

BC404 ABAP Objects: Object-Oriented Programming in R/3

BC404

 Release 46B
09.01.2003

SAP AG 1999

BC404 ABAP Objects: Object-Oriented
Programming in R/3

SAP AG

ABAP Objects:
Object-Oriented
Programming in R/3

ABAP Objects:
Object-Oriented
Programming in R/3

R/3 System

Release 4.6A

Status: 09.99
Material no. : 50034774

SAP AG 2001

Copyright 2001 SAP AG. All rights reserved.

Neither this training manual nor any part thereof may
be copied or reproduced in any form or by any means,
or translated into another language, without the prior
consent of SAP AG. The information contained in this
document is subject to change and supplement without prior
notice.

All rights reserved.

Copyright

Trademarks:
Microsoft ®, Windows ®, NT ®, PowerPoint ®, WinWord ®, Excel ®, Project ®, SQL-Server ®, Multimedia
Viewer ®, Video for Windows ®, Internet Explorer ®, NetShow ®, and HTML Help ® are registered
trademarks of Microsoft Corporation.

Lotus ScreenCam ® is a registered trademark of Lotus Development Corporation.

Vivo ® and VivoActive ® are registered trademarks of RealNetworks, Inc.
ARIS Toolset ® is a registered Trademark of IDS Prof. Scheer GmbH, Saarbrücken

Adobe ® and Acrobat ® are registered trademarks of Adobe Systems Inc.
TouchSend Index ® is a registered trademark of TouchSend Corporation.

Visio ® is a registered trademark of Visio Corporation.

IBM ®, OS/2 ®, DB2/6000 ® and AIX ® are a registered trademark of IBM Corporation.
Indeo ® is a registered trademark of Intel Corporation.

Netscape Navigator ®, and Netscape Communicator ® are registered trademarks of Netscape
Communications, Inc.
OSF/Motif ® is a registered trademark of Open Software Foundation.

ORACLE ® is a registered trademark of ORACLE Corporation, California, USA.

INFORMIX ®-OnLine for SAP is a registered trademark of Informix Software Incorporated.
UNIX ® and X/Open ® are registered trademarks of SCO Santa Cruz Operation.

ADABAS ® is a registered trademark of Software AG

The following are trademarks or registered trademarks of SAP AG; ABAP™, InterSAP, RIVA, R/2, R/3, R/3
Retail, SAP (Word), SAPaccess, SAPfile, SAPfind, SAPmail, SAPoffice, SAPscript, SAPtime, SAPtronic,
SAP-EDI, SAP EarlyWatch, SAP ArchiveLink, SAP Business Workflow, and ALE/WEB. The SAP logo and
all other SAP products, services, logos, or brand names included herein are also trademarks or registered
trademarks of SAP AG.

Other products, services, logos, or brand names included herein are trademarks or registered trademarks
of their respective owners.

SAP AG 1999

ABAP Workbench

ABAP Workbench:
Concepts and Tools

BC400 5 days

Managing ABAP
Development Projects

MBC40 2 days

Data Transfer
BC420 5 days

Techniques of List
Processing and SAP Query

BC405 3 days

ABAP Dictionary

BC430 2 days

SAPscript: Forms Design
and Text Management

BC460 3 days

CATT:Test Workbench and
Computer Aided Test Tool

CA610 2 days

ABAP Performance
Tuning

BC490 3 days
ABAP Programming
Techniques

BC402 3 days

Dialog Programming
using EnjoySAP Controls

BC412 2 days

Developing
Internet Applications

BC440 5 days

Programming
User Dialogs

BC410 5 days

Communication
Interfaces in ABAP

BC415 2 days

Programming
Database Updates

BC414 2 days

Enhancements
and Modifications

BC425 3 days

Recommended supplementary
courses are:
Business Process Technologies
CA925, CA926, CA927
BC095 (Business Integration
Technology)
BC619 (ALE), BC620, BC621

Level 3Level 2

ABAP Objects: Object-
Oriented Programming
in R/3

BC404 3 days

SAP AG 1999

Course Prerequisites

BC400

or comparable knowledge

Experience of programming in the R/3 environment

SAP AG 1999

Target Group

Audience:

IT staff

Project team members

Duration: 3 days

Notes to the user

The training materials are not teach-yourself programs . They complement the course instructor’s
explanations. Your material includes space for noting down this additional information.

(C) SAP AG BC404 1-1

SAP AG 1999

Course Goals

Course Objectives

Course Contents

Course Overview Diagram

Main Business Scenario

Contents:

Course Overview

(C) SAP AG BC404 1-2

SAP AG 1999

This course will enable you to:

Learn the principles of object-oriented
programming

Learn the structure and application of
ABAP Objects

Course Goals

(C) SAP AG BC404 1-3

SAP AG 1999

At the conclusion of this course, you will be able to:

Describe and use the most important principles:

Classes

Inheritance

Interfaces

Polymorphism

Events

Program in ABAP Objects

Course Objectives

(C) SAP AG BC404 1-4

SAP AG 1999

Unit 6 Events

Unit 7 Global Classes/
Interfaces

Unit 8 Summary and Outlook

Unit 1 Course Overview

Unit 2 Introduction

Unit 3 Analysis and Design

Unit 4 Principles

Unit 5 Generalization/
Specialization

Preface

Appendix

Course Contents

(C) SAP AG BC404 1-5

SAP AG 1999

Course Overview Diagram

Introduction

Analysis and Design

Principles

Generalization/
Specialization

Events

Global Classes/Interfaces

Summary and Outlook

(C) SAP AG BC404 1-6

SAP AG 1999

An airline needs to manage its flights and planes.

