your logon language, you can analyze
the source code for the function module by choosing the Source code tab.

(C) SAP AG BC400 11-13

 SAP AG 1999

Documentation

• Short text
• Function
• Example
• Notes
• Additional information
• Parameter
• Exceptions
• Function group

Test environment

Import parameters

Export parameters

ExceptionFunction module

Documentation and Testing

You can test function modules using the test environment. An input template allows you to specify the
IMPORT parameters. The result is transferred to the EXPORT parameters and displayed.

If an error occurs, the system notes which exception was triggered.

The runtime for the function module is displayed in microseconds. These values are subject to the same
conditions as the runtime analysis transaction. You should therefore repeat the test several times using
the same data.

You can store test data in a test data directory.

You can use the test function of the Function Builder to test function modules with table parameters.

You can create test sequences.

(C) SAP AG BC400 11-14

 SAP AG 1999

Syntax: Calling the Function Module

answer

ABAP Program

PAI MODULE user_command_0100 input.
save_ok_code = ok_code.
clear ok_code.
CASE save_ok_code.
WHEN 'CANCEL'.
CALL FUNCTION

 'POPUP_TO_CONFIRM_LOSS_OF_DATA'
 EXPORTING
 textline = gd_textline
 title = gd_title
 IMPORTING
 answer = gd_answer.

case gd_answer.
WHEN

WHEN
 ...
ENDCASE.

textline
title

You call function modules from ABAP programs using the CALL FUNCTION statement. The name of
the function module is displayed in single quotation marks. After EXPORTING, the system assigns the
parameters that are passed/ to be passed to the function module. After IMPORTING, the system assigns
the parameters that are passed from the function module to the program. Most function modules support
additional exceptions. If so, after EXCEPTIONS, the exceptions are assigned to values that will be set in
the system field sy-subrc, if a system error occurs. On the left side of the Parameter assignment screen,
the system displays the names of the interface parameters, while the right side of the screen displays
the program's data objects.

(C) SAP AG BC400 11-15

 SAP AG 1999

Inserting a Function Module Call in a Program

 CALL FUNCTION
 'POPUP_TO_CONFIRM_LOSS_OF_DATA'
 EXPORTING
 textline =
 title =
 IMPORTING
 answer = .

CALL FUNCTION
...
...
...
...

Insert Statement

POPUP_TO_CONFIRM_LOSS_OF_DATA

Pattern

System
generates
ABAP code

Enter
current

parameters

To do this, use a statement pattern in the ABAP Editor (the Pattern pushbutton), and enter the name of
the function module.

The system then generates an ABAP statement CALL FUNCTION '<function module name>',
including the interface of the function module, and inserts it in the program at the current cursor position.

Fill in the actual parameters, and write the statements that will handle any exceptions that occur.
Interface parameters values are assigned explicitly by the name of the actual parameter. From the
calling program the parameters that are to be passed to the function module are exported; those passed
from the function module to the program are imported. You do not have to assign an actual parameter to
an optional parameter. In this case, you can delete the line containing the optional parameter.

Note that - during parameter assignment - the function module parameter is always on the left and the
actual parameter on the right.

(C) SAP AG BC400 11-16

 SAP AG 1999

Overview: Business Objects and BAPIs

Function Groups and Function ModulesFunction Groups and Function Modules

Business Objects and BAPIsBusiness Objects and BAPIs

Objects and MethodsObjects and Methods

(C) SAP AG BC400 11-17

 SAP AG 1999

Find out important information about business
objects and their methods (BAPIs) using the BAPI
Explorer and Business Object Builder

At the conclusion of this topic, you will be able to:

Business Objects and BAPIs: Course Objectives

(C) SAP AG BC400 11-18

 SAP AG 1999

Business
Workflow

R/3 satellite systems and
distributed scenarios (ALE)

Internet /
Intranet

Customer and partner
 development

Visual Basic/JAVA...

R/3 component
composition

B

Business
Component

Business
Component

Business
Component

Where Are BAPIs Used?

A BAPI is an interface that can be used for various applications. For example:

­ Internet Application Components, which make individual R/3 functions available on the Internet or
an intranet for users with no R/3 experience.

­ R/3 component composition, which allows communication between the business objects of different
R/3 components (applications).

­ VisualBasic/JAVA/C++ - external clients (for example, alternative GUIs) that can access business
data and processes directly.

(C) SAP AG BC400 11-19

 SAP AG 1999

Company boundary

Components of mySAP.com

3.1H

R/3 4.6

Inside

Outside

In a mySAP.com system landscape there are usually several components used in the various systems.
Because of this it is necessary to use a technique that can map business processes that extend across
various systems.

One example is the Workplace. The Workplace contains links to the functions of different components.
The links can be:

Components of mySAP.com: Classic and new Web-based SAP transactions (R/3 standard system,
New Dimensions, Industry Solutions), reports (for example, Business Warehouse reports with BW
2.0a), Knowledge Warehouse.

Non mySAP.com components: External system used within open Internet standard.

mySAP.com Internet services: my.SAP.com Marketplace

All Internet and local intranet Web pages

(C) SAP AG BC400 11-20

 SAP AG 1999

BAPIs Map Process Steps in the System

SAP System

BAPI

Business processBusiness process

SAP component
SAP component

BAPI

SAP System

SAP component

BAPI

Business
Application
Programming
Interface

BAPI

BAPI stands for Business Application Programming Interface. A BAPI is a method that carries out a
consistent process step of a business process in a SAP component. The scenario of a business process
extends across several components. Therefore there must exist methods that can be accessed
'externally'. BAPI interfaces are designed so that you can use them without knowing all SAP details. For
example, the names of interface parameters are in English. You do not need to know details of the
database tables, consistency checks, and authorization checks to use BAPIs. The BAPI contains all
necessary technical steps for executing a consistent process step. You can find details in the
documentation of a BAPI.

To simplify matters, the examples on BAPIs in this unit are based only on an SAP component. You can
gain an overview of the different integration techniques in the course BC095 Business Integration
Technology.

(C) SAP AG BC400 11-21

 SAP AG 1999

BAPIs Are Methods of Business Objects

SAP System

SAP component

Business
object

Business
object

BAPI

BAPIBAPI

BAPI

Business processBusiness process

BAPIs are defined as methods of a business object. The modeling of business objects corresponds to a
business way of thinking rather than a numeration of available transactions.

Example: When you think of a 'Flight booking', you think straight away of the activities that have an effect
on the booking: Creating or canceling a booking, displaying details of a booking, and so on.
The activities are mapped as methods that retrieve information or change the status. Technical details
are, as far as possible, hidden inside a business object.

(C) SAP AG BC400 11-22

 SAP AG 1999

Example: Business Object Type FlightCustomer

Method:
FlightCustomer.CreateFromData

 CustomerNumber
 Password

Method:
FlightCustomer.CheckPassword

Method:
FlightCustomer.ChangePassword

CustomerdataIn
Return
Customerdata

Password
CustomerNumber
Return

PasswordOld
PasswordNew
PasswordVerify
Return

An example business object from the training course data model is called FlightCustomer. It contains a
customer for a flight. A customer can be uniquely identified using the key information
CustomerNumber. The object also contains information about the current password of the customer.
The following methods are available for this object:

FlightCustomer.CreateFromData Creates a booking.

FlightCustomer.CheckPassword Checks the password.

FlightCustomer.ChangePassword Changes the password.

In this example no methods are given for reading the password. The password is a 'private' attribute that
is 'hidden' in the object. (Secrecy principle of object orientation).

(C) SAP AG BC400 11-23

 SAP AG 1999

Example: Delivering Detail Information with BAPIs

SAP System

Business
object

Business processBusiness process

Method call:
Deliver detail
information

SAP component

Method reads the requested
data from the database table

The method GetDetail that exists for most business objects, provides detail information on a business
object. The detail information is compiled at a business level. It is not important for the calling program to
specify which database table the data will be read from.

(C) SAP AG BC400 11-24

 SAP AG 1999

Example: BAPI Causes Status Change

SAP System

Business
object

Business processBusiness process

Method call:
Change status
of business object

Service
object

Method call:
BAPITransactionCommit

SAP component

Triggers
database
changes

Observe database changes
that correspond to status
change

Another example is a method that changes the status of business objects. In the case of business object
FlightBooking this could be the creation of a booking. The method call itself causes only the change of
the status of the (runtime) object. Within the BAPI, the steps that are necessary are already noted to
save the status change persistently on the database.

The database change can be triggered by calling a special BAPI (TransactionCommit) of a service
business object.

(C) SAP AG BC400 11-25

 SAP AG 1999

BAPI Explorer and Interface Repository

R/3 System

Business
Object
Repository

Function group

BAPI Explorer

Function Builder

Interface
Repository

ModellingModelling

Technical implementationTechnical implementation

BB
OO
RR

Business object type

The Business Object Repository (BOR) is a tool in which the modeling of business objects and their
corresponding methods is stored.

You can find information on existing business objects using the BAPI Explorer (transaction BAPI). You
can navigate directly from this tool to other ABAP Workbench tools to find out details of technical
implementations. The BAPI Explorer filters information from the Business Object Repository that is of
interest to external users. For example, only released BAPIs appear.

Outside of the SAP System you can look at information on BAPIs and their interfaces in XML in the
Interface Repository. The Internet address for the Interface Repository is http://ifr.sap.com.

The complete information on a business object is contained in the Business Object Builder.

The technical implementation of business objects and methods is currently carried out using function
groups and function modules. You can navigate directly from the BAPI Explorer to the display of a BAPI
function module in the Function Builder.

http://ifr.sap.com

(C) SAP AG BC400 11-26

 SAP AG 1999

Defining and Implementing Business Object Types

R/3 System

Business
Object
Repository
(BOR)

Function group

Key attributes
 Attributes

Implementation
 (using function
 groups and
 function modules)

Definition of
business object
types and methods

DefinitionDefinition

ImplementationImplementation

Business
object type

Function
 modules

Generally a function group exists for each business object type. The attributes are implemented using
global data objects of the function group.

Generally a function module of the function group exists for each business object type of the BAPI. The
implementation of the method is carried out using a function module.

(C) SAP AG BC400 11-27

 SAP AG 1999

Defining and Implementing Methods

SAP System

BOR

InterfaceInterface

Function groupFunction group

GlobalGlobal
data objectsdata objects Method

implementation

Function moduleFunction module
Source codeSource code

Structure
BAPI_<name>

Export
parameters

Import
parameters

TABLES
parameters

BAPI

Method
definition Export

parameters

Import
parameters

The interface of the BAPI must be displayed in the BOR so that it corresponds to business logic. This is
independent of whether technically defined attributes of the interface parameters can be completely
hidden. In an ideal scenario the business object with the methods should remain as a 'modeling wrapper'
without changing, even when the technical implementation changes.

There are two types of interface parameters - import and export. Elementary parameters or flat
structures are created using import or export parameters of the corresponding function module. Internal
tables as parameters have a special characteristic: For RFC-enabled function modules the typing of
interface parameters is not yet supported using complex dictionary types. For this reason TABLES
parameters must be used. Parameters are classified in the Business Object Repository as an import or
export parameter, even when technically TABLES parameters are always changing parameters.

Note: RFC stands for Remote Function Call. A RFC-enabled function module can be called from outside
the SAP System or from another SAP component.

(C) SAP AG BC400 11-28

 SAP AG 1999

Conditions for BAPI Function Modules

SAP System

InterfaceInterface
Function moduleFunction module
Source codeSource code

Structure
BAPI_<name>

All interface parameters
typed with an ABAP
Dictionary structure that
is compiled for the BAPI.

No user dialog

No changing parameter

No exceptions

Error messages
for RETURN
parameter (structure
or internal table)

Function groupFunction group

Attribute:
RFC-enabled
function module

Function modules for BAPIs must fulfill the following requirements:

Naming convention: <BAPI>_<Business Object>_<method>.

Function module attributes: RFC-enabled

The function module must not contain user dialogs. This includes messages.

The function module must not contain exceptions. Errors are reported to the user with export
parameter RETURN.

The function module must not contain CHANGING parameters.

All interface parameters are typed with an ABAP Dictionary structure that is compiled for the BAPI.
The structures have the naming convention BAPI_<structure name>. These structures are 'frozen'
and must not be changed incompatibly.

(C) SAP AG BC400 11-29

 SAP AG 1999

BAPI Explorer

Component
hierarchy

Application component

Key attributes

API methods

Business object

Detail Documentation Tools ProjectHierarchy Alphabetical

Hierarchy area

More information on
subcomponents

available in
other ABAP

Workbench tools

You can display more information on business objects and the BAPIs that belong to them using BAPI
Explorer Information. The screen is divided into two parts: a hierarchy area and a details window. The
hierarchy area displays the component hierarchy. You can expand an application component to find out
which business objects belong to it. If you expand a single business object, the system displays a sub-
tree, showing you which key attributes and API methods belong to it. (API stands for Application
Programming Interface).

(C) SAP AG BC400 11-30

 SAP AG 1999

Business Objects in the BAPI Explorer

Hierarchy Alphabetical Detail Documentation Tools Project

Key attributes

BAPIs

AirlineCarrier
ConnectionNumber
DateOfFlight

GetDetail
GetList

FlightBooking
FlightCustomer
FlightConnection

If you expand a sub-tree for a business object in the BAPI Explorer, the system displays the following:

Key attributes: Provide a unique identifier for each business object

Instance-specific methods: Methods that are bound to the instance identified by the key attributes
The business object type FlightBooking has one instance-specific method, GetDetail that returns a
structure with booking details. Key attribute values must be passed to this method.

Non-instance specific methods: Can be called by all instances of an object type FlightBooking has
one such method, GetList that returns a list of all bookings, for which a business object already exists
at runtime.

(C) SAP AG BC400 11-31

 SAP AG 1999

Standardized BAPIs

GetList

Gets list of object key fields that satisfy selected criteria
(search function)

GetDetail

Retrieves details (attributes) about an object whose complete
key is given

Create, Change, Delete, Cancel

Creates and changes business objects in R/3

AddItem, RemoveItem

Adds and removes subobjects (for example, item for an order)

BAPIs with standardized names contain standardized methods. These are a few of the most important
standardized BAPIs.

(C) SAP AG BC400 11-32

 SAP AG 1999

Finding BAPI Function Modules

Hierarchy Alphabetical Detail Documentation Tools Project

FlightBooking
FlightCustomer
FlightConnection

Return
FlightData

GetList

Method (BAPI)

BAPI_SFLIGHT_GETDETAIL

AirlineCarrier
ConnectionNumber
DateOfFlight

GetDetail

Method

Business object

Short description

New to Release

Function module

Double-Click:Double-Click: NavigationNavigation
 in the Function Builder in the Function Builder

40C

Flight details

FlightBooking

GetDetail

In Release 4.6 BAPIs are implemented using function modules. You can display the function module for
the BAPI you have chosen using the BAPI Explorer.