A travel agent maintains its connections to
partners, such as, for example, airlines and hotels.

Main Business Scenario

(C) SAP AG BC404 1-7

SAP AG 1999

Demo Programs, Templates and Solutions

Development class BC404

Naming convention:

Demos: SAPBC404xxxD_...

Templates: SAPBC404xxxT_...

Solutions: SAPBC404xxxS_...

xxx: Acronym for individual units

Acronyms for the individual units:
- Unit 4: BAS
- Unit 5: GEN
- Unit 6: EVE
- Unit 7: GLO

(C) SAP AG BC404 2-1

SAP AG 1999

Procedural programming

Object-oriented programming

Aims of the ABAP Objects programming language

Contents:

Introduction

(C) SAP AG BC404 2-2

SAP AG 1999

Name the most significant differences between
procedural and object-oriented programming

State the aims behind developing the ABAP
Objects programming language

At the conclusion of this unit, you will be able to:

Introduction: Unit Objectives

(C) SAP AG BC404 2-3

SAP AG 1999

Introduction: Course Overview Diagram

Introduction

Analysis and Design

Principles

Generalization/
Specialization

Events

Global Classes/Interfaces

Summary and Outlook

(C) SAP AG BC404 2-4

SAP AG 1999

Introduction: Overview (1)

Object-Oriented ProgrammingObject-Oriented Programming

Procedural ProgrammingProcedural Programming

(C) SAP AG BC404 2-5

SAP AG 1999

Procedural Programming

DataData DataData

DataData DataData

DataData
Functions are defined independently
of data structures

Direct access to data

FunctionFunction

FunctionFunctionFunctionFunctionFunctionFunction

FunctionFunctionFunctionFunctionFunctionFunctionFunctionFunction

Information systems used to be defined primarily by their functions: data and functions were stored
separately and linked using input-output relationships.

(C) SAP AG BC404 2-6

SAP AG 1999

Structure of an ABAP Program

TYPES: ...

DATA: ...

...

PERFORM f1 ...

CALL FUNCTION ...

...

FORM f1 ...
...

ENDFORM.

Data declaration

Main program

Call subroutines

Call function modules

Define subroutines

(C) SAP AG BC404 2-7

SAP AG 1999

Working with Function Groups

...

CALL FUNCTION ‘A2‘ ...

...

CALL FUNCTION ‘B1‘ ...

...

ABAP Program Function groups

Function group A

Function module A1

Function module A2

Function module A3

Data

Function group B

Function module B1

Function module B2
Data

(C) SAP AG BC404 2-8

SAP AG 1999

Example: The Function Group as Counter - Definition

FUNCTION-POOL counter.

DATA: count TYPE I.

FUNCTION SET_COUNTER.
* Local interface IMPORTING VALUE(set_value)

count = set_value
ENDFUNCTION.

FUNCTION INCREMENT_COUNTER.
ADD 1 TO count.

ENDFUNCTION.

FUNCTION GET_COUNTER.
* Local interface EXPORTING VALUE(get_value)

get_value = count.
ENDFUNCTION.

(C) SAP AG BC404 2-9

SAP AG 1999

Example: The Function Group as Counter - Call

DATA: number TYPE I VALUE 3.

CALL FUNCTION ‘SET_COUNTER‘ EXPORTING set_value = number.

DO 4 TIMES.
CALL FUNCTION ‘INCREMENT_COUNTER‘.
ENDDO.

CALL FUNCTION ‘GET_COUNTER‘ IMPORTING get_value = number.

WRITE: ..., number, ...

(C) SAP AG BC404 2-10

SAP AG 1999

Several Instances of One Function Group?

Function group COUNTER

SET_COUNTER

INCREMENT_COUNTER

GET_COUNTER

COUNTER

1 counter Any number of counters

• Not possible using
function groups without
additional programming

(C) SAP AG BC404 2-11

SAP AG 1999

Introduction: Overview (2)

Procedural ProgrammingProcedural Programming

Object-Oriented ProgrammingObject-Oriented Programming

(C) SAP AG BC404 2-12

SAP AG 1999

What Are Objects?

Tree

House

Crane

Objects are an abstraction of the real world

Objects are units made up of data and of the
functions belonging to that data

Real world
Model

Data
Method
Method
Method

Data
Method
Method
Method

Data
Method
Method

Method

Boat

Data
Method
Method
Method

Object orientation focuses on objects that represent either abstract or concrete things in the real world.
They are first viewed in terms of their characteristics, which are mapped using the object’s internal
structure and attributes (data). The behavior of an object is described through methods and events
(functionality).

Objects form capsules containing the data itself and the behavior of that data. Objects should enable you to
draft a software solution that is a one-to-one mapping of the real-life problem area.

(C) SAP AG BC404 2-13

SAP AG 1999

Object-Oriented Programming Model

Data
Method

Method

lcl_class

Attribute

Attribute

Method

Method

Class

Gives a general description of objects
(“blueprint”)

Establishes status types (attributes) and
behavior (methods)

Object

Reflection of real world

Specific instance of a class

(C) SAP AG BC404 2-14

SAP AG 1999

Advantages of the Object-Oriented Approach

Consistency throughout the software development process

Encapsulation

Polymorphism

Inheritance

Consistency throughout the software development process
The “language” used in the various phases of software development (analysis, specification, design and
implementation) is uniform. The ideal would be for changes made during the implementation phase to flow
back into the design automatically.

Encapsulation
Encapsulation means that the implementation of an object is hidden from other components in the system,
so that they cannot make assumptions about the internal status of the object and therefore dependencies
on specific implementations do not arise.
Polymorphism
Polymorphism (ability to have multiple forms) in the context of object technology signifies that objects in
different classes have different reactions to the same message.

Inheritance
Inheritance defines the implementation relationship between classes, in which one class (the subclass)
shares the structure and the behavior defined in one or more other classes (superclasses).
Note: ABAP Objects only allows single inheritance.

(C) SAP AG BC404 2-15

SAP AG 1999

History of Programming Languages

Machine language

Assembler

Java

C++

ABAP Objects

ABAP

Before ABAP, SAP used to use a macro assembler.

ABAP was created with the intention of improving reporting. ABAP is a relatively independent in-house
programming language, although it was influenced by other programming languages, for example, COBOL
and PASCAL.

ABAP Objects is a true extension of ABAP. ABAP Objects unites the most promising aspects of other
object-oriented programming languages, such as Java, C++ and Smalltalk.

(C) SAP AG BC404 2-16

SAP AG 1999

ABAP Objects: Design Aims

As simple as possible

Only object-oriented concepts, that have proved
themselves in other object-oriented programming
languages

More frequent use of type checks

You need to assign types more frequently in ABAP Objects than in ABAP. For example, in ABAP Objects,
when you are defining interface parameters for methods, you must assign types to the parameters. The
correct pass by value is then checked by the system when the method is called.
By comparison, in ABAP you do not need to assign types to the parameters of function modules, for
example.

(C) SAP AG BC404 2-17

SAP AG 1999

ABAP Objects

* ABAP Program

CLASS lcl_airplane DEFINITION.
...

ENDCLASS.
...
TYPES: ...
DATA: ...
...

* ABAP Objects Program

DATA: counter TYPE i.
...
CREATE OBJECT ...
counter = counter + 1.
...

True, compatible extension of ABAP

ABAP Objects statements can be used in “conventional”
ABAP programs

ABAP statements can be used in ABAP Objects programs

ABAP Objects is not a new language, but has been developed as an extension of ABAP. It integrates
seamlessly into ABAP syntax and the ABAP programming model. All enhancements are strictly upward
compatible.

(C) SAP AG BC404 2-18

SAP AG 1999

Areas Covered by the Course

Request,
idea

Implementation
(ABAP Objects)

Analysis and
Design

Test

Start of development

Iteration

In object-oriented programming, the analysis and design phase is even more important than it is for
procedural programming. The reason for this is that in object-oriented programming, decisions taken during
the analysis and design phase have even more pronounced effects on implementation than they do in
procedural programming.

(C) SAP AG BC404 2-19

SAP AG 1999

Name the most significant differences between
procedural and object-oriented programming

State the aims behind developing the ABAP
Objects programming language

You are now able to:

Introduction: Summary

(C) SAP AG BC404 3-1

SAP AG 1999

UML

Class diagrams

Sequence diagrams

Contents:

Analysis and Design

(C) SAP AG BC404 3-2

SAP AG 1999

List the most important diagram types in UML

Create a class diagram

Create a sequence diagram

At the conclusion of this unit, you will be able to:

Analysis and Design: Unit Objectives

(C) SAP AG BC404 3-3

SAP AG 1999

Analysis and Design: Course Overview Diagram

Introduction

Analysis and Design

Principles

Generalization/
Specialization

Events

Global Classes/Interfaces

Summary and Outlook

(C) SAP AG BC404 3-4

SAP AG 1999

Overview

Request,
Idea

Analysis and
Design

Start of development

Iteration

Analysis

Develop a model

Question: what needs
to be done?

Design

Establish implementation

Question: how should you do it?

Standardized language for description

UML

(C) SAP AG BC404 3-5

SAP AG 1999

What is UML?

An object-oriented modeling language:

Unified Modeling Language

A language and form of notation for the specification,
construction, visualization and documentation of models
for software systems

Various diagram types

A global standard

UML (Unified Modeling Language) is a standardized modeling language. It is used for the specification,
construction, visualization and documentation of models for software systems and enables uniform
communication between various users.
UML does not describe the steps in the object-oriented development process.

UML is an industry standard and has been standardized by the OMG (Object Management Group) since
September 1997 as UML Version 1.1. The members of the OMG are continuously developing it further.
SAP uses UML as the company-wide standard for object-oriented modeling.

You can find the UML specifications on the OMG homepage at:
http://www.omg.org

http://www.omg.org

(C) SAP AG BC404 3-6

SAP AG 1999

Which Diagram Types Are Included in UML?

Use-case diagrams

Class diagrams

Behavior diagrams

Sequence diagram

Collaboration diagram

Status diagram

Activity diagram

Implementation diagrams

Component diagram

Distribution diagram

Interaction diagrams

UML describes a number of different diagram types in order to represent different views of a system.

Use-case diagrams show the relationships between agents and actions (use cases), that is, they represent
external system behavior from the user’s point of view.
Class diagrams show the static view of a model.