Select the BAPI in the hierarchy area.

In the detail information display window, choose the Detail tab.

By double-clicking on the name of the function module you can display the function module in the
Function Builder.

(C) SAP AG BC400 11-33

 SAP AG 1999

Calling a BAPI Function Module from an ABAP
Program

ABAP Program

CALL FUNCTION 'BAPI_...' ...

Currency and quantity fields:
Mapping in 'external format'

Currency and quantity fields:
Mapping in 'internal format'

BOR

If you would like to use a BAPI in an R/3 System, you can directly call the function module containing it.
Note that information about any errors that occur are passed to the program using the interface
parameter RETURN. BAPI function modules do not contain either exceptions or user dialogs. They exist
only to encapsulate business logic .

BAPI interfaces are created according to the needs for the 'external' call, a non R/3 System. Quantities
are expected in an 'external compatible' format with 4 or 9 decimal places. The quantities must be
transferred to the interface, even when the corresponding currency has no decimal places. When you
call a BAPI function module from an ABAP program, you will generally get the values in internal (SAP)
format, which is how the data is saved on the database. In this case you must execute mapping of the
external format before the BAPI call. For mapping you can use function modules from function group
BACV (development class SBF_BAPI).

(C) SAP AG BC400 11-34

 SAP AG 1999

Overview: Objects and Methods

Function Groups and Function ModulesFunction Groups and Function Modules

Business Objects and BAPIsBusiness Objects and BAPIs

Objects and MethodsObjects and Methods

(C) SAP AG BC400 11-35

 SAP AG 1999

Find out important information on classes and
their methods using the Class Builder

Write a program that displays a simple list using
an ALV grid control, and contains the following

Reference variables

A CREATE OBJECT statement

Calling of methods

A container area on a screen

At the conclusion of this topic, you will be able to:

Objects and Methods: Course Objectives

(C) SAP AG BC400 11-36

 SAP AG 1999

Integrated software development process

Facilitates communication between users and developers

Encapsulation

Programs are clearer and easier to maintain

Polymorphism

Inheritance

Benefits of Object-Oriented Programming

Integrated Software development process: Each phase in the development process (analysis,
specification, design, and implementation) is described in the same "language." Ideally, this means that
changes you make to the design during implementation can be applied retrospectively to the data model.

Encapsulation (information hiding): The ability to hide the implementation of an object from other
system components. The components cannot make assumptions about the internal status of the object,
and do not depend on using a particular implementation to communicate with the object.

Polymorphism: In object technology, the fact that objects of different classes react differently to the
same message.

Inheritance: Defines the implementation relationship between classes, such that one class (the
subclass) shares the structure and behavior that have already been defined in one or more
superclasses.

(C) SAP AG BC400 11-37

 SAP AG 1999

Real World / Functions / Objects

Tree

House

Crane

Objects are abstractions of the real world

Each object forms a unit containing both data
and its associated functions

Real World
Model

Data
Method
Method
Method

Data
Method
Method
Method

Data
Method
Method
Method

Ship

Data
Method
Method

Method

Objects are central to the object-oriented approach and represent concrete or abstract entities in the real
world. They are defined according to their properties, which are depicted using their internal structure
and attributes (data). Object behavior is described using methods and events (functions).

Each object forms a capsule, which encompasses both its character and behavior. Objects should
enable the model of a problem area to be reflected as closely as possible in the design model for its
solution.

(C) SAP AG BC400 11-38

 SAP AG 1999

ABAP Objects: "Flight" Example Object

Private attributes:
 free seats
 passengers

Public
method:
Cancel

carrid
connid
fldate
bookid
customid

Error occurred

Public
method:
Book

carrid
connid
fldate
customid

bookid, booking made,
no free seats

 carrid
 connid
 fldate

Flight canceled

Error occurred

As an example, consider the "flight" object displayed above.

The object contains private attributes that pertain to flights.

Key attributes: The airline, the flight, and the departure date combined provide a unique identifier for
each flight. Each flight number also contains: the airport from which the flight departs; the time of
departure; and the destination airport.

Booking list: The list of people who have booked seats on the flight along with their booking numbers.

Flight information: Such as the airplane type and maximum number of seats.

Local methods: The object can calculate the number of free seats from the private attributes "booking
list" and "maximum number of free seats".

The object contains an interface with two methods

"Book" method: If this method is called from outside the object, and provided the necessary data has
been passed to the interface, the method uses the private attributes to determine whether or not there
is a free seat on the flight. If there is, the new customer is included in the booking list and a success
message is passed to the calling program. Otherwise, the system returns the information that the
booking could not be made because the flight is already fully booked.

"Cancel" method: Again, if this method is called from outside the object, and provided the necessary
data has been passed to the interface, the method uses the private attributes to determine whether or

(C) SAP AG BC400 11-39

not the customer is included in the booking list. If so, his or her booking is cancelled and a success
message returned to the calling program. If the customer is not in the booking list, the system displays
an error message to this effect.

(C) SAP AG BC400 11-40

 SAP AG 1999

Example Scenario: Changing a Flight Booking

Only cancel the first flight if the new booking is successful

=> Two instances are required, one for each flight

AA
0016
28.08.1999 LH

0400
28.08.1999

Generally, when customers change a booking in a travel agency, they want to be sure that they have a
seat on their new flight before they cancel the first.

Technically, this means that there are two objects of the same type, but with different key attributes.

(C) SAP AG BC400 11-41

 SAP AG 1999

Objects Are Instances of a Class

Flight class:
Template for
objects

Flight1 object:
Instance of
'flight' class

Flight2 object:
Instance of
'flight' class

In object-oriented programming, this is implemented such that each class is defined as an object type.
Instances of this class are created at runtime. That is, the system creates objects of an object type (and
thus, of the class).

(C) SAP AG BC400 11-42

 SAP AG 1999

ABAP Program

Program Flow in an ABAP Program

CREATE OBJECT ref1
 EXPORTING ...

CREATE OBJECT ref2
 EXPORTING ...

CALL METHOD ref2->book
 EXPORTING ...
 IMPORTING
 bookid = gd_bookid
 overbooked = flag
 EXCEPTIONS ...
...
IF NOT gd_bookid IS INITIAL.
CALL METHOD ref1->cancel
 EXPORTING ...
 IMPORTING ...
 EXCEPTIONS ...
...
ENDIF.

Flight

ref1 ref2

AA
0016
10.06.1999

LH
0400
10.06.1999

Flight

An ABAP program that changes bookings using objects has the following program flow:

The program starts and the program context is loaded. Memory areas are made available for all the
program's global data objects. Reference variables are also made available for each object. You can
view a summary of the data objects that are made available when you run the program by expanding the
Fields and Dictionary structures subtrees in the program object list. You can also navigate to the source
text in which the data objects have been defined - for example, using a DATA or TABLES statement.
The reference variables are defined using a DATA: <ref> TYPE REF TO <class> statement.

The objects are generated at runtime, as soon as the CREATE OBJECT statement is processed. The
system needs to tell the statement which reference variables the object should point to. The import
parameters must be passed using a special method, the CONSTRUCTOR. In this example, only the key
attributes need to be passed to the statement.

As soon as the CALL METHOD statement is processed, the method is called. Unlike calling a function,
when a method is called, the object in which the method is to be processed must be stated explicitly.
The system specifies a reference variable pointing to the object. The reference variable name is followed
by a -> and the method name.

(C) SAP AG BC400 11-43

 SAP AG 1999

Office Integration

Business Add-Ins (new enhancement concept)

Controls

Application Areas of ABAP Objects

In Release 4.6, the most important aspects of the system for object-oriented enhancements of the ABAP
language are:

Office Integration:
The system offers a new object-oriented interface, which will help you to make use of R/3 office
product functions.

Business Add-Ins:
 An object-oriented enhancement technology, which combines the advantages of existing
technologies. If Business Add-Ins are included in standard programs, you can enhance the program
using special methods, without having to carry out a modification.

Controls:
The R/3 System allows you to create Custom Controls using ABAP objects. The application server is
the Automation Client, which drives the custom controls (automation server) at the front end. This task
is performed by the Central Control Framework.

Some parts of SAP's own aplications have been re-designed using object-oriented principles - for
example, the new ABAP Workbench.

(C) SAP AG BC400 11-44

 SAP AG 1999

Controls: Technical Background I

Independent binary software components

Installed locally on the front end using SAPGUI

Move functions from the application server to the frontend

Have a wrapper class in ABAP Objects

Intended for reuse

ALV Grid Control: What are controls?

This task is performed by the Central Control Framework.

The R/3 System allows you to create custom controls using ABAP objects. The application server is the
Automation Client, which drives the custom controls (automation server) at the front end.

If custom controls are to be included on the front end, then the SAPGUI acts as a container for them.
Custom controls can be ActiveX Controls and JavaBeans.

The system has to use a Remote Function Call (RFC) to transfer methods for creating and using a
control (ABAP OO) to the front end.

(C) SAP AG BC400 11-45

 SAP AG 1999

Example: ALV Grid Control

17

64

AA
AA
AA
AA
LH
LH
LH
LH
LH

17
17

400

402

400
400

402

2000-01-17
2000-02-20
2000-03-11
2000-05-19
2000-01-13
2000-02-26
2000-03-21
2000-03-04
2000-05-28

USD
USD
USD
USD
DEM
DEM
DEM
DEM
DEM

513.69

1234.56
1234.56

513.69
513.69
369.00

1234.56
1234.56

1234.56

A321

747-400

A310-300

A319
A319

A310-300
A310-300

A321

747-400

Details

Sort

Find

Filter

Sum

Print

Download

Display variant

Toolbar

In the control, you can adjust the column width by dragging, or use the 'Optimum width' function to adjust
the column width to the data currently displayed. You can also change the column sequence by
selecting a column and dragging it to a new position.

Standard functions are available in the control toolbar. The details pushbutton displays the fields in the
line on which the cursor is positioned in a modal dialog box.

The sort function in the ALV Control is available for as many columns as required. You can set complex
sort criteria and sort columns in either ascending or descending order.

You can use the 'Search' function to search for a string (generic search without *) within a selected area
by line or column.

You can use the 'Sum' function to request totals for one or more numeric columns. You can then use the
"Subtotals" function to set up control level lists. Select the columns (non-numeric columns only) that you
want to use and the corresponding control level totals are displayed.

For 'Print' and 'Download' the whole list is always processed, not just the sections displayed on the
screen.

You also have the option of setting display variants.

(C) SAP AG BC400 11-46

 SAP AG 1999

Programs Using ALV Grid Control

Area

Custom
container
control

ALV Grid Control

Screen 100

Process
Before
Output

Process
After
Input

START-OF-
SELECTION.

An SAP Container can contain other controls (for example, SAP ALV Grid Control, Tree Control, SAP
Picture Control, SAP Splitter Control, and so on). It administers these controls logically in one collection
and provides a physical area for the display.

Every control exists in a container. Since containers are themselves controls, they can be nested within
one another. A container is its control's parent.

(C) SAP AG BC400 11-47

 SAP AG 1999

Objects and Classes for the ALV Grid Control

Area

Custom
container
control

ALV Grid Control

Custom
container

ALV Grid
Control

Class Builder

CL_GUI_ALV_GRID

CL_GUI_CUSTOM_CONTAINER

There are object types available in the Class Builder for administering custom controls and the ALV Grid
Control. At runtime, the system creates two objects - one of type CL_GUI_CUSTOM_CONTAINER and
one of type CL_GUI_ALV_GRID. These objects contain the methods needed to administer the controls.
You can find more information on object types (classes) and their associated methods in the Class
Builder.

(C) SAP AG BC400 11-48

 SAP AG 1999

Events

CL_GUI_CUSTOM_CONTAINER

Superclasses
Methods
Constructor

CL_GUI_CUSTOM_CONTAINER

Class CL_GUI_CUSTOM_CONTAINER

AttributesInterfacesAttributes Methods

Parameters for the CONSTRUCTOR method

Parameter
PARENT
CONTAINER_NAME
...

Pass Optional ... Ref. type ... Description

Int. Types

Non-optional
parameters of the

Constructor method
must be passed at
CREATE OBJECT

You can navigate to the Class Builder by entering the name of a class in the Class input field on the
Object Navigator initial screen and choosing Display. The system displays a tree structure for the class
you have chosen. Double-click the root node to display the Class Builder work area. Choose the
Methods tab and select the method for which you want more information. Choose the Parameters
button, to display more information on the interface parameters.

The class CL_GUI_CUSTOM_CONTAINER contains only the CONSTRUCTOR method. When you
create an object in a program using CREATE OBJECT you must pass the non-optional parameter
CONTAINER_NAME. The name of the container area on the screen must be passed to this parameter.

(C) SAP AG BC400 11-49

 SAP AG 1999

CL_GUI_ALV_GRID

Superclasses
Interfaces
Attributes
Methods
...
Constructor

...

REFRESH_TABLE_DISPLAY

...

SET_TABLE_FOR_FIRST_DISPLAY

...

Redefinition
Events

CL_GUI_ALV_GRID

Non-optional parameters
I_PARENT TYPE REF TO
 CL_GUI_CONTAINER

Non-optional parameters
IT_OUTTAB TYPE
 STANDARD TABLE

You must pass the row type
of the internal table,
e.g. Dictionary Structure type
I_STRUCTURE_NAME

Global class CL_GUI_ALV_GRID contains many methods. To display an internal table, which is of the
ABAP Dictionary Structure row type, using an ALV Grid Control, you only need to know the details of
three methods.

CONSTRUCTOR: The reference variable pointing to the object (with which the container control
communicates) must be passed to the constructor.

The first time a table's contents are displayed using an ALV Grid Control, display is implemented using
the SET_TABLE_FOR_FIRST_DISPLAY method. The internal table is passed to the parameter
it_outtab. In this case, it is not enough simply to pass the non-optional parameter it_outtab. In terms of
content, information about the row structure must also be passed to the object. In the case of numeric
fields containing a unit, the relationships between fields must be passed - either explicitly using a field
list, or implicitly, provided the internal table is of the ABAP Dictionary Structure type. In the latter case,
the name of the Dictionary Structure is passed to the I_STRUCTURE_NAME parameter.

REFRESH_TABLE_DISPLAY can be called if the internal table has already been displayed using the
Grid Control, and if the content of the internal table differs from that shown on the screen. In this case,
the front end control already knows the row type of the internal table and reference fields.

(C) SAP AG BC400 11-50

 SAP AG 1999

Creating a Custom Control Screen Element

Area

Screen area

Type :CUSTOM CONTROL
Name : CONTAINER_1
Resizing Minimum size

vertical : 'X' 10
horizontal : 'X' 20

Screen Painter: Layout

C

Toolbar

To reserve an area of the screen for an EnjoySAP control, open the Screen Painter and choose the
Layout button.

In the toolbar to the left of the editing area, choose the Custom control button. (This works similarly to
the Subscreen button). :

On the editing area of the screen, specify the size and position of the screen area as follows: Click
the editing area where you want to place the top left corner of the custom control and hold down the
mouse key. Drag the cursor down and right to where you want the bottom right corner. Once you
release the mouse key, the bottom right corner is fixed in position.

You can change the size and position of the area at any time by dragging and dropping the handles.
Again, these areas are similar to subscreen areas.

Enter a new name for the screen element (CONTAINER_1 in the example above).

Use the Resizing vertical and Resizing horizontal to specify whether or not the area of the custom
control should be resized when the main screen is resized. You can also set minimum values for these
attributes using Min. row and Min. column. You determine the maximum size of the area when you
create it.

(C) SAP AG BC400 11-51

 SAP AG 1999

Syntax Example: Defining Reference Variables

DATA: gdt_spfli TYPE sbc400_t_spfli.

DATA: container_r TYPE REF TO cl_gui_custom_container,
 grid_r TYPE REF TO cl_gui_alv_grid,

DATA: ok_code TYPE sy-ucomm.

START-OF-SELECTION.
perform fill_itab USING gdt_spfli.

CALL SCREEN 100.

container_r TYPE REF TO cl_gui_custom_container,

grid_r TYPE REF TO cl_gui_alv_grid,

container _r

grid_r

gdt_spfli

ok_code

The program requires two reference variables.

The first reference variable, container_r points to the object that communicates with the container
control. It is typed with the global class cl_gui_custom_container.

The second, grid_r points to the object that communicates with the ALV Grid control. It is typed with the
global class cl_gui_alv_grid.

(C) SAP AG BC400 11-52

 SAP AG 1999

MODULE create_control OUTPUT.
 IF container_r IS INITIAL.
 CREATE OBJECT container_r
 EXPORTING container_name = 'CONTAINER_1'.

 CREATE OBJECT grid_r
 EXPORTING i_parent = container_ref.

 CALL METHOD
 grid_r->set_table_for_first_display
 EXPORTING i_structure_name = 'SPFLI'
 CHANGING it_outtab = gdt_spfli.
 ELSE.
 CALL METHOD
 grid_r->refresh_table_display
 EXPORTING i_soft_refresh = 'X'.
 ENDIF.

ENDMODULE.

Syntax Example: CREATE OBJECT

 CREATE OBJECT container_r
 EXPORTING container_name = 'CONTAINER_1'.

 CREATE OBJECT grid_r
 EXPORTING i_parent = container_r.

container_r

grid_r

The CREATE OBJECT statement creates an object at runtime. You only need to enter the reference
variable, since it already has the same object type as the class.

To generate the object that communicates with the container control, you only need to include the name
of the container area on the screen, provided this occurs in a PBO module of the screen on which the
container area has been defined. If the CREATE OBJECT statement has been implemented in another
ABAP processing block, you must include the screen container number and the program number.

To generate the object that communicates with the ALV grid control, you must pass the reference
variable that points to the custom container object. This "tells" the object the container in which it is to be
included.

(C) SAP AG BC400 11-53

 SAP AG 1999

Syntax Example: Calling Methods

MODULE create_control OUTPUT.
 IF container_r IS INITIAL.
 CREATE OBJECT container_r
 EXPORTING container_name = 'CONTAINER_1'.

 CREATE OBJECT grid_r
 EXPORTING i_parent = container_ref.

 CALL METHOD
 grid_r->set_table_for_first_display
 EXPORTING i_structure_name = 'SPFLI'
 CHANGING it_outtab = gdt_spfli.
 ELSE.
 CALL METHOD
 grid_r->refresh_table_display
 EXPORTING i_soft_refresh = 'X'.
 ENDIF.

ENDMODULE.

CALL METHOD
 grid_r->set_table_for_first_display
 EXPORTING i_structure_name = 'SPFLI'
 CHANGING it_outtab = gdt_spfli.

CALL METHOD
 grid_r->refresh_table_display
 EXPORTING i_soft_refresh = 'X'.

container_r

grid_r

To display data in an ALV grid control, you must make them available in an internal table. The system
then calls the method that receives the content and structure of the internal table. The method is called
set_table_for_first_display. Provided the internal table has the type ABAP Dictionary Structure, the
name of the structure is passed to the i_structure_name parameter. The method then gets the
information it needs - column names, column types, and column links for currency fields - directly from
the ABAP Dictionary.

If only the content of the internal table changes while the program is running, the program must call the
refresh_table_display method before sending the screen with the container area again.

(C) SAP AG BC400 11-54

 SAP AG 1999

You are now able to:

Reuse Components

Find and use function modules

Display a simple list using the ALV grid control
(objects from global classes in the Class Builder)

Use a BAPI and find BAPIs using the BAPI
Browser

(C) SAP AG BC400 11-55

Reuse Components: Exercises

Unit: Reuse Components

Topic: Function Modules

At the conclusion of these exercises, you will be able to:

Search for a function module

Insert a function module call in a program

Extend your program ZBC400_##_SELECT_SFLIGHT or the corresponding
model solution as follows:
If the Cancel function is chosen on the screen, the system should process a
standard dialog box that is encapsulated in a function module.

Program: ZBC400_##_DYNPRO

Model solution: SAPBC400UDS_DYNPRO_E

1-1 Extend your program, ZBC400_##_DYNPRO, or copy the relevant model solution
SAPBC400UDS_DYNPRO_D and give it the name ZBC400_##_DYNPRO_D. Assign your
program to the development class ZBC400_## and to the transport request for this project,
BC400… (replacing ## with your group number).

1-2 Using the method outlined during the course, search for the function module that encapsulates
the standard dialog, which is usually triggered when the user chooses Cancel.

1-3 Find out about the function module interfaces, read the documentation, and test the function
module using the test environment.

1-4 In the GUI status of the screen, activate the ‘Cancel’ function.

1-5 Extend the USER_COMMAND_0100 module to evaluate the function code for the Cancel
function. Then insert the function module call using the “pattern” function of the ABAP Editor.
React to the user’s input that gets the function module, as follows:

- If the user would like to cancel, set the next screen dynamically to 0.

(C) SAP AG BC400 11-56

- If the user does not want to cancel, set the next screen dynamically to 100.

(C) SAP AG BC400 11-57

Unit: Reuse Components

Topic: ABAP Objects and the ALV Grid Control

At the conclusion of these exercises, you will be able to:

Output a simple list using an ALV grid control

Write a program that outputs the contents of the database table SPFLI using an
ALV grid control.

Program: ZBC400_##_ALV_GRID

Model solution: SAPBC400RUS_ALV_GRID

2-1 Copy the program, SAPBC400RUT_ALV_GRID giving it the name ZBC400_##_ALV_GRID.
Assign your program to development class ZBC400_## and the change request for your
project “BC400…” (replacing ## with your group number). The template program contains the
definition of an internal table with the same line type as the database table SPFLI and a user
dialog (screen 100).

2-2 Become familiar with the program.

2-3 Fill the internal table with data records from the data table SPFLI using the Array-Fetch.

2-4 Navigate to the Class Builder and find out the following:

2-4-1 Which parameters of method CONSTRUCTOR for class
CL_GUI_CUSTOM_CONTAINER are compulsory?

2-4-2 Which parameters of method CONSTRUCTOR for class
 CL_GUI_ALV_GRID are compulsory?

2-5 Create a container control area on the screen. Make sure you give the area a name.

2-6 Define two reference variables, one for the CL_GUI_CUSTOM_CONTAINER class and one for
the CL_GUI_ALV_GRID class.

(C) SAP AG BC400 11-58

2-7 Make sure that a module is called from the event PROCESS BEFORE OUTPUT from screen
100, to generate the objects. Generate the object for the custom container using CREATE
OBJECT. Pass the name of the container area for screen 100 to the constructor’s mandatory
parameter. Create the object for the ALV GRID CONTROL using CREATE OBJECT. Pass the
reference variable for the custom container to the mandatory parameter. Use a query to ensure
that the object is only generated when PROCESS BEFORE OUTPUT runs for the first time.

2-8 When PROCESS BEFORE OUTPUT runs for the first time, call the method
SET_TABLE_FOR_FIRST_DISPLAY; pass the name of the line type of the internal table to
the parameter I_STRUCTURE_NAME; pass the internal table to the parameter IT_OUTTAB.

2-9 If PBO runs more than once, the method REFRESH_TABLE_DISPLAY should be called.
Pass ‘X’ to the parameter I_SOFT_REFRESH.

(C) SAP AG BC400 11-59

 Reuse Components: Solutions

Unit: Reuse Components

Topic: Function Modules

1-2 The function module is called ‘POPUP_TO_CONFIRM_LOSS_OF_DATA’.

1-3 The following interface parameters exist:
Mandatory import parameters:
TEXTLINE1 (max 70 char.) : first line of the dialog window
TITEL (max 35 char.) : title of the dialog window
Optional import parameters:
TEXTLINE2 (max 70 char.) : first line of the dialog window
START_COLUMN (Type SY-CUCOL): First column of the dialog

 window
START_ROW (Type SY-CUCOL): First line of the dialog box
Export parameters:
ANSWER (Type C), : user’s input
“Y” = user has confirmed the processing step
“N” = user has canceled the processing step

1-4 The function code for the Cancel function is RW.

1-5
&--
*& Module USER_COMMAND_0100 INPUT

&--

MODULE user_command_0100 INPUT.

 save_ok = ok_code .

 CLEAR ok_code .

 CASE save_ok.

 WHEN 'BACK'.

 SET SCREEN 0.

 WHEN 'RW'.

 CALL FUNCTION 'POPUP_TO_CONFIRM_LOSS_OF_DATA'

 EXPORTING
 textline1 = text-001

 titel = text-002

 IMPORTING

(C) SAP AG BC400 11-60

 answer = answer.

 case answer.

 when 'N'.

 leave to screen 100.

 when 'J'.

 leave to screen 0.

 endcase.

 WHEN 'SAVE'.

 MESSAGE ID 'BC400' TYPE 'I' NUMBER '060'.

 SET SCREEN 0.

 WHEN OTHERS.

 SET SCREEN 100.

 ENDCASE.

ENDMODULE. " USER_COMMAND_0100 INPUT

(C) SAP AG BC400 11-61

Unit: Reuse Components

Topic: ABAP Objects and the ALV Grid Control

Program: ZBC400_##_ALV_GRID

Model solution: SAPBC400RUS_ALV_GRID

2-3 START-OF-SELECTION.

* fill internal table

 SELECT * FROM spfli

 INTO TABLE gdt_spfli.

* WHERE ...

 CALL SCREEN 100.

2-4-1 The following parameter of the method CONSTRUCTOR (for the class:
CL_GUI_CUSTOM_CONTAINER)is mandatory.

CONTAINER_NAME: the name of the control container on the screen

2-4-2 The following parameter of the CONSTRUCTOR method (for the
CL_GUI_CUSTOM_CONTAINER class) is mandatory:

I_PARENT: parent-container: The name of the reference variable that
points to the object for the CL_GUI_CUSTOM_CONTAINER class must be passed to
this parameter.

2-5 Create a container control area on the screen. Name of container area: CONTAINER_1

2-6 Enter the following in the data declarations section:

DATA:
container_r TYPE REF TO CL_GUI_CUSTOM_CONTAINER,

 grid_r TYPE REF TO CL_GUI_ALV_GRID.

2-7 to 2-9:

(C) SAP AG BC400 11-62

Flow logic:
PROCESS BEFORE OUTPUT.

 MODULE STATUS_0100.

module create_control.

*

PROCESS AFTER INPUT.

module copy_ok_code.

MODULE USER_COMMAND_0100.

PBO module in the program:
&---

*& Module CREATE_CONTROL OUTPUT

&---

MODULE create_control OUTPUT.

 IF container_r IS INITIAL.

 CREATE OBJECT container_r

 EXPORTING container_name = 'CONTAINER_1'.

 CREATE OBJECT grid_r

 EXPORTING i_parent = container_r.

 CALL METHOD grid_r->set_table_for_first_display

 EXPORTING i_structure_name = 'SPFLI'

 CHANGING it_outtab = gdt_spfli.

 ELSE.

 CALL METHOD grid_r->refresh_table_display

 EXPORTING i_soft_refresh = 'X'.

 ENDIF.

ENDMODULE. " CREATE_CONTROL OUTPUT

(C) SAP AG BC400 12-1

 SAP AG 1999

Software Logistics and Software Adjustment:
Contents

Team and project-oriented software development
using the Transport Organizer

Ways of changing the SAP standard software

(C) SAP AG BC400 12-2

 SAP AG 1999

At the conclusion of this unit, you will be able to:

Software Logistics and Software Adjustment:
Unit Objectives

Map a project in the R/3 System using the
Transport Organizer

Describe the options for enhancing or changing
the functions of existing programs

(C) SAP AG BC400 12-3

 SAP AG 1999

Software Logistics and R/3 Adjustment

Organization of Software DevelopmentOrganization of Software Development

Customer development, enhancement, or modification?Customer development, enhancement, or modification?

(C) SAP AG BC400 12-4

 SAP AG 1999

System Landscape

Delivery route

Note: Repository
objects are
cross-client

DEV

Development
system

QAS

Quality assurance
system

PRD

Production
system

SAP

ZDEV

SAP

Transport routes

Consolidation route
for modifications to
SAP Repository objects

Consolidation for customer
Repository objects

You can see the current system configuration in the Transport Management System. From the SAP
Easy Access menu you can reach the Transport Management System by choosing the menu path Tools
--> Administration --> Transports --> Transport Management System or by using transaction STMS. By
choosing the Transport routes icon you can display a diagram of the current system and corresponding
transport routes.

(C) SAP AG BC400 12-5

 SAP AG 1999

Development Classes

Project ManagerCreate Development Class

Development class

Short description

Transport layer

Person responsible

Software component

Application component

Short description of
development class

ZDEV

GEBHARD

HOME

Classification of development
objects: HOME for customer
developments

Where should the development
objects be transported?

Add to application
hierarchy

Name of development class
in customer namespace

You can create a development class in the Object Navigator. Observe the customer namespace
conventions when naming your development class.

Choose Edit object from the initial screen or Other object. Enter the name of the development class in
the input field on the tab page Other.

In Release 4.6C you can create a development class by selecting object type Development class and
entering the name of the development class. When you press Enter or choose Display, the system
checks whether a development class with the same name already exists. If it does, then the object list
of development classes appears in the navigation area. If the development class does not already
exist, the system opens the Create Development Class dialog box.

As well as the name and short description, you must specify the following information:

Transport layer: If you carry out your own developments, you must set up a transport layer for
customer developments.

Enter the name of the person responsible for the object of the development in the corresponding input
field. The system automatically uses your user name as a proposal.