Interaction diagrams demonstrate the relationships and method calls between objects.
Sequence diagrams emphasize the timing sequence of the method calls, while collaboration diagrams
focus more on the object relationships and their topology.

Status diagrams show a sequence of statuses that an object can adopt during its lifetime, and the stimuli
that cause this status to change.

Activity diagrams are a special type of status diagrams. They mostly or exclusively contain activities.

Component diagrams show the organization and dependencies of components.
Distribution diagrams represent the dependencies of software and hardware.

(C) SAP AG BC404 3-7

SAP AG 1999

Class Diagram

Static view of a model

Elements

Classes

Objects

Their internal structure

Attributes

Methods

Their relationships to other elements

Generalization/specialization

Association

(C) SAP AG BC404 3-8

SAP AG 1999

Representation of a Class

Attributes

or

Class name

lcl_airplane

+ denotes public attributes/methods

- denotes private attributes/methods

denotes protected attributes/methods

_ Static attributes/static methods
are marked with an underscore

Methods

- name: string

- count: i

lcl_airplane

+ set_name(im_name: string)

+ get_count(): i

UML notation:
The slide depicts two ways of representing classes. In the first, the class is represented by its name,
attributes and methods, in the second, the name only is used. UML also offers you the option of omitting
the either the attribute or the method part.

ABAP Objects events are not represented in class diagrams.

(C) SAP AG BC404 3-9

SAP AG 1999

Example of a Class Diagram

lcl_airplane

lcl_flightbooking

lcl_wing

lcl_seat

lcl_passenger_airplanelcl_cargo_airplane

lcl_flight

0..*

1

1

1..*

1

1..*

1 0..*
lcl_flightcustomer

10..*

1

1

A class diagram describes the elements contained in the model and their various static relationships. There
are two basic forms of static relationships:

Associations (for example, a flight customer books a flight)
Generalization/specialization (for example a cargo plane and a passenger plane are planes)

Classes can also be shown with their attributes and methods in the class diagrams.

(C) SAP AG BC404 3-10

SAP AG 1999

Association

One flight booking
has only one flight

customer

One flight customer
can book several

flights

Common cardinalities

books

Association
name

* or 0..* Many
1 Only one
1..* One or more
0..1 None or one

lcl_flightbooking lcl_flightcustomer
10..*

An association describes a semantic relationship between classes. The specific relationship between
objects in these classes is known as an object link. Object links are therefore the instances of an
association.
An association is usually a relationship between different classes. However, an association can also be
recursive; in this case, the class would have a relationship with itself. In most cases, recursive associations
are used to links two different objects in one class.
The points below assume that the associations are binary.

Each association has two roles, one for each direction of the association (flight booking->customer,
customer -> flight booking). Roles can have names (for example, the association flight->flight booking could
be called reservations).

Each role has a cardinality that shows how many instances participate in this relationship. The multiplicity is
the number of participating objects in one class that have a relationship to an object in the other class.

UML notation:

An association is represented by a line between the class symbols.
The cardinality of the relationship can be shown at each end of the line.

Associations can be given a name for ease of identification (a verb or a short text). This name is written in
italics above the line and may have a arrow to show the direction. Both are optional.

(C) SAP AG BC404 3-11

SAP AG 1999

Aggregation and Composition

Aggregation

• Special type of association
• Whole-part relationships

Composition

• Special type of aggregation
• Existence-dependent
whole-part relationships lcl_flightbookinglcl_flight

1 0..*

Composition symbol

lcl_airplane lcl_wing
1 1..*

Aggregation symbol

Aggregation is a special kind of association. Aggregation describes one object that contains another or
consists of other objects (whole-part). An airplane consists of wings. The relationship can be described by
the words “consists of” or “is a part of”.
UML notation for aggregation:
An aggregation, like an association, is represented by a line between two classes, which then additionally
has a small rhombus at one end. The rhombus is always at the aggregate end, that is, the whole object
end. Otherwise the notation conventions are the same as for associations.

Composition is a special kind of aggregation. Composition describes the fact that the object contained
cannot exist without the aggregate (for example, a flight booking cannot exist without the relevant flight).

Differences between composition and aggregation:
The cardinality on the aggregate side can only be one. Each part is only part of one composite object,
otherwise the existence dependency would be contradictory. The lifetime of the individual parts is linked to
the lifetime of the aggregate: parts are created either with or immediately after the aggregate, and they are
destroyed either with or immediately before the aggregate.
UML notation for composition:
Like aggregation, composition is shown as a line between two classes and marked with a small rhombus
on the aggregate side. However, in contrast to aggregation, the rhombus is filled in.

(C) SAP AG BC404 3-12

SAP AG 1999

Generalization and Specialization

cl_airplane

cl_passenger_airplanecl_cargo_airplane

or

G
en

er
al

iz
at

io
n

S
pe

ci
al

iz
at

io
n

cl_airplane

cl_passenger_airplanecl_cargo_airplane G
en

er
al

iz
at

io
n

S
pe

ci
al

iz
at

io
n

UML notation:
Generalization and specialization are denoted by triangular arrows that point from the subordinate class to
the superclass.
Several arrows can be summarized into a tree.

(C) SAP AG BC404 3-13

SAP AG 1999

Behavior Diagrams: Sequence Diagrams

Dynamic view of a model

Objects in existence at runtime

Interaction between objects

Time sequence of the interaction

Sequence diagrams, unlike class diagrams, show the dynamics between objects. They are used to
represent a particular process or a particular situation.

Sequence diagrams focus on the time sequence of the information exchange:
Creating and deleting objects.

Message exchange between objects.

Sequence diagrams have no notation for representing static methods.

(C) SAP AG BC404 3-14

SAP AG 1999

Sequence Diagrams: Example (1)

Object life line

Control focus

AirplanePilot

return code

1:method (parameter)

Time

UML notation:
Objects are represented by squares. You can write the object name in these squares in various ways:
Object name

Object name:class name

:class name

The object life line is represented by vertical dotted lines.
The control focus is shown as a vertical rectangle on the object life line. The control focus shows the
object‘s “active” period:
An object is active when actions are executed

An object is indirectly active if it is waiting for a subordinate procedure to end.

(C) SAP AG BC404 3-15

SAP AG 1999

Sequence Diagrams: Example (2)

AirplanePilot

Return code

1:method (parameter)

Time

Process description

Optional

Sequence number
(optional)

Can be represented in different
ways in response to message

Messages are shown as horizontal arrows between the object lines. The message is written over the arrow
as Method (parameter). There are various options for representing the reply; in this example, the arrow is
shown as a returning arrow.
You can also include a description of the process and add comments to the object life line as required.

(C) SAP AG BC404 3-16

SAP AG 1999

List the most important diagram types in UML

Create a class diagram

Create a sequence diagram

You are now able to:

Analysis and Design: Summary

(C) SAP AG BC404 3-17

Analysis and Design Exercises

Unit: Analysis and Design

Topic: UML Class Diagrams

At the end of this exercise, you will be able to:

Create a UML class diagram

An airline needs to manage its airplanes.

1-1 On a sheet of paper, create a class diagram using UML notation that contains the following
classes:
- Airline: lcl_carrier
– Airplane (general): lcl_airplane
– Passenger airplane: lcl_passenger_airplane
– Cargo airplane: lcl_cargo_airplane

1-1-1 Choose a few useful attributes and methods for each class.

1-1-2 Fill in the relationships between the classes and add possible cardinalities.

(C) SAP AG BC404 3-18

Analysis and Design Solutions

Unit: Analysis and Design

Topic: UML Class Diagrams

lcl_cargo_airplane

- cargo : p

+ set_attributes()

+ display_attributes()

lcl_passenger_airplane

- n_o_seats : i

+ set_attributes()
+ display_attributes()

lcl_carrier
- name : c
- list_of_airplanes : int. table

- list_of_flights : int. table

+ set_attributes()
+ add_a_new_airplane()
+ display_airplanes()
+ create_a_new_flight()

lcl_airplane

name : c
planetyp : saplane-planetype
- n_o_airplanes : i

+ set_attributes()
+ display_attributes()
+ display_n_o_airplanes()

0..1
0..*

(C) SAP AG BC404 4-1

SAP AG 1999

Objects

Classes

Attributes

Methods

Visibility/encapsulation

Instantiation

Constructor

Garbage Collector

Contents:

Principles

(C) SAP AG BC404 4-2

SAP AG 1999

Create classes

Create objects

Call methods

Explain how the Garbage Collector works

At the conclusion of this unit, you will be able to:

Principles: Unit objectives

(C) SAP AG BC404 4-3

SAP AG 1999

Principles: Course Overview Diagram

Introduction

Analysis and Design

Principles

Generalization/
Specialization

Events

Global Classes/Interfaces

Summary and Outlook

(C) SAP AG BC404 4-4

SAP AG 1999

Principles: Overview (1)

ObjectsObjects

ClassesClasses

AttributesAttributes

MethodsMethods

Instantiation, Garbage CollectorInstantiation, Garbage Collector

Working with ObjectsWorking with Objects

Further PrinciplesFurther Principles

(C) SAP AG BC404 4-5

SAP AG 1999

The Object (1)

Private access
• Encapsulation
• As a rule, attributes

Public access
• Interface
• As a rule,methods, events

Attributes

Events

Attributes

Methods

Events

Name: LH Berlin

Length: 70 m

Weight: 30,000 kg

landed

Methods

flyland

Example: airplane

The object in the above model has two layers: an outer shell and an inner core. Users can only see the
outer shell, while the inner core remains hidden (the internal status of an object can only be seen within the
object itself).
Public components (outer shell): the outer shell contains the components of the object that are visible to
users, such as attributes (data), methods (functions) and events. All users have direct access to these
components. The public components of an object form its external point of contact.
Private components (inner core): the components of the inner core (attributes, methods and events) are
only visible within the object itself. The attributes of an object are generally private. These private attributes
of an object can only be accessed using the methods of that object itself.

Why are the private components of an object “hidden”?
This principle is called “information hiding” or “encapsulation” and is used to protect the user.
Let us assume that an object changes its private components, while its external point of contact remains
unchanged. Any user who simply needs to access the object’s external point of contact can carry on
working with the object as usual. The user does not notice the change.
However, if an object changes its public components, then any user who accesses these public
components must take these changes into account.

(C) SAP AG BC404 4-6

SAP AG 1999

The Object (2)

What characterizes an object?

Identity

Status (quantity of attributes)

Behavior (quantity of methods and events)

What synonyms are used for objects?

Object

Instance

Every object has an identity, a status (quantity of attributes) and behavior (quantity of methods and events).
The structure and behavior of similar objects are defined in a class which they share.