For customer developments you should enter HOME as the software component. You can get
detailed information on the field from the F1 help function.

(C) SAP AG BC400 12-6

In the Application component field you can determine the assignment of development classes in the
application hierarchy.

(C) SAP AG BC400 12-7

 SAP AG 1999

Projects

Project

Team

Specification

Design document

Customer
program
(to create)

Customer
program
(to change)

SAP program
(to enhance)

Project ManagerProject Manager

Each development project requires the following information:

Project Manager and team

Selection of the contents of the project (specification or blueprint) and the concept for conversion in
the system (design document or technical design). In this context you can determine which programs
are created, which customer developments are changed, and which SAP programs are enhanced.

Time frame and development deadline

In the system a change request is created for a development project. The project manager and team
members are determined in the change request.

The program, which is to be created or changed, is assigned to the request when saving the first
change. A program only be assigned to a single project at any one time.

The development deadline is not a direct attribute of a change request. At the end of development the
request is released and the changes are exported from the system. After their release, the programs,
which are assigned to the request, can be assigned to another change request and a subsequent
development project.

(C) SAP AG BC400 12-8

 SAP AG 1999

Creating a Request (For a Project)

Project Manager

Create requests in the Transport Organizer (SE01)
Request type: Workbench request

Create Request

Request

Short description

Project

Owner

Workbench request

Tasks
User

GEBHARD

GEBHARD

WALTERS Assign all team members

Source client

Target

100

QAS

Check target system

Short description of project

As the project manager you can create a change request in the Transport Organizer:

From the SAP Easy Access menu choose: Tools --> Administration --> Transports --> Transport
Organizer or transaction SE01.

Choose Create and select Workbench request as the request type.

Enter a short text for the development project. As far as possible, you should formulate the short text so
that the team members can identify the request with the project, if they are working on multiple projects.

Your user name is used for the owner name. If you create the change request on behalf of the project
manager, you can change the owner name.

Check the target system. The administrator can transport all programs of the change request after
release in the selected target system.

Enter the user names of all team members.

(C) SAP AG BC400 12-9

 SAP AG 1999

Assigning Programs to a Request (Project)

Project

Team

Programs already assigned
to the request in the system

Programs not assigned
to a request

1: Change
2: Save

You must assign a request
when saving, changing, and

creating a new program

Project Manager

When a developer wants to save a change or a new program, the developer must assign it to a change
request and a logical development project. The program is then linked to the change request until the
request is released.

A program can be linked to a maximum of one change request at any one time. If a program that you
need to change for your development project A is already being changed within another development
project B, then project B must be completed first. After you have released the change request for project
B you can edit the program.

Note: All programs of a request are transported at the same time. Therefore, when assigning programs
to a request you must consider the dependencies of other programs. When releasing a request it should
create a consistent state. If changes are carried out in another development project, and you need these
changes, you must ensure that the other change request is imported into the system before your
request.

(C) SAP AG BC400 12-10

 SAP AG 1999

Change Authorizations for All Team Members

Project 1

Team

Subsequently assigned
to the team

2

Project 2

Team

Project Manager 2

All team members of
project 1 can change
all programs in project 1

Not allowed to change
programs belonging
to project 1

The programs are protected
from 'external' changes
until the project is completed.

Project Manager 1

1

All team members can access all programs of the change request. This allows for flexible team work.

The developers who are not assigned to the change request can only display the programs that are
assigned to the change request.

If a developer subsequently becomes a team member, he or she is then assigned to the change request.
Afterwards the developer can change all programs in the request.

The assignment of members to a request is valid only until the project is released. For following projects
members must be reassigned to a request.

(C) SAP AG BC400 12-11

 SAP AG 1999

At the End of Development

Team:Team:

Project Manager:Project Manager:
End of development

Schedule: . . .

Quality control projectQuality control project
•• Syntax checkSyntax check
•• Inactive objectsInactive objects
•• Task consistencyTask consistency

Project documentationProject documentation

Request is releasedRequest is released

BC400-00

BC400-01

BC400-02

BC400-03

BC400-04

...

Quality control tasks:
• Syntax check
• Activation of inactive objects

Task documentation

Tasks are released

(C) SAP AG BC400 12-12

 SAP AG 1999

Registering Developers in the SSCR

SAP Software Change Registration
(SSCR)

SAP Software Change RegistrationSAP Software Change Registration
(SSCR)(SSCR)

• You must register developers
using the SSCR procedure

• Each developer obtains an
access key

• You can only apply once for an
access key

•• You must register developersYou must register developers
using the SSCR procedureusing the SSCR procedure

•• Each developer obtains anEach developer obtains an
access keyaccess key

•• You can only apply once for anYou can only apply once for an
access keyaccess key

• You must register modified
SAP objects using the SSCR
procedure

• Each object obtains an access
key

• You can only apply for an
access key for an object in
each R/3 Release

•• You must register modifiedYou must register modified
SAP objects using the SSCRSAP objects using the SSCR
procedureprocedure

•• Each object obtains an accessEach object obtains an access
keykey

•• You can only apply for anYou can only apply for an
access key for an object inaccess key for an object in
each R/3 Releaseeach R/3 Release

Register SAP objectsRegister SAP objects
to be changedto be changed

Register developers whoRegister developers who
use the ABAP Workbenchuse the ABAP Workbench

All R/3 user who wish to use the ABAP Workbench to create or change a Repository object in their
system (including customer developments), must request a key using the SAP Software Change
Registration (SSCR) procedure.

After the registration process all development users receive a key. The key is linked to the developer's
user ID and the license number of the R/3 System. The system prompts development users for their key
the first time they attempt to create or change a Repository object.

You must also register all SAP Repository objects that you wish to modify. To register you must enter
the name of the object, the object type, the license number of the R/3 System, and the number of the
Release. You register each Repository object once. The registration is valid until the next upgrade.

(C) SAP AG BC400 12-13

 SAP AG 1999

Originals and Copies

CopyCopy

OriginalOriginal

CopyCopy

CopyCopy

OriginalOriginal

SAP object

Development systemDevelopment system Next systemNext system

SAP object SAP object

Customer object Customer object

Transport Transport
developmentdevelopment

When you create a Repository object, the Transport Organizer automatically notes the system in which
you created it. We say that the original of a Repository object is in a certain system.

The original version of an object can only exist in one system. All other systems contain copies of the
object.

The idea of having an original system is to ensure that Repository objects can only be changed in the
integration system. The integration system is where you carry out your development work, so all of the
objects in it are originals. This means that there is one central location for changing Repository objects.

If you now transport your Repository objects into a consolidation system, it exists there as a copy.
Although it is possible to change copies in exceptional cases, you should always try to make the
changes in the integration system and transport the new version to other systems. This ensures that the
state of objects remains consistent across systems.

Originals are never overwritten in transports.

(C) SAP AG BC400 12-14

 SAP AG 1999

ModifiedModified
copycopy

CorrectedCorrected
originaloriginal

CopyCopy

CopyCopy

CorrectedCorrected
originaloriginal

SAP object

Development systemDevelopment system Next systemNext system

TransportTransport
correctioncorrection

SAP object SAP object

Customer object Customer object

CorrectionCorrection

RepairRepairCorrectionCorrection
TransportTransport

repairrepair

Corrections and Repairs

Changing an original is called a correction. The system records these changes in a request containing
tasks of type "development/correction".

If a copy is changed (that is, if an object is not changed in its original system), this change is recorded in
a task with type "repair". A repair of an SAP object is called a modification.

The changes made to your own objects (e.g. due to an emergency in the production system) can also be
made immediately to the originals in the development system. It is imperative that you immediately
make the changes you made to the copies to the original as well.

This is not possible for SAP objects because the originals are not in any of your systems.

(C) SAP AG BC400 12-15

 SAP AG 1999

Modifications During Upgrade

ModifiedModified
copycopy

CorrectedCorrected
originaloriginal

CopyCopy

CopyCopy

CorrectedCorrected
originaloriginal

SAP object

Development systemDevelopment system Next systemNext system

TransportTransport
adjustmentadjustment

SAP object SAP object

Customer object Customer object

UpgradeUpgradeUpgradeUpgrade

ModificationModification
adjustmentadjustment

A conflict could occur when you apply an upgrade, a support package, or some other transport request
from SAP to your system.

A conflict occurs if you change an SAP object and a new copy is being delivered by SAP in an upgrade.
The object delivered by SAP becomes the active object in the repository of your R/3 System.

If you want to save your changes, you have to make a modification adjustment for the corresponding
objects. Modifying a number of SAP objects can cause a substantial delay when performing an upgrade.

To ensure that the development system and the next system are consistent, you should only make the
modification adjustment in the development system. The objects of the adjustment are then transported
to the subsequent systems.

(C) SAP AG BC400 12-16

 SAP AG 1999

Time

Quality Assurance: Error Correction in a Three-
System Landscape

Production systemConsolidation systemDevelopment system

Request 1
Test: Error
identified

Request 2

Request 1 and request 2

Release request 1

Release request 2

Test: ok

Development in request 1

Error correction in request 2

In a three-system landscape the development cycle can be illustrated in the following way:

All new and changed programs are assigned to a change request. Immediately before the start of the
test phase in the consolidation system, the request is released and transported to the consolidation
system.

Tests are carried out in the consolidation system. Identified fields are passed to the development. This
carries out the necessary corrections and assigns the corrected program to a new change request. The
new request is released and transported to the consolidation system. It may be necessary to repeat this
part of the process several times.

As soon as the test has been successfully completed, all requests are transported into the production
system.

If you simultaneously carry out multiple independent development projects that you want to transport
separately into the production system, you can create a so-called 'Project' for each development project
in the development system. You can then assign the change requests to the corresponding 'Project'.
You can find additional information in the SAP Library under Basis Components --> Change and
Transport System --> Transport Organizer --> Working with Projects or in the training course BC325
Software Logistics.

(C) SAP AG BC400 12-17

 SAP AG 1999

Software Logistics and R/3 Adjustment

Organization of Software DevelopmentOrganization of Software Development

Customer development, enhancement, or modification?Customer development, enhancement, or modification?

(C) SAP AG BC400 12-18

 SAP AG 1999

Change Levels

R/3 businessR/3 business
applicationsapplications

(SAP Standard)(SAP Standard)

CustomerCustomer
programsprograms

CustomerCustomer
developmentdevelopmentEnhancementEnhancementModificationModification

Assisted
modification

Calling SAP
objects

Without calling
SAP objects

ABAP Dictionary

Table enhancement

Field exit

Customer exit
Function module exit

Screen exit

Menu exit

Business transaction
event (BTE)

Business Add-In

User exit

There are four different ways of changing the system to meet your requirements:

­ Customizing: Allows you to change system parameters using a special interface. All possible
changes have been thought of and organized. Customizing is a mandatory part of setting up a
system.

­ Enhancement concept: Allows you to change SAP Repository objects without modifications.

­ Customer development: Creating customer-specific objects in accordance with the customer
namespace conventions.

­ Assisted modification: You can carry out modifications to SAP Repository objects using the
Modification Assistant. Modifications can lead to a considerably increased workload for an upgrade.
If there are changes on the same Repository object in the new Release, you have to adjust the
versions manually. The Modification Assistant can help you carry out the adjustment automatically
in parts. You can find additional information on the Modification Assistant in the SAP Library under
Basis Components --> ABAP Workbench --> Changing the SAP Standard --> Modification
Assistant.

(C) SAP AG BC400 12-19

 SAP AG 1999

How Enhancements Function

* REPORT <name of SAP program> *

REPORT <name of SAP program>.

<Call enhancement>

* Object in customer namespace *

SAP objects are usually enhanced as shown.

The SAP object enables you to go to a customer object. Since this object usually does not exist, you
have to implement it in the specified manner.

Different enhancement techniques are implemented differently. Depending on the enhancement
technique, you have to use a different maintenance transaction to use the enhancement and to create
the corresponding objects.

The corresponding maintenance transaction has a search function for finding a suitable enhancement.
You can also find documentation about the corresponding enhancement here.

(C) SAP AG BC400 12-20

 SAP AG 1999

Finding Enhancements

User exits Customer exits Business transaction
events (BTEs)

System -->System --> StatusStatus
-->Double-click on program name-->Double-click on program name

Find character string...Find character string...

perform userexit call customer OPEN_FI_PERFORM

 global in program <prog>global in program <prog>

SAP Reference IMG

Sales & Distribution

System adjustment
 User exits

Select
 corresponding
 components

CMOD

Utilities

SAP enhancements

Restrict search
 with
 <prog>

SAP Reference IMG

Financial Accounting

Basic settings
 Use BTE

Environment

Information System

Select
 corresponding
 application
 components

With Release 4.0, R/3 offers three options for enhancing the delivered standard. You have now learned
the techniques for implementing the enhancements. The options for finding out whether a program offers
an enhancement directly from the running ABAP program are here. The strategy is always the same.
Find out the program name with the menu path System --> Status. Navigate forwards to the source text
of the main program. Use the search function to find specific character strings in the entire source text of
the program.

Once you have found that the program has an enhancement option, you have to find the documentation
belonging to the enhancement. This documentation tells you about uses of the enhancement and its
implementation methods.

(C) SAP AG BC400 12-21

 SAP AG 1999

Is a similar function
mapped in the SAP standard?

Can the SAP
 function be adjusted

to the customer's requirements
using enhancements?

Does the
SAP application allow
more functions to be

linked with enhancements?

No

Yes

Yes

No

Yes

No

Customer development

Customizing

Enhancement

Request enhancement,
Avoid modification

Enhancing Functions

Before starting a modification, check whether it is possible to meet your requirements using Customizing
or the enhancement concept instead.

Enhancements are a method of changing SAP software while avoiding a classic modification. You can
change or extend functions without having to adjust the software manually during upgrades. The
different types of enhancement are mentioned later in this unit.

You can request enhancements in the SAP Service Marketplace (http://service.sap.com).

http://service.sap.com

(C) SAP AG BC400 12-22

 SAP AG 1999

Menu 2
Function 1
Function 2
Cust. function
Function 3

Menu 1 Menu 3

Menu exitMenu exit

Field x

Field y
ScreenScreen

exitexit
Field exitField exit

Enhancing User Dialogs

You can enhance the R/3 System at the following levels:

­ Menu exit: The system contains various points at which you can include menu items that start
customer programs.

­ Screen exit: Some screens contain areas (subscreens) in which you can display your own
screens.

­ Field exits: Field exits allow you to incorporate extra field checks.

(C) SAP AG BC400 12-23

 SAP AG 1999

Enhancements: Examples

Program exits:

Predefined exits to application programs

Dictionary enhancements:

Table appends: Allow you to add extra fields to standard
tables

Semantic information for data elements: You can change the
field documentation (F1 help) and short texts using an
enhancement

Customers can use the following types of programming enhancement:

Enhancing application programs: SAP developers have included exits at certain points in application
programs to allow you to call sections of your own coding.