Identity is a characteristic that differentiates each object from all other objects. Identity is often confused
with having the same attribute values or with a unique name. Two different objects can have identical
attribute values and still not be identical.
Example:
Two coffee cups are the same height and diameter, have the same handle and are both white. Although
they look exactly the same, they are still two separate cups.

(C) SAP AG BC404 4-7

SAP AG 1999

Examples of Objects

Plane tic
ket 2

Name: M
r. M

üllersc
hön

Departu
re: M

unich: 1
1:25 a.m

.

Plane tic
ket 2

Name: M
r. M

üllersc
hön

Departu
re: M

unich: 1
1:25 a.m

.

Plane tic
ket 1

Name: M
r. E

berwein

Departu
re: B

erlin
: 0

6:10 p.m
.

Plane tic
ket 1

Name: M
r. E

berwein

Departu
re: B

erlin
: 0

6:10 p.m
.

A number of different objects are shown on this slide. Similar objects can be grouped into classes.

(C) SAP AG BC404 4-8

SAP AG 1999

Classification

Plane tic
ket 2

Name: Mr. Müllersch
ön

Departu
re: M

unich: 1
1:25 a.m

.

Plane tic
ket 2

Name: Mr. Müllersch
ön

Departu
re: M

unich: 1
1:25 a.m

.

Plane tic
ket 1

Name: Mr. Eberwein

Departu
re: B

erlin
: 0

6:10 p.m
.

Plane tic
ket 1

Name: Mr. Eberwein

Departu
re: B

erlin
: 0

6:10 p.m
.

Plane ticketPlane

In the real world, there are objects, such as various airplanes and plane tickets. Some of these objects are
very similar, that is, they can be described using the same attributes or characteristics and provide the
same functions.
Similar objects are grouped together in classes. Each class is described once, and each object is then
created in accordance with this blueprint.
A class is therefore a description of a quantity of objects characterized by the same structure and the same
behavior.

An object is a concrete example of a class, the airplane class is a description of the objects LH Munich, LH
New York etc.. Objects that belong to the same class have the same attributes and can be accessed using
the same methods. There is only one of each class within a software system, but each class can contain
several objects.

(C) SAP AG BC404 4-9

SAP AG 1999

Principles: Overview (2)

Objects Objects

ClassesClasses

AttributesAttributes

MethodsMethods

Instantiation, Garbage CollectorInstantiation, Garbage Collector

Working with ObjectsWorking with Objects

Further PrinciplesFurther Principles

(C) SAP AG BC404 4-10

SAP AG 1999

Different Abstractions of a Class

Airplane

Hangar management

Name
Type

Seats
Window seats
Cargo space

Length
Width

Weight

Price
Logo

Airline

In this context, abstractions are a simplified representations of complex relationships in the real world. An
actually existing object is abstracted to the significant dimensions that are to be mapped. Insignificant
details are left out in order to aid understanding of the overall system.
This example concerns airplanes. Software for airlines and software for an airport’s hangar management
contain different abstractions (classes) for these objects.

(C) SAP AG BC404 4-11

SAP AG 1999

Different Abstractions of a Class (2)

AirplaneAirplane

A class can contain very different objects depending on the abstraction.

While in one software system the class ‘airplane’ only describes ‘actual’ airplanes, in the other system it it
describes all aircraft.
Both classes have the same name but describe different objects.

(C) SAP AG BC404 4-12

SAP AG 1999

CLASS <classname> DEFINITION.

ENDCLASS.

CLASS <classname> IMPLEMENTATION.

ENDCLASS.

The Class as a Blueprint for Objects

Definition part
The class components (for
example, attributes and methods)
are defined in this part.

Definition part
The class components (for
example, attributes and methods)
are defined in this part.

Implementation part
This part only contains the method
implementations.

Implementation part
This part only contains the method
implementations.

A class is a description of a number of objects that have the same structure and the same behavior. A
class is therefore like a blueprint, in accordance with which all objects in that class are created.

The components of the class are defined in the definition part. The components are attributes, methods,
events, constants, types and implemented interfaces. Only methods are implemented in the
implementation part.

The CLASS statement cannot be nested, that is, you cannot define a class within a class.

(C) SAP AG BC404 4-13

SAP AG 1999

Important Components in a Class

Attributes

Data

Determine the state of the object

Methods

Executable coding

Determine the behavior of the object

Further components in classes are events and interfaces, which will be explained later.

(C) SAP AG BC404 4-14

SAP AG 1999

Principles: Overview (3)

Objects Objects

ClassesClasses

AttributesAttributes

MethodsMethods

Instantiation, Garbage CollectorInstantiation, Garbage Collector

Working with ObjectsWorking with Objects

Further PrinciplesFurther Principles

(C) SAP AG BC404 4-15

SAP AG 1999

Attributes

lcl_airplane

name: LH Berlin
weight: 30 000 kg
tank: lcl_tank

Attribute types can have any kind of data type:

Elementary types:

C, I, P, STRING

TYPE REF TO (References to objects/interfaces)

Define your own types

Attributes describe the data that can be stored in the objects in a class.

Class attributes can be of any type:

Data types: scalar (for example, data element), structured, in tables
ABAP elementary types (C, I, ...)

Object references

Interface references
Attributes of the airplane class are, for example:

Name
Seats

Weight

Length
Wings

Tank

(C) SAP AG BC404 4-16

SAP AG 1999

Attributes, Types and Constants: Syntax

CLASS <classname> DEFINITION.
...

TYPES: <normale Typdefinition>.
CONSTANTS: constant TYPE <type> VALUE <value>.

DATA: variable1 TYPE <type>,
variable2 TYPE <ddic_type>,
variable3 LIKE variable1,
variable4 TYPE <type> VALUE <value>,
variable5 TYPE <type> READ-ONLY,
variable6 TYPE REF TO <classname>,
variable7 TYPE REF TO <interface>.

CLASS-DATA: ...

ENDCLASS.

CLASS <classname> DEFINITION.
...

TYPES: <normale Typdefinition>.
CONSTANTS: constant TYPE <type> VALUE <value>.

DATA: variable1 TYPE <type>,
variable2 TYPE <ddic_type>,
variable3 LIKE variable1,
variable4 TYPE <type> VALUE <value>,
variable5 TYPE <type> READ-ONLY,
variable6 TYPE REF TO <classname>,
variable7 TYPE REF TO <interface>.

CLASS-DATA: ...

ENDCLASS.

In classes, you can only use the TYPE reference to refer to data types in the ABAP Dictionary.

You can only use the LIKE reference for local data objects.

The READ-ONLY addition means that a public attribute declared with DATA can be read from outside, but
can only be changed by methods within the class.

You can currently only use the READ-ONLY addition in the public visibility section (PUBLIC SECTION) of a
class declaration or in an interface definition.

(C) SAP AG BC404 4-17

SAP AG 1999

CLASS lcl_airplane DEFINITION.

PUBLIC SECTION.
...

PRIVATE SECTION.
DATA: weight TYPE saplane-weight,

name TYPE string.

ENDCLASS.

CLASS lcl_airplane DEFINITION.

PUBLIC SECTION.
...

PRIVATE SECTION.
DATA: weight TYPE saplane-weight,

name TYPE string.

ENDCLASS.

CLASS lcl_airplane DEFINITION.

PUBLIC SECTION.
DATA: name TYPE string.

PRIVATE SECTION.
DATA: weight TYPE saplane-weight.

ENDCLASS.

CLASS lcl_airplane DEFINITION.

PUBLIC SECTION.
DATA: name TYPE string.

PRIVATE SECTION.
DATA: weight TYPE saplane-weight.

ENDCLASS.

better

Attributes and Visibility

Public attributes

Can be viewed and
changed by all users and
in all methods

Direct access

Private attributes

Can only be viewed and
changed from within the
class

No direct access
from outside the class

You can protect attributes against access from outside by characterizing them as private attributes (defined
in the PRIVATE SECTION).

Attributes and their values that may be used directly by an external user are public attributes and are
defined in the PUBLIC SECTION.

In the above example for class lcl_airplane, the name attribute is initially defined as a public attribute and
the weight attribute is defined as a private attribute.
Public attributes belong to the class ‘external point of contact’ that is, their implementation is publicized. If
you want to hide the internal implementation from users, you must define internal and external views of
attributes.

As a general rule, you should define as few public attributes as possible.

(C) SAP AG BC404 4-18

SAP AG 1999

CLASS lcl_airplane DEFINITION.

PUBLIC SECTION.

PRIVATE SECTION.
DATA: weight TYPE saplane-weight,

name TYPE string.

CLASS-DATA: count TYPE I.

ENDCLASS.

Instance Attributes and Static Attributes (1)

Instance attributes

One per instance

Statement: DATA

Static attributes

Only one per class

Statement: CLASS-DATA

Also known as class attributes

There are two kinds of attributes

Static attributes

Instance attributes
Instance attributes are attributes that exist separately for each object.
Instance attributes are defined using the DATA keyword.

Static attributes exist once only for each class and are visible for all (runtime) instances in that class. Static
attributes usually contain information that is common to all instances, such as:

Data that is the same in all instances
Administrative information about the instances in that class (for example, counters and so on)

Static attributes are defined using the CLASS-DATA keyword.

You may come across the expression “class attributes” in documentation, however, the official term in
ABAP Objects (as in C++, Java) is “static” attributes.

(C) SAP AG BC404 4-19

SAP AG 1999

Instance Attributes and Static Attributes (2)

Main memory

name: LH Berlin
weight: 30,000 kg

name: AA Boston
weight: 45,000 kg

count: 2

Static attributes for class LCL_AIRPLANE

(C) SAP AG BC404 4-20

SAP AG 1999

Principles: Overview (4)

Objects Objects

ClassesClasses

AttributesAttributes

MethodsMethods

Instantiation, Garbage CollectorInstantiation, Garbage Collector

Working with ObjectsWorking with Objects

Further PrinciplesFurther Principles

(C) SAP AG BC404 4-21

SAP AG 1999

Methods

lcl_airplane

...

fly

land

Contain coding

Have an interface

Methods are internal procedures in classes that determine the behavior of an object. They can access all
attributes in their class and can therefore change the state of an object.

Methods have a parameter interface that enables them to receive values when they are called and pass
values back to the calling program.

(C) SAP AG BC404 4-22

SAP AG 1999

Methods: Syntax

CLASS <classname> IMPLEMENTATION.
METHOD <method_name>.
...

ENDMETHOD.
ENDCLASS.