Enhancing Dictionary objects:

­ Table appends: Allow you to add extra fields to standard tables

­ Field documentation: You can replace the field documentation that is displayed when the user
presses F1 with your own texts. The help texts are stored with the corresponding data element.

­ You can replace the field labels (short, medium, and long texts for the field) with your own texts.

(C) SAP AG BC400 12-24

 SAP AG 1999

You are now able to:

Software Logistics and Software Adjustment:
Unit Summary

Map a project in the R/3 System using the
Transport Organizer

Describe the options for enhancing or changing
the functions of existing programs

(C) SAP AG BC400 13-1

 SAP AG 1999

Basic Business Process

Database LUW

Bundling Database Changes

Lock Concept

Contents:

Database Dialogs II (Making Changes to the
Database)

(C) SAP AG BC400 13-2

 SAP AG 1999

At the conclusion of this unit, you will be able to:

Database Updates: Unit Objectives

Explain why you have to make database changes
to a business unit in a database LUW,

Describe the SAP lock concept

(C) SAP AG BC400 13-3

 SAP AG 1999

SAP LUW and Database LUW

SAP LUW and Database LUWSAP LUW and Database LUWSAP LUW and Database LUW

Database UpdatesDatabase UpdatesDatabase Updates

Lock ConceptLock ConceptLock Concept

(C) SAP AG BC400 13-4

 SAP AG 1999

Process
step 1

Process
step 2 . . .

ProcessProcess
step nstep n

SAP LUW

Basic
business process

Basic Business Process

An SAP Logical Unit of Work (LUW) contains a series of dialog steps for a business process in the R/3
System that form a logical unit.

The steps in the process chain of the business process must be logically related.

SAP LUWs work on an all-or-nothing principle: Either the system processes all of the steps, or none of
them at all.

The business process represented in the LUW must be basic, that is it must not be too big. For
example, the entire process from customer order to billing is too big to be included in a single LUW.
Instead, you would split the process up into smaller, independent sections, each of which would form a
transaction in the R/3 System. Exactly what constitutes a "basic" process depends on the business
process and the way in which you have modeled it.

Note: A business LUW is often refered to as a transaction. The term transaction has several meanings.
In an SAP environment, transaction is often understood to mean an application that you start using a
transaction code. A program can include several SAP LUWs. In this training course we will use the term
SAP LUW.

(C) SAP AG BC400 13-5

 SAP AG 1999

Database LUW

Consistent
state 1

Intermediate state

Consistent
state 2

ROLLBACK

State of data changes -
insert, update, delete

COMMIT

A database LUW (DB Logical Unit of Work) is an inseparable sequence of database operations that
takes the database from one consistent state to another.

Database LUWs are either completely executed by the database system, or not at all.

Database LUWs close with a database commit. It is only in the commit that the changes are firmly
written in the database. Until the commit occurs, you can undo your changes using a database rollback.

(C) SAP AG BC400 13-6

 SAP AG 1999

(Implicit) Database Commits in Each User Dialog

Dialog step

DB LUWDB LUWDB LUW

PBO PBOPAI PAI

DatabaseDatabase
COMMITCOMMIT

DatabaseDatabase
COMMITCOMMIT

DatabaseDatabase
COMMITCOMMIT

Program endDialog step

Implicit database commits are triggered when:

­ A dialog step is completed

­ An error dialog occurs

­ You call a function module in another work process (RFC).

The SAP LUW can span several dialog steps and contains consistency checks, which are processed as
closely as possible to the user action, so that the user can be informed of the error status. Since the user
processing time of a screen is generally much longer than a dialog step of the application server, an
SAP LUW requires a much larger time frame than a database LUW.

(C) SAP AG BC400 13-7

 SAP AG 1999

DB LUW

SAP LUW

Database changes

ABAP
Program

User dialogs

Aim: Bundling Database Changes in an SAP LUW

Using an SAP LUW to represent a business process in the R/3 System involves both user dialogs and a
database dialog. The purpose of a transaction is to make sure that the data exchanged between
program and user in the user dialogs is processed on an all-or-nothing basis in the database. This
means that all of the changes from the SAP LUW must be processed in a single database LUW.

Usually an SAP LUW is processed in more than one DB LUW.

The aim when programming a transaction is to bundle the segments of the database dialog in a DB
LUW.

You should aim to process the database dialogs as late as possible within the database LUW, and to
keep the database locks set for as short a time as possible.

(C) SAP AG BC400 13-8

 SAP AG 1999

Database Updates

SAP LUW and Database LUWSAP LUW and Database LUWSAP LUW and Database LUW

Database UpdatesDatabase UpdatesDatabase Updates

Lock ConceptLock ConceptLock Concept

(C) SAP AG BC400 13-9

 SAP AG 1999

Solution: Database Updates in a Single Dialog Step

DB LUWDB LUWDB LUW

Dialog step

Database
changes

Program end

DatabaseDatabase
COMMITCOMMIT

Database
COMMIT

Database
COMMIT

Read from
the database

Dialog step

COMMIT WORK.

For simple database changes you can ensure the bundling of database changes by grouping together
the ABAP statements for all database changes in a processing block. You should be careful not to
trigger a user dialog in the processing block. In this context, note that a message of type I, W, or E is
triggered in the user dialog.

After the database update, trigger an explicit database commit using the COMMIT WORK statement.
Ensure that the database changes are written to the database, when an implicit database commit is
triggered.

(C) SAP AG BC400 13-10

 SAP AG 1999

Example Program: Update in a Dialog Step

Time

Double-click line AA 0017

Return code

Yes

Return-
Code = 0

?

Save

No

Rollback and
program end

Function module or subroutine

Consistency checks

Database changes
using ABAP statement

UPDATE, MODIFY or DELETE

Changed data

Database commit
and return to

basic list

Data flow
Exception

This diagram shows one method of carrying out database changes in our example program.

By choosing Save you trigger the database changes on the screen. This calls a function module in a PAI
module that executes consistency checks and calculates the data. If no errors occur, the database
changes are executed and the function module terminates normally (with return code 0). If errors occur,
the function module is terminated and return code <> 0 is given.

In the program the return code can have the following values:

0 A database commit is triggered and processing continues

<> 0 A database rollback is triggered and the program is terminated

(C) SAP AG BC400 13-11

 SAP AG 1999

DB LUW

Outlook: Database Changes Using Update Task

DB LUWDB LUW

Note
database
changes

Program end
with dialog

DatabaseDatabase
COMMITCOMMIT

Database
COMMIT

Dialog step

Buffer

COMMIT WORK.

DatabaseDatabase
COMMITCOMMIT

Generally, database changes are more complex for business programs. For this you usually use a
technique that notes the database changes first. The ABAP statement COMMIT WORK triggers an
update work process in which the database changes are carried out.

If you choose different attributes the database update is triggered asynchronously, so that the user can
continue processing without waiting for the update to finish. This logs errors simultaneously. A database
update that is terminated because of errors can be restarted.

Before you program extensive database changes, find out about the available techniques from the online
documentation or training course BC414: Programming Database Updates.

(C) SAP AG BC400 13-12

 SAP AG 1999

Lock Concept

SAP LUW and Database LUWSAP LUW and Database LUWSAP LUW and Database LUW

Database UpdatesDatabase UpdatesDatabase Updates

Lock ConceptLock ConceptLock Concept

(C) SAP AG BC400 13-13

 SAP AG 1999

To avoid competing
accesses to the same
data

Why Set Locks?

Program CProgram C

Tab 1

Tab 2

Tab 3

Tab 4

Tab 5

Tab 6

Program A

Program B

If several users are competing to access the same resource or resources, you need to find a way of
synchronizing the access in order to protect the consistency of your data.

Example: In a flight booking system, you would need to check whether seats were still free before
making a reservation. You also need a guarantee that critical data (the number of free seats in this case)
cannot be changed while you are working with the program.

Locks are a way of coordinating competing accesses to a resource. Each user requests a lock before
accessing critical data.

It is important to release the lock as soon as possible, so as not to hinder other users unnecessarily.

(C) SAP AG BC400 13-14

 SAP AG 1999

Database Locks Are Not Enough

COMMIT
(implicit)

COMMIT
WORK
(explicit)

COMMIT
(implicit)

SELECT
FOR UPD

SELECT
FOR UPD DELETEDELETEINSERTINSERTUPDATEUPDATE

LocksLocks

Whenever you make direct changes to data on the database in a transaction, the database system sets
corresponding locks.

The database management system (DBMS) physically locks the table entries that you want to change
(INSERT; UPDATE, MODIFY), and those that you read from the database and intend to change
(SELECT SINGLE <f> FROM <dbtab> FOR UPDATE). Other users who want to access the locked
record or records must wait until the physical lock has been released. In such a case, the ABAP program
waits until the lock has been released again.

At the end of the database transaction, the database releases all of the locks that it has set during the
transaction.

In the R/3 System, this means that each database lock is released when a new screen is displayed,
since a change of screen triggers an implicit database commit.

(C) SAP AG BC400 13-15

 SAP AG 1999

Set lock

Example Program with Locks

User 1 User 2

sy-subrc <> 0 Error messageError message

Time

Lock
entry
 for

DB table
spfli
line

 AA 0017

Set lock

Delete lock

Double-click
line AA 0017

Back

Double-click
line AA 0017

Lock entry in
central lock

table

Lock
management

sy-subrc = 0

Locks are maintained in a central lock table. This ensures that also programs that run on a different
application server of the same SAP System, are informed of the locks.

Before a database update is triggered, the program requests a lock using a special function module. You
can set a lock for a data record in a database table, or even a set of records, according to you
requirements. The function module first checks whether there is an existing lock that will obstruct the
lock request. If a lock does not already exist then the lock is set.

If another program tries to set the same lock, the function module sends a message to say that the
record is already locked. This is carried out using an exception of the function module. Afterwards the
return code is set to the value <> 0. The return code must be supplied with values in the program. You
can inform the user of a corresponding message.

If the database change is successful, then the lock entry in the central lock table is deleted using a
different function module.

(C) SAP AG BC400 13-16

 SAP AG 1999

REPORT SAPBC400TCD_ENQUEUE_DEQUEUE.
...
AT LINE-SELECTION.
PERFORM authorization_check USING wa_spfli-carrid '02'

 CHANGING subrc.
 IF subrc <> 0. MESSAGE e047(BC400) WITH wa_spfli-carrid. ENDIF.

 CALL FUNCTION 'ENQUEUE_ESSPFLI'
 EXPORTING carrid = wa_spfli-carrid
 connid = wa_spfli-connid
 EXCEPTIONS
 foreign_lock = 1
 system_failure = 2
 others = 3.
 IF sy-subrc <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
 ENDIF.
 SELECT SINGLE * FROM spfli INTO wa_spfli
 WHERE carrid = wa_spfli-carrid
 AND connid = wa_spfli-connid.
 MOVE-CORRESPONDING wa_spfli TO sdyn_conn.
CALL SCREEN 100.
CALL FUNCTION 'DEQUEUE_ ESSPFLI' ...

Example Program: Locking and Unlocking

In the example program it makes sense to set a lock entry, before the data record has been read from
the database and the screen has been processed.

You set a lock entry by calling an ENQUEUE function module for an appropriate lock object. You can
find out which lock objects are available for a database table from the table's where-used list in the
ABAP Dictionary. The "lock" and "unlock" function modules for the selected lock object require only the
ENQUEUE_<Name of lock object> and DEQUEUE_<Name of lock object> naming conventions. In
general, you need only pass the interface key fields. Default values are passed to all the other
parameters.

(C) SAP AG BC400 13-17

 SAP AG 1999

Example Program: Database Updates

REPORT SAPBC400TCD_ENQUEUE_DEQUEUE.
...
MODULE user_command_0100 INPUT.
 CASE ok_code.
 ...
 WHEN 'SAVE'.
 MOVE-CORRESPONDING sdyn_conn TO wa_spfli.
 CALL FUNCTION 'BC400_UPDATE_FLTIME'
 EXPORTING
 iv_carrid = wa_spfli-carrid
 iv_connid = wa_spfli-connid
 iv_fltime = wa_spfli-fltime
 iv_deptime = wa_spfli-deptime
 EXCEPTIONS
 OTHERS = 1.
 IF sy-subrc NE 0.
 MESSAGE a149. " implicit database rollback
 ELSE.
 COMMIT WORK. " explicit database commit
 MESSAGE s148.
 LEAVE TO SCREEN 0.
 ENDIF.
 ENDCASE.
ENDMODULE. " USER_COMMAND_0100 INPUT

COMMIT WORK.

MESSAGE a

The example program shows a simple database update, which affects only one database table. This
allows us to update the database directly from a dialog - that is, using the simplest technique. The ABAP
statements that update the database are all executed within a DB LUW. You must not include a user
dialog between two ABAP statements that update the database. NOTE: This includes error messages. If
an error occurs, the program should be canceled with an "abnormal end" message, so that a rollback
automatically occurs. All the necessary calculations, consistency checks, and database updates are
encapsulated here in a function module. A function module call (without a DESTINATION...addition)
does not affect the DB LUW.

More complex database updates are performed using update modules. For more information, see
BC414 Programming Database Updates.

(C) SAP AG BC400 13-18

 SAP AG 1999

You are now able to:

Database Updates: Unit Summary

Explain why you have to make database changes
to a business unit in a database LUW,

Describe the SAP lock concept

(C) SAP AG BC400 14-1

 SAP AG 1999

SAPGUI for HTML

Making Selected Transactions Available for the Web

Outlook: Making Functions Available in a Web-Specific
Layout

Contents:

Developing Internet Applications

(C) SAP AG BC400 14-2

 SAP AG 1999

Create a transaction code for an Easy Web
Transaction

Create an Internet service

Publish an Internet service

Test an Easy Web Transaction using a Web
Browser

At the conclusion of this unit, you will be able to:

Developing Internet Applications

(C) SAP AG BC400 14-3

 SAP AG 1999

Overview of SAPGUI for HTML

SAPGUI for HTMLSAPGUI for HTMLSAPGUI for HTML

Easy Web TransactionEasy Web TransactionEasy Web Transaction

Outlook: ITS Flow LogicOutlook:Outlook: ITS Flow LogicITS Flow Logic

(C) SAP AG BC400 14-4

 SAP AG 1999

Objective: Representing Screens Using HTML
Pages

Program
start

ABAP runtime system

ABAP program

?

...

Web Browser

html

html

html

Double-click

To launch an SAP program from a Web browser, you must first generate HTML pages for the screens.

You can generate these automatically.

(C) SAP AG BC400 14-5

 SAP AG 1999

SAP GUI SAP GUI
for HTMLfor HTML

SAPGUI for HTML: Architecture

Browser

Web
Server ITS

R/3 System
SAP LibrarySAP Library

HTMLBUSINESS FunctionsHTMLBUSINESS Functions

You can start an SAP transaction using any Web Browser, provided there is an Internet Transaction
Server (ITS) set up for the SAP System. Users do not need to install a GUI at the front end. Instead, a
SAPGUI for HTML is installed on an ITS. This installation includes a library of HTMLBUSINESS functions
that you need to generate HTML templates dynamically. This generated HTML page is then sent to the
Web Browser.

A query-answer cycle between an SAP System and a Web Browser is structured as follows: A query
comes from a Web Browser to the Web Server, which sends the query to the ITS. The ITS makes sure
that the user is logged on to an SAP System. The data that would normally be sent to the presentation
server when a screen is sent is sent to the ITS. The SAPGUI for HTML generates an HTML page and
sends it to the Web Server. The Web Server sends the HTML page to the Web Browser.

Note: Communication between the Web Browser and the Web Server is implemented using a stateless
HTTP protocol. This means that the Web Server does not retain any information once the query-answer
cycle has been completed. In the SAP System, a user context is created when the user logs on. It is
retained until the user logs off. If a Web transaction includes several query-answer cycles, a connection
must be made to the user context. For this reason, the ITS maintains its connection to the R/3 System
during the entire SAP GUI for HTML session (stateful). The connection between the Web Browser and
the Web Server is closed after every query-answer cycle (stateless). To guarantee the assignment to the
user context, the Web Browser uses cookies to send an ID number with each HTTP query. This ensures
that there is a unique identification with the R/3 user context.

(C) SAP AG BC400 14-6

 SAP AG 1999

Web
Server

Generating an HTML Page

Browser

ITS

R/3 System

R/3 outputR/3 output

Which screen
elements should the

system display,
where, and what

values should they
contain?

Which screen
elements should the

system display,
where, and what

values should they
contain?

HTML pageHTML page

SAPGUI for HTML:

HTMLBUSINESS

Functions
HTMLBUSINESS

Functions

HTML functions for each
screen element...

HTML functions for each
screen element...

General layout information:
Background color,

...

General layout information:
Background color,

...
Generates an
HTML Page
dynamically

Generates an
HTML Page
dynamically

StylesStyles

The query-answer cycle between an SAP System and a Web Browser is structured as follows: A query
comes from a Web Browser to the Web Server, which sends the query to the ITS. The ITS makes sure
that the user is logged on to an SAP System. The data that would normally be sent to the presentation
server when a screen is sent is sent to the ITS. The SAPGUI for HTML generates an HTML page and
sends it to the Web Server. The Web Server sends the HTML page to the Web Browser.

To generate the HTML page, the system needs the following information:

R/3 output: The information that would normally be sent to the presentation server are sent to the
ITS.

General layout information: Stored on the Web Server as styles.

SAP Library: The HTMLBUSINESS functions needed for the functions of the different screen elements
are stored in a library on the ITS.

(C) SAP AG BC400 14-7

 SAP AG 1999

Overview of Easy Web Transaction

SAPGUI for HTMLSAPGUI for HTMLSAPGUI for HTML

Easy Web TransactionEasy Web TransactionEasy Web Transaction

Outlook: SAP Transactions with a Web LayoutOutlook:Outlook: SAP Transactions with a Web LayoutSAP Transactions with a Web Layout

Outlook: ITS Flow LogicOutlook:Outlook: ITS Flow LogicITS Flow Logic

(C) SAP AG BC400 14-8

 SAP AG 1999

EasyWebTransaction

Simple!

Intended for use by everyone
(large number of users)

No user training
required/possible

Uses multimedia
and hyperlinks

to other systems

Standard R/3 Transaction

Powerful (for processing all
possible situations)

Intended for professional
users

Users are trained

Transaction Features

An EasyWebTransaction makes a small part of the entire R/3 functions available to Internet users. This
means that untrained Internet users can also use this functionality.

(C) SAP AG BC400 14-9

 SAP AG 1999

Transaction Classification

Easy Web Transaction:Easy Web Transaction:

Professional UserProfessional User Transaction Transaction::

Naviagation by menu,
standard toolbar, and
application toolbar

Navigation with pushbuttons
only

Transaction codeTransaction code

C
la

ss
ifi

ca
tio

n

C
lassification

When you create a transaction, you must specify whether it is a Professional User Transaction or a Easy
Web Transaction.

The default is Professional User Transaction. You should classify a transaction as a Professional
User Transaction either where users can only reasonably launch from the SAP System, or if it requires
complex navigation functions. These transactions can also be launched using the SAPGUI for HTML -
albeit with some restrictions. If the transaction can be launched with the SAPGUI for HTML without
restrictions, you should set the SAPGUI for HTML flag. The SAPGUI for HTML generates an HTML page
including all the elements of the screen including the interface (menu, standard toolbar, and application
toolbar). Thus, Professional User Transactions are suitable for experienced SAP users. However,
navigation is different from what an experienced Web user would expect.

Easy Web Transactions suit the requirements of a casual user calling transactions on the Web. You
should make navigation as simple as possible. The user must be able to trigger every function without
using a menu, standard toolbar, or application toolbar. The system ignores interface elements when it
generates the HTML page.

(C) SAP AG BC400 14-10

 SAP AG 1999

Easy Web Transaction: Architecture

Browser

Web
Server ITS

R/3 System

Easy WebEasy Web
TransactionTransaction

Service fileService file

SAP LibrarySAP Library

Network data
R/3 logon data and
transaction
Web Server data
Internal ITS parameter

Network data
R/3 logon data and
transaction
Web Server data
Internal ITS parameter Publish

Web-Application Builder:
Create service file

HTML page

Generated
automatically

To launch an Easy Web Transaction directly from a Web Browser without knowing the transaction code
or SAP navigation path, you can create service files. These service files contain information on

The network: "how can the user reach the R/3 application server?" and other information

R/3 logon data: The name of the R/3 System, client, user name, and logon language

Transaction: What is the code for the transaction that is to be opened in the R/3 System?

Web Server data: such as the time-out parameter

Internal ITS parameters

You can create a service file in the R/3 System in the Web Application Builder. It then needs to be
published on the ITS.

Note: Web Application Builder in the ABAP Workbench is new in Release 4.6 C. It replaces the
SAP@Web Studio. You can create a service file outside an R/3 System using the SAP@Web Studio.
For more information, refer to the SAP Library under Basis->Frontend Services->ITS/SAP@Web Studio.

(C) SAP AG BC400 14-11

 SAP AG 1999

Creating an Internet Service

Object NavigatorObject Navigator

ZBC400_12

Internet Service

DisplayDisplay

Easy Web Transaction
Transaction code
 ITS mixed mode

Web application
start template

Web-Application Builder: Create Service

Internet service ZBC400_EWT

Service ZBC400_EWT does not exist.
Do you want to create the object?

YesYes

One way of making a transaction available over the ITS directly is to create a service file, which contains
the following information:

The transaction that is to be started

The system in which the transaction is to be started

The logon client, user, and password

The logon language that is to be used

You can create a service for a transaction in the Object Navigator. Choose Internet Services and enter a
name for your service. Comply with the customer namespace conventions. Internet services are often
given the same name as the transaction associated with them. You could, however, use a different
name, particularly if you are creating several services for the same transaction.

Choose Enter or the Display icon (a pair of glasses). If there is no service saved under the name you
have entered, the system displays a dialog box and asks: Do you want to create the object? Choose
Yes.

In the dialog box that appears, choose Easy Web Transaction and enter the transaction code. Choose
ITS mixed mode. Choose Enter to confirm.

(C) SAP AG BC400 14-12

Note: If you choose ITS mixed mode, you do not need to generate a static HTML page for each screen.
If a screen is not associated with an HTML page, the SAPGUI for HTML generates the page dynamically
at runtime.

(C) SAP AG BC400 14-13

 SAP AG 1999

Publishing an Internet Service

Object NavigatorObject Navigator

ZBC400_EWT

Internet service

ZBC400_EWT
Theme 99 ...

Publish Service file
Complete service

Publish

Complete service

R/3 System

ITS

Easy WebEasy Web
TransactionTransaction

Service fileService file

SAP LibrarySAP Library

You must save the Internet service in a file that the ITS can access. You can publish the service in the
Web Application Builder in the Object Navigator.

In the Object Navigator, open the object list for the Internet service.

In the service context menu, choose Publish->Complete service

Note: Your user-specific ITS settings must be correct before you can publish a service. You can check
these settings from the Object Navigator by choosing Utilities->Settings followed by the ITS tab.

(C) SAP AG BC400 14-14

 SAP AG 1999

http://its-t70/scripts/wgate/zbc400_ewt/!

Testing the Web Transaction

Object NavigatorObject Navigator

ZBC400_EWT

Internet service

ZBC400_EWT
Theme 99 ...

Publish
Start serviceStart service

Web BrowserWeb Browser

Web Server Path Service name

To test a transaction after publishing it:

Choose the Start service from the context menu (from the Internet service object list)

Alternatively, enter the path http://<server>:<port>/<path>/wgate/<service_name>/! in a Web
Browser.

http://its-t70/scripts/wgate/zbc400_ewt/!
http://<server>:<port>/<path>/wgate/<service_name>/!

(C) SAP AG BC400 14-15

 SAP AG 1999

Overview: Transactions with a Web Layout

SAPGUI for HTMLSAPGUI for HTMLSAPGUI for HTML

Easy Web TransactionEasy Web TransactionEasy Web Transaction

Outlook: ITS Flow LogicOutlook:Outlook: ITS Flow LogicITS Flow Logic

Transactions with a Web LayoutTransactions with a Web LayoutTransactions with a Web Layout

(C) SAP AG BC400 14-16

 SAP AG 1999

Easy Web Transaction with Static Templates

Browser

Web
Server ITS

R/3 System
Service fileService file

SAP Library
A
SAP Library
A

Service fileService file

SAP Library
B
SAP Library
B

WebWeb
transactiontransaction

HTMLBUSINESS

templates
HTMLBUSINESS

templates

Web-Application Builder:
Generate and edit

HTMLBUSINESS Template
from screen

Publish

You can generate static HTML templates for web transactions from SAP screens and then enhance
them manually.

Note: Navigation on the Internet differs from SAP System navigation. Users can navigate back to
previous pages using the Back button. If they send a new query to the ITS, the screen displayed no
longer matches the SAP transaction screen. The ITS notices this inconsistency and returns a catchable
error message.

(C) SAP AG BC400 14-17

 SAP AG 1999

HTML Pages for SAP Screens

With HTML template:
Developer can change layout
or add other HTML elements

Without HTML template:
Page generated automatically,
cannot be edited afterwards

or

The ITS generates a
HTMLBUSINESS template
dynamically

The developer
generates a static
HTMLBUSINESS template

SAP GUI for HTML generates HTML dynamically from the relevant SAP screens:

Simple, SAP screen-based layout
You can choose some graphic layout attributes using styles
(such as font, font size, background color)

SAP (such as text or input fields) screen elements are mapped 1:1 to the fields on the generated
HTML page

No other HTML elements are available

No further development is necessary

You can adapt the layout of your Web applications using static HTMLBUSINESS templates

Flexible layout: Using static HTML templates and MIME objects allows you to enhance the layout
according to your own needs These techniques allow you to add more pushbuttons and pictures, even
if there are no placeholders for them in the template.

Flexible field mapping:
You can hide fields that contain default values

You can add additional functions

(C) SAP AG BC400 14-18

However, you must carry out further development:
You need to create, edit, and publish HTML templates. You also need to implement additional
functions yourself.

(C) SAP AG BC400 14-19

 SAP AG 1999

Reference Model

Create a service for the transaction

Generate an HTMLBusiness template for each screen

Edit HTMLBusiness template using

HTMLBusiness

HTMLBUSINESS functions

HTML

JavaScript

The Web Application Builder in the Object Navigator offers all of the above functions

(C) SAP AG BC400 14-20

 SAP AG 1999

Overview: ITS Flow Logic

SAPGUI for HTMLSAPGUI for HTMLSAPGUI for HTML

Easy Web TransactionEasy Web TransactionEasy Web Transaction

Outlook: SAP Transactions with a Web LayoutOutlook:Outlook: SAP Transactions with a Web LayoutSAP Transactions with a Web Layout

Outlook: ITS Flow LogicOutlook:Outlook: ITS Flow LogicITS Flow Logic

(C) SAP AG BC400 14-21

 SAP AG 1999

ITS Flow Logic: Development Outside the R/3
System

Browser

Web
Server ITS

R/3 System

ITS Flow Logic ITS Flow Logic
(SAP Internet(SAP Internet

 platform) platform)

Flow FilesFlow Files

Service fileService file

SAP LibrarySAP Library

HTMLBUSINESS

Templates
HTMLBUSINESS

Templates No screen template

Dialog logic

Business logic

In the ITS Flow Logic programming model, the flow logic for the screens is processed on the ITS. The
connection to the SAP System is used only for business requirements (such as retrieving data from or
changing it in the R/3 System).

Note: In this programming model, the entire user dialog logic is stored on the ITS, so there are no
associated screens in the SAP System. This means that you must create templates manually - you
cannot generate a raw version of the page from the R/3 screen.

The ITS Flow Logic programming model uses both stateless and stateful queries to the ITS:

Stateful call: Uses the existing connection - that is, the user's logon. If necessary, the user has to log
on again. After calling the page, users can log out themselves. If they do not, an automatic time out
occurs.

Stateless call: uses a connection made solely for one query-answer cycle. After the RFC or BAPI has
been called, the connection is closed.

(C) SAP AG BC400 14-22

 SAP AG 1999

ITS Programming Models

Business logicDialog logicScreen layout

ScreenScreen

ABAP programABAP program
•• ModuleModule
•• Function moduleFunction module
•• BAPIBAPI

HTMLBUSINESS template

ABAP programABAP program
•• ModuleModule
•• Function moduleFunction module
•• BAPIBAPI

ScreenScreen

HTMLBUSINESS template
•• RFC-compatibleRFC-compatible
 function module function module
•• BAPIBAPI

ITS flow file

SAPGUI for
HTML

Easy Web
Transaction

ITS
Flow
Logic

Each business application consists of three logical levels:

The business logic: The system can then carry out the necessary authorization and consistency
checks. After these checks have been made, the database changes can be triggered.

Dialog logic: Which user dialogs must be carried out, and when, to obtain the data you need to
execute the business logic? This logic includes sending error messages, if an inconsistency has
occurred. Some of these checks must be carried out in the dialog logic to prevent the user from
entering a false value.

Display: How are the user dialogs stored - what background color is used, how does each element
appear, and so on?

The different programming models used to create Internet applications implement these different levels
differently:

SAPGUI for HTML: An ABAP program with user dialogs is used as a basis for all three levels. The
layout is generated automatically from the screen information. The appearance in the Web Browser
contains exactly the same elements as the SAP System screen.

Easy Web Transaction: The business logic and the dialog logic are copied from the ABAP program.
You can then change the appearance of the page.

(C) SAP AG BC400 14-23

ITS Flow Logic: Only the pure business logic is executed in an ABAP program, which can be called
externally - generally a BAPI or an RFC-compatible function module. The dialog logic and screen
layout are defined on the ITS.

(C) SAP AG BC400 14-24

 SAP AG 1999

Create a transaction code for an Easy Web
Transaction

Create an Internet service

Publish an Internet service

Test an Easy Web Transaction using a Web
Browser

You are now able to:

Developing Internet Applications

(C) SAP AG BC400 14-25

Developing Internet Applications: Exercises

Unit: Developing Internet Applications

Topic: Creating and Publishing an Internet Service

At the conclusion of these exercises, you will be able to:

Create an Internet service for an available transaction

Publish this Internet Service on an ITS

Edit the program that displays a list using the ALV Grid Control, so that the
screen displaying the data appears as soon as the user enters a transaction
code You should make this transaction as an Internet service on the ITS.

1-1 Copy your program ZBC400_##_ALV_GRID or the template SAPBC400IAT_EWT and give it
the name ZBC400_##_EWT. Edit ZBC400_##_EWT so that the user can display the screen
with all the data from SPFLI by entering a transaction code.

1-1-1 The program accesses the database in the START-OF-SELECTION block. Change
the program so that it accesses the database in a PBO module instead. You can then
call the screen directly using a transaction code. Make sure that the database is
accessed once only.

1-1-2 Create a transaction code with the name ZBC400_##_EWT for your program,
ZBC400_##_EWT. As a start object, choose Program and screen (dialog transaction)
Enter the program name ZBC400_##_EWT and screen 100. Choose the transaction
classification Easy Web Transaction. Save the transaction code. Assign the transaction
code when saving your development class.

1-2 Create a Internet service with the name ZBC400_##_SRV.

1-2-1 In the Object Navigator, choose Internet Services and enter a name for your service.
When you choose Enter, the system checks to see if there is an existing Internet
service saved under the name you entered. If not, the Create Internet Service dialog
box appears.

1-2-2 In the dialog box that appears, choose Easy Web Transaction and ITS-Mixed-Mode
and enter the transaction code SAPBC400IAS_EWT.

1-3 Publish the service

1-3-1 Display the Internet service, ZBC400_##_SRV, in the Web Application Builder. Publish
the entire service using the Internet service context menu.

(C) SAP AG BC400 14-26

1-4 Test your Internet application.

1-4-1 (Choose Start service from the context menu.

(C) SAP AG BC400 14-27

 Developing Internet Applications: Solutions

Unit: Developing Internet Applications

Topic: Creating and Publishing an Internet Service

1-1-1 You can program the database access in the CREATE_CONTROL module. The source code
would then look like this:
MODULE create_control OUTPUT.

 IF container_r IS INITIAL.

* fill internal table

 SELECT * FROM spfli

 INTO TABLE gdt_spfli.

* WHERE ...

 CREATE OBJECT container_r

 EXPORTING container_name = 'CONTAINER_1'.

 CREATE OBJECT grid_r

 EXPORTING i_parent = container_r.

 CALL METHOD grid_r->set_table_for_first_display

 EXPORTING i_structure_name = 'SPFLI'

 CHANGING it_outtab = gdt_spfli.

 ELSE.

 CALL METHOD grid_r->refresh_table_display

 EXPORTING i_soft_refresh = 'X'.

 ENDIF.

ENDMODULE. " CREATE_CONTROL OUTPUT

The implementation takes advantage of the fact that the Control is only created once. Use the IF
statement is used to ensure that the database is only accessed once. Delete the SELECT
statement from the START-OF-SELECTION event block.

Alternatively, create a new PBO module. You then need to:

Add a MODULE statement to the PROCESS BEFORE OUTPUT event in the screen flow logic.

Create a screen using forward navigation

In the module (provided the internal table is empty (IF gdt_spfli IS INITIAL)) program the database
access and fill the internal table.

1-2 Follow the instructions in the Creating an Internet Service slide.

(C) SAP AG BC400 14-28

1-3 Follow the instructions in the Publishing an Internet Service slide.

1-4 Follow the instructions in the Testing the Web Transaction slide.

(C) SAP AG BC400 14-29

 SAP AG 1999

Appendix

This section contains supplementary
material to be used for reference

This material is not part of the standard course

Therefore, the instructor might not cover this
during the course presentation

(C) SAP AG BC400 15-2

 SAP AG 1999

Display all objects of type X
with attribute Y

Display all objects of
type X which were changed by
user Y on date DDMMYY

Display all table
fields with check table X

Information aboutInformation about
tables and relationshipstables and relationships Modified objectsModified objects

Where-used listsWhere-used listsSearch by attributesSearch by attributes

Typical Information System Requests

Display all objects of type X
which use attribute Y

(C) SAP AG BC400 15-3

 SAP AG 1999

Assign project

Assign to aAssign to a
development classdevelopment class

Determine
attributes

EditorEditor

Program object

Overview: Creating Programs

When you create a new program you must first enter various administrative details.

Programs must be assigned to a particular development class. . This classifies the program logically.
Such designation only takes place once, when the repository object is initially created (development
classes are in turn assigned to the component to which they logically belong).

Additionally, several general program attributes must be determined. One important attribute is the
program type. The program type determines how a program is executed in the R/3 client/server
environment, for example if subsequent source text is an executable program or a reusable piece of
code.

Finally, a program must be assigned to a Workbench Organizer project (change request). This
classifies the repository object chronologically. Once the current project is finished, a program can then
be assigned to a new project.

A program can only be edited after these initial designations have been made.

(C) SAP AG BC400 15-4

 SAP AG 1999

Structures and internal Tables can be Nested

Structure types can contain other structure types or table types.

Table types can contain other table types or structure types.

You can find out how to define table types in the keyword documentation under the key word TYPES.

(C) SAP AG BC400 15-5

 SAP AG 1999

TYPE-POOL Z400.
TYPES: z400_name_type(25) TYPE C,

BEGIN OF z400_flightrec_type,
 ... ,
 END OF z400_flightrec_type.

REPORT
TYPE-POOLS z400.
DATA: name TYPE z400_name_type,
 wa TYPE z400_flightrec_type.

... .

ABAP

Type Groups in the ABAP Dictionary

You can define data types in a type group in the ABAP Dictionary instead of defining them within an
ABAP program.

The type group name in the ABAP Dictionary has a maximum of 5 characters. Type names within type
group <typepool> must begin with <typepool> followed by an underscore.

The types in a type group must be declared in ABAP programs with the TYPE-POOLS command.

(C) SAP AG BC400 15-6

 SAP AG 1999

TABLES sdyn_conn.
PARAMETERS pa_carr LIKE spfli-carrid.

MOVE pa_carr TO sdyn_conn-carrid.
CALL SCREEN 100.

sdyn_conn

pa_carr
sdyn_conn

Airline Carrier

Flight number

Continue

PA_CARR

Data transport

PARAMETERS and TABLES

The PARAMETERS statement is a declarative language element for establishing internal fields within
the report. The difference between the PARAMETERS and DATA statements is that fields declared
using PARAMETERS are presented for input on the selection screen.

When you use the PARAMETERS statement, you can use the TYPE and LIKE additions as you would
when using the DATA statement.

Analogous to the way in which you can use VALUE with DATA to assign an initial value, you can use the
addition DEFAULT with the PARAMETERS statement to set a default value for the field. This value can
be a literal, a constant, or a system field which takes its value from the system when the report is
processed (for example sy-datum).

The TABLES statement declares an internal data object that serves as a screen interface whenever
screen fields refer to the same Dictionary object.

Use the TABLES statement to define an appropriate work area in your ABAP program for data that the
user enters on a screen or that is passed to the screen from the program.

(C) SAP AG BC400 15-7

 SAP AG 1999

CARRIDCARRID CONNIDCONNID

Internal Table <itab>

Work Area <wa>
CLEAR <wa>.

CLEAR <itab>.
AA 0017
LH 0400

Deleting an Internal Table

Use CLEAR to reset the contents of a data object to the initial value for its type.

Since internal table entries are always of a single type, only one CLEAR statement is necessary to
delete the entire table.

CLEAR <wa> initializes work area <wa>.

(C) SAP AG BC400 15-8

 SAP AG 1999

Elementary Field, Structure,
Internal Table

Constant

Input Parameter

TYPES

DATA

CONSTANTS

PARAMETERS

Type

TABLES

Table Work Area

Summary of Declarative Statements

We have encountered the following declarative statements so far:

TYPES Definition of types
DATA Definition of elementary fields, structures, and internal tables
CONSTANTS Definition of constants
PARAMETERS Definition of input parameters
TABLES Definition of table work areas

In the unit Internal Tables as well as in the sub-unit on Selection Screens in the unit on Dialogs you will
learn about the following declarative statement:

SELECT-OPTIONS Definition of selection possibilities

You can display a comprehensive overview of the declarative statements in ABAP by pressing the Editor
pushbutton 'i' and then choosing ABAP Overview ->Overview of the ABAP programming language ->
Classification of keywords by type.

(C) SAP AG BC400 15-9

 SAP AG 1999

Two elementary types are compatible if they are
identical in type and length (and decimal places) ,
in the case of type P).

Two structure types are compatible if they have the
same structure and their components are
compatible.

Two tables are compatible if their line types are
compatible.

Non-compatible types can be converted if a conversion rule has been
defined

Compatible types can be assigned without conversion

Type Conversion

If you assign data objects of different types to one another, ABAP carries out a type conversion as long
as a conversion rule has been defined for the types concerned.

(C) SAP AG BC400 15-10

 SAP AG 1999

DATA: START TYPE D,
 SUM1 TYPE P,

SUM2 TYPE P.
.
.
.
IF SUM2 GE 1000.
IF START IS INITIAL.
IF SUM1 GT SUM2 AND
 SUM1 BETWEEN 0 AND 100.
IF SUM1 = 1000 AND
 (SUM2 LE 2000 OR
 START IS INITIAL).

EQ =

NE < > > <

GT >

GE > = =>

LT <

LE < = = <

IS INITIAL

BETWEEN f1 and f2

Equal

Unequal

Greater than

Greater than or equal

Less than

Less than or equal

Initial value

Interval

OperatorOperator MeaningMeaning

... <field> <literal> ...

... <field1> <field2> ...

... <logical expression> AND <logical expression>

... <logical expression> OR <logical expression>

... NOT <logical expression> ...

<operator><operator>

<operator><operator>

Logical Expressions

Logical expressions can be linked with NOT, AND, and OR.

You can nest parenthetical expressions as deeply as you want. The parentheses which denote sub-
expressions always count as one word. They must therefore be separated by spaces.

If you compare two type C fields with unequal length, the shorter field is lengthened to match the length
of the longer one when the comparison is made. It is filled from the right-hand end with spaces.

There is a whole range of further comparative operators which you can use to compare strings and bit
comparisons. (See the online documentation for the IF statement).

(C) SAP AG BC400 15-11

 SAP AG 1999

WHILE <logical expression>.

ENDWHILE.

WHILE COUNTER > 0.
.
.
.

SUBTRACT 1 FROM COUNTER.
ENDWHILE.

statements

Loop indexSY-INDEX

DO <n> TIMES.

ENDDO.

statements

DO and WHILE Loops

DO and WHILE loops are also used in ABAP.

SY-INDEX is the loop counter for the loop commands DO and WHILE. SY-INDEX has the value 1 during
the first loop pass and is increased by 1 by the system for each loop pass.

The following is true for DO loops:

The <n> TIMES parameter is optional. If you do not specify it, you need to build a termination
condition into the loop (see EXIT statement).

­ The number of loop passes cannot be altered via the sy-index field or the loop counter within DO ...
ENDDO.

The following applies to WHILE loops:

Provided the logical expression is fulfilled, the sequence of statements is executed.

­ The number of loop passes cannot be altered via the sy-index field within the WHILE... ENDWHILE.

(C) SAP AG BC400 15-12

 SAP AG 1999

CHECK <logical expression>.

WHILE COUNTER GT 0.

CHECK sy-subrc = 0.

ENDWHILE.

 DO.

IF counter GE 10.
EXIT.

ENDIF.

 counter = counter + 1.
 ENDDO.

Statements

EXIT.

StatementsStatements

Statements

CHECK and EXIT

Two statements are available for loop processing:

CHECK <logical expression> : If the logical expression has not been fulfilled, the system jumps to the
next loop pass. All statements between CHECK and ENDDO|ENDWHILE are ignored. If the logical
expression has been fulfilled, the CHECK statement has no effect.

See also: Keyword documentation for CONTINUE.

EXIT statements within a loop structure cause the system to leave the current loop.

For information about how these two commands work outside of loop processing, refer to the keyword
documentation for CHECK and EXIT, or the appendix.

(C) SAP AG BC400 15-13

 SAP AG 1999

Loops:

WHILE, DO,
SELECT, LOOP

Events:

START-OF-SELECTION
GET
END-OF-SELECTION

Events:

INITIALIZATION
AT SELECTION-SCREEN ...
...

FORM routines

Jump to end of
processing block

EXIT

Exit current
loop

End of program,
list displayed

CHECK:
If logical condition not

met, then...

Jump to next loop
pass

Termination Conditions 2

Use the ABAP statement CHECK <logical condition> outside of loops to end a processing block
prematurely whenever the logical condition following the keyword is not fulfilled.

EXIT outside of a loop also ends the current processing block. There are several events that are an
exception to this rule. An EXIT statement in their event blocks leads to program termination. In this case
a list is displayed immediately after the EXIT statement has been processed.

(C) SAP AG BC400 15-14

 SAP AG 1999

Include: <include-name>
(Program type: I)

Program: <program-name>

REPORT <program-name>.
 :
INCLUDE <Include-Name>.

 :

ABAP statements

Includes: Type I Programs

(C) SAP AG BC400 15-15

 SAP AG 1999

REPORT <name>.

TYPES:...
DATA: ...

Program: <name>TOP

Program type: I

Program: <name>

Program type: 1

INCLUDE <name>TOP.

START-OF-SELECTION.
 :

Create program

Program <name>

With TOP INCL.

Repository Browser:

Create program

TOP Includes

(C) SAP AG BC400 15-16

 SAP AG 1999

Function group

 BC400 Function Group BC400

 Object Types Function Group

 Function Modules

 BC400_FREE_SEATS Calculates the no. of free seats

 BC400_PERCENTAGE Determines percentage

 Subroutines

 Includes

 LBC400TOP Global data definitions

 LBC400F01 Subroutines

 LBC400U01 Calculates the no. of free seats

 LBC400U02 Determines percentage

 LBC400UXX

Standard Includes for Function Groups

(C) SAP AG BC400 15-17

 SAP AG 1999

Function
modules

asynchrono
us

parallel
Encapsulation:

• functions

• Dialogs

RFCRFC

Customer and partner
 development

Internet /
Intranet

R/3 satellite systems

Central Role of Function Modules

You can start function modules either asynchronously or parallel.

You can also encapsulate user dialogs.

You can create function modules that can be started using Remote Function Call. These can then be
started externally:

From the World Wide Web, to allow you to access an R/3 System

From another R/3 System

From your own programs (for example, in Visual Basic, JAVA or C++).

(C) SAP AG BC400 15-18

 SAP AG 1999

FUNCTION bc400_free_seats.

 .
.
.

 IF seatsmax = 0.
 RAISE max_eq_0.
 ELSEIF seatsocc > seatsmax.
 RAISE occ_gt_max.
 ENDIF.

.

.

.

ENDFUNCTION.

 Exceptions

Exceptions

OCC_GT_MAX
MAX_EQ_0

Define exception

Raise exception

Exception Handling

You can anticipate possible errors and write your program so that these errors do not cause runtime
errors. You give these possible exceptions names in the function module interface, and trigger them
from the program code using the RAISE statement. Each program that calls the function module can
then interpret the exceptions by querying sy-subrc.

In the function module, you can also ensure that the system displays an error message if the exception
occurs, even if it is not explicitly handled by the calling program. For further information, see the key
word documentation for MESSAGE ... RAISING.

(C) SAP AG BC400 15-19

 SAP AG 1999

REPORT.
DATA: free_seats LIKE sflight-seatsmax.
PARAMETERS: pa_occ LIKE sflight-seatsocc,
 pa_max LIKE sflight-seatsmax.
START-OF-SELECTION.
 CALL FUNCTION 'BC400_FREE_SEATS'
 EXPORTING
 seatsmax = pa_max
 seatsocc = pa_occ
 IMPORTING
 seatsfree = free_seats

EXCEPTIONS
 occ_gt_max = 1
 max_eq_0 = 2
 others = 3.
 CASE sy-subrc.
 WHEN 1.
 WRITE text-ex1.
 WHEN 2.
 WRITE text-ex2.
 WHEN 3.
 WRITE text-oth.
 ENDCASE.

Catching Exceptions

(C) SAP AG BC400 15-20

 SAP AG 1999

Colors in Lists 1

Flight from to

AA 0017 NEW YORK SAN FRANCISCO
LH 0400 FRANKFURT NEW YORK
LH 0402 FRANKFURT BERLIN

Creation date: 01.01.1998
Created by: WITTMANN

REPORT sapbc400udd_example_1a.
INCLUDE <LIST>.
 :
WRITE: / wa_spfli-carrid COLOR col_key,

 icon_date AS ICON,

WRITE <data object> <option> .

Colors/Icons/Symbols in Lists

You can set several list display attributes within a WRITE statement. One such attribute is color, which
can be adjusted using the formatting option COLOR <n>. You can choose from seven background
colors that are activated by either a numeric value or a symbolic name based on where they appear on a
normal list.

0 col_background Background

1 col_heading Headers

2 col_normal List entries

3 col_total Totals

4 col_key Key columns

5 col_positive Positive threshold values

6 col_negative Negative threshold values

7 col_group Control levels

SAP provides guidelines for creating lists in color. Please consult transaction LIBS for examples.

The addition AS ICON within a WRITE statement allows you to add icons to your list. In order to be able
to use AS ICON you must, however, add the include <LIST> to your program.

(C) SAP AG BC400 15-21

You can find an overview of all available icons in either the keyword documentation under WRITE, or in
the WRITE statement structure.

(C) SAP AG BC400 15-22

 SAP AG 1999

Hierarchy Alphabetical

BAPIs in the BAPI Explorer

Detail Documentation Tools Project

 Dictionary Structure

Display

FlightBooking

AirlineCarrier
ConnectionNumber
DateOfFlight
BookingNumber

Cancel
CreateFromData

FlightCustomer
FlightConnection

BookingdataIn
Return
Bookingdata

GetDetail
GetList

Tool selection

Business Object Builder
Function Builder
ABAP Dictionary
BAPI Consistency Check
Create BAPI List

BAPISBDTIN

If you expand a substructure for a method, the system returns the names of its import and export
parameters. You can obtain more detailed information on the typing of interface parameters by choosing
the Tools tab, then choosing the ABAP Dictionary. BAPI interface parameters are always typed using
ABAP Dictionary types.

BAPIs usually have an export parameter called RETURN. This can be a structure or internal table. The
Return Parameter contains information on errors that occurred while the BAPI was being processed.
There are no exceptions for BAPIs.

(C) SAP AG BC400 15-23

 SAP AG 1999

Business Object Builder

Complete business
object view

To display complete information on a business object type, use the Business Object Builder tool. The
system displays a tree structure for the business object type, including non-API methods.

To search for a business object, use the Business Object Repository (BOR) tool. This tool displays the
component hierarchy with all the business objects that belong to it. You can navigate from this tree
structure to the Business Object Builder. The system displays the relevant business object automatically.

(C) SAP AG BC400 15-24

 SAP AG 1999

Describe the runtime behaviour of an executable
program that uses a simple logical database,
including the effects of:

The structure of the logical database

The NODES statement(s)

The GET event blocks

At the conclusion of this topic, you will be able to:

Logical Databases Course Objectives

(C) SAP AG BC400 15-25

 SAP AG 1999

SPFLI

Example: Logical Database F1S

SFLIGHT

SBOOK

Reading Logically Dependent Data

Use logical databases to read logically consistent data from databases. Each logical database has a
structure containing a hierarchy of those tables and views that are to be read.

You can attach exactly one logical database to each type 1 program. The logical database then supplies
your program with entries from tables and views. This means that you only need to program the data
processing statements.

(C) SAP AG BC400 15-26

 SAP AG 1999

Are special data collection programs data delivered by SAP

Provide your program with data in a hierarchically logical
sequence

Contain data base accesses that have been optimized for
performance

Supply a dynamic selection screen

Contain all necessary authorization checks

You can attach a logical database to each type 1 program
using the program attributes.
Special event blocks are also available for processing
individual records.

You can attach a logical database to each type 1 program
using the program attributes.
Special event blocks are also available for processing
individual records.

Logical Databases

Every logical database is an encapsulated data collection program for frequent database access.

The database access has been optimized using Open SQL.

If you are working with a logical database, you do not need to program a selection screen for user entry,
since this is created automatically.

The system performs authorization checks according to the SAP authorization concept.

(C) SAP AG BC400 15-27

 SAP AG 1999

Program

NODES sflight.

GET sflight ...
 :

SPFLI

SFLIGHT

SBOOK

Data from
the LDB

Controlling an LDB from within a Program

The NODES <node> statement performs two functions:

It defines a data object (a structure) as a table work area that has the same structure as the ABAP
Dictionary Structure <node>, that is a node of the hierarchical structure of the logical database. This
structure is then filled at runtime with data records that the logical database has read from the
database and made available to the program.

It determines how detailed the selection screen is: The selection screen that has been defined in
the logical database should contain only those key information input fields that the program needs.
The NODES statement allows you to ensure only information from relevant tables is available to the
selection screen.

Logical databases read according to their structure from top to bottom. The depth of data read depends
on a program's GET statements. The level is determined by the deepest GET statement (from the logical
database's structural view).

(C) SAP AG BC400 15-28

 SAP AG 1999

Logical Databases

Function Groups and Function ModulesFunction Groups and Function Modules

Objects and MethodsObjects and Methods

Business Objects and BAPIsBusiness Objects and BAPIs

Logical DatabasesLogical Databases

(C) SAP AG BC400 15-29

 SAP AG 1999

ABAP:ABAP: Program AttributesProgram Attributes

Log. Datenbank

Application

F1S

Type 1

SPFLISPFLI

SFLIGHTSFLIGHT

SBOOKSBOOK

Attributes

Summary

S

NODES :spfli, sflight.

START-OF-SELECTION.
 WRITE: / 'START-OF-SELECTION'
 color 3.

GET spfli FIELDS carrid connid.
 WRITE: / 'GET SPFLI' color 1,
 spfli-carrid,
 spfli-connid.

GET sflight FIELDS fldate.
 WRITE: / 'GET SFLIGHT' color 2,
 sflight-fldate.

GET spfli LATE.
 WRITE :/ 'GET SPFLI LATE'.

END-OF-SELECTION.
 WRITE: 'END-OF-SELECTION'
 color 3.

GET spfli

GET sflight

GET spfli LATE.

NODES

Logical databases are included in type 1 programs as program attributes. Only one logical database can
be attached per program.

You can tell a logical database exactly which fields you need from the database using the GET addition
FIELDS. If the logical database supports this action, then it will read only those fields specified from the
database.

If you need database table data for a list that is not supplied by your logical database, you can program
any additional database access needed using SELECT.

(C) SAP AG BC400 15-30

 SAP AG 1999

Program

ABAP
runtime
system

START-OF-SELECTION.

Basic list

GET spfli.

GET sflight.

END-OF-SELECTION.

NODES: SPFLI,
SFLIGHT.

Logical
database

SPFLI

SFLIGHT

SBOOK

Event Blocks in Logical Databases

You can include a logical database in every type 1 program using the program attributes.

Each node in the logical database's hierarchy also provides you with a GET event block (in addition to
the other event blocks). (GET SPFLI, GET SFLIGHT, GET SBOOK in the example above).

You can program individual record processing within these GET event blocks.

At runtime the event blocks that create lists are processed, in the following order:

START-OF SELECTION.

GET SPFLI and GET SFLIGHT are called several times in nested SELECT logic according to the
structure of the logical database.

END-OF-SELECTION is called after all GET events, and immediately before the list is sent to the
presentation server.

(C) SAP AG BC400 15-31

 SAP AG 1999

START-OF-SELECTION

GET SPFLI

GET SFLIGHT

GET SFLIGHT

GET SPFLI LATE

GET SPFLI

END-OF-SELECTION

DL 1699

25.08.1998

27.09.1998

DL 1984

GET SFLIGHT

GET SFLIGHT

GET SPFLI LATE

25.08.1998

27.09.1998

GET SFLIGHT 29.09.1998

Example: Event Sequencing

REPORT bc400d_logical_database.
NODES: spfli, sflight.

START-OF-SELECTION.
 WRITE: / 'START-OF-SELECTION'
 color 3.

GET spfli FIELDS carrid connid.
 WRITE: / 'GET SPFLI' color 1,
 spfli-carrid,
 spfli-connid.

GET sflight FIELDS fldate.
 WRITE: / 'GET SFLIGHT' color 2,
 sflight-fldate.

GET spfli LATE.
 WRITE :/ 'GET SPFLI LATE'.

END-OF-SELECTION.
 WRITE: 'END-OF-SELECTION'
 color 3.

GET spfli

GET sflight

GET spfli LATE.

At runtime the event blocks that create lists are processed in the following order:

START-OF-SELECTION.

GET spfli: the first data record from database table SPFLI that corresponds to the selection criteria
is placed in work area spfli and the event block is processed.

GET sflight: the first data record from SFLIGHT that corresponds to the selection criteria as well as
to the key of the current SPFLI record is placed in work area sflight and the event block is
processed.

GET sflight: the next data record from database table SFLIGHT is placed in work area sflight and
the event block is processed again.

GET sflight: is called again until no further corresponding data records are found.

GET spfli LATE is called before the next data record from SPFLI is placed in work area spfli.

GET spfli: The logical database places the next corresponding data record from SPFLI in work
area spfli.

...

END-OF-SELECTION: is called immediately before the list is sent.

(C) SAP AG BC400 15-32

 SAP AG 1999

Sequential
Files

SAP
Interfaces /

Checks

External
Server

External Data Transfer

When transferring data from another SAP or external system to your own SAP system it is important to
ensure data integrity.

Thus the necessity of subjecting this type of data transfer to the same checks as data transfer in dialog
mode.

Since dialog mode checks in transactions are comprehensive and partially cross-application, it is
extremely difficult to program them yourself.

Therefore, it is much easier to check transactions using the same checks as in the SAP dialog mode.
Concretely, this means that SAP transactions are also used during data transfer.

The techniques used for foreign data transfer are called batch input processes.

SAP offers standardized foreign data transfer procedures for many areas within R/3. The procedures
use the programming techniques batch input, call transaction, and direct input. You can access SAP
standard data transfer procedures using the Data Transfer Workbench (transaction SXDA). If no
SAP data transfer procedures are available, transfer can be programmed individually using batch input
or call transaction.

(C) SAP AG BC400 15-33

 SAP AG 1999

Sequential
file

Queue file

SAP
database

Application functionApplication function

Batch input function Batch input function

BDC tableBDC tableBDC table

BATCH INPUT:BATCH INPUT:

Sequential
file

SAP
database

Application functionApplication function

BDC tableBDC tableBDC table

CALL TRANSACTION:CALL TRANSACTION:

CALL
TRANSACTION

Sequential
file

SAP
database

DIRECT INPUT:DIRECT INPUT:

SAP
transfer program

Program

External Data Transfer

(C) SAP AG BC400 15-34

 SAP AG 1999

Screen Attributes

Screen number 100
Next screen 100

Screen Attributes

Screen number 200
Next screen 200

PBO

PAI

CALL SCREEN 100

 100 PBO

PAI

200

0

200

0

Advanced Techniques: Dynamic Screen Sequencing

You can use this technique to program clusters of integrated screens without having to continually return
to the source code and call them using CALL SCREEN.

(C) SAP AG BC400 15-35

 SAP AG 1999

Update process
UPDATEUPDATE INSERTINSERT DELETEDELETE

Dialog process

LogLog
tabletable

DELETE req.

UPDATE req.

INSERT req.

Database process

PBO PAI PBO PAI PAIPBO

INSERT
Request

UPDATE
Request

DELETE
Request

COMMIT WORKCOMMIT WORK

Advanced Techniques: Update

Another way of bundling database changes at the end of an SAP LUW is to use the update technique.
Here, you do not pass updates directly to the database, but enter them as update requests in a log table
instead.

The dialog part of the SAP LUW ends when the system reaches the COMMIT WORK statement. The
R/3 System then triggers a special work process called an update work process, which processes the
update requests that you have registered in the log table. The SAP LUW ends when the update work
process has finished the database update.

The dialog and update parts of the SAP LUW can run either synchronously or asynchronously.

The advantage of update in contrast to bundling using subroutines is that you can enter your update
requests in the log table at any time instead of having to keep them in the program area. Its
disadvantage is the impaired performance caused by using the log table.

Use asynchronous update when response times are important and the database updates are
complicated enough to justify the overheads involved in using the log table.

Use synchronous update whenever you need the changed data immediately and when the database
updates are complicated enough to justify the overheads involved in using the log table.

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