CLASS <classname> DEFINITION.
...
METHODS: <method_name>

[IMPORTING <im_var> TYPE <type>
EXPORTING <ex_var> TYPE <type>
CHANGING <ch_var> TYPE <type>
RETURNING VALUE(<re_var>) TYPE <type>
EXCEPTIONS <exception>].

ENDCLASS.

In ABAP Objects, methods can have IMPORTING, EXPORTING, CHANGING and RETURNING
parameters as well as EXCEPTIONS. All parameters can be passed by value or reference.

You can define a return code for methods using RETURNING. You can only do this for a single parameter,
which additionally must be passed as a value. Also, you cannot then define EXPORTING and CHANGING
parameters. You can define functional methods using the RETURNING parameter (explained in more
detail below).
All input parameters (IMPORTING, CHANGING parameters) can be defined as optional parameters in the
declaration using the OPTIONAL or DEFAULT additions. These parameters then do not necessarily have
to be passed when the object is called. If you use the OPTIONAL addition, the parameter remains
initialized according to type, whereas the DEFAULT addition allows you to enter a start value.

(C) SAP AG BC404 4-23

SAP AG 1999

Methods and Visibility

CLASS lcl_airplane DEFINITION.
PUBLIC SECTION.

METHODS: set_name importing
im_name TYPE string.

PRIVATE SECTION.
METHODS: init_name.
DATA: name TYPE string.

ENDCLASS.

CLASS lcl_airplane IMPLEMENTATION.
METHOD init_name.

name = ‘No Name‘.
ENDMETHOD.
METHOD set_name.

IF im_name IS INITIAL.
* Calling init_name

...
ELSE. name = im_name. ENDIF.

ENDMETHOD.
ENDCLASS.

Public methods

Can be called from
outside the class

Private methods

Can only be called
within the class

Methods, like attributes, must be assigned to a visibility area. This determines whether the methods can be
called from outside the class or only from within the class.

(C) SAP AG BC404 4-24

SAP AG 1999

Instance Methods and Static Methods

Instance methods

Can use both static and instance components in the
implementation part

Can be called using the instance name

Static methods

Can only use static components in the implementation part

Can be called using the class name

Static methods are defined on the class level. They are similar to instance methods, but with the restriction
that they can only use static components (such as static attributes) in the implementation part. This means
that static methods do not need instances and can therefore be called from anywhere. They are defined
using the CLASS-METHODS statement, and they are bound by the same syntax and parameter rules as
instance methods.

The term “class method” is common, but the official term in ABAP Objects (as in C++, Java) is “static
method”. This course uses the term “static method”.

(C) SAP AG BC404 4-25

SAP AG 1999

Instance and Static Methods: Example

CLASS lcl_airplane DEFINITION.

PUBLIC SECTION.
METHODS: set_name IMPORTING im_name TYPE string.
CLASS-METHODS: get_count RETURNING VALUE(re_count) TYPE I.

PRIVATE SECTION.
DATA: name TYPE string.
CLASS-DATA: count TYPE I.

ENDCLASS.

CLASS lcl_airplane IMPLEMENTATION.
...
METHOD get_count.

re_count = count.
ENDMETHOD

ENDCLASS.

(C) SAP AG BC404 4-26

SAP AG 1999

Attributes and Methods in UML Notation

+ public components

- private components

_ static components marked with
an underscore

- name: string

- count: i

lcl_airplane

+ set_name(im_name: string)

+ get_count(): i

- set_count(im_count: i)

Attributes

Class name

Methods

CLASS lcl_airplane DEFINITION.

PUBLIC SECTION.
METHODS: set_name IMPORTING im_name TYPE string.
CLASS-METHODS: get_count RETURNING VALUE(re_count) TYPE I.

PRIVATE SECTION.
DATA: name TYPE string.
CLASS-DATA: count TYPE I.
METHODS: set_count IMPORTING im_count TYPE i.

ENDCLASS.

A UML class diagram shows firstly the class name and, underneath that, the class attributes and methods.

The visibility of components in a class is shown in UML using the characters “+” and “-”:
+ public components
- private components

Alternatively, public and private can be prefixed to the methods. The third option for providers of modeling
tools in UML is to introduce their own symbols for visibility.
Representation of visibility characteristics is optional and is normally only used for models that are close to
implementation.
Static components are marked with an underscore.

The method signature is represented as follows (optional):

The input and output parameters and the parameters to be changed are shown in brackets.
The return code is separated from the type name by a colon.

(C) SAP AG BC404 4-27

SAP AG 1999

Principles: Overview (5)

Objects Objects

ClassesClasses

AttributesAttributes

MethodsMethods

Instantiation, Garbage CollectorInstantiation, Garbage Collector

Working with ObjectsWorking with Objects

Further PrinciplesFurther Principles

(C) SAP AG BC404 4-28

SAP AG 1999

Creating Objects

lcl_airplane

name

weight

... CREATE OBJECT
name: LH Berlin
weight: 30,000 kg

Objects can only be created and addressed using
reference variables

A class contains the generic description of an object. It describes all the characteristics that are common to
all the objects in that class. During the program runtime, the class is used to create specific objects
(instances). This process is called instantiation.
Example:
The object LH Berlin is created during runtime in the main memory by instantiation from the lcl_airplane
class.
The lcl_airplane class itself does not exist as an independent runtime object in ABAP Objects.

Realization:
Objects are instantiated using the statement: CREATE OBJECT.
During instantiation, the runtime environment dynamically requests main memory space and assigns it to
the object.

(C) SAP AG BC404 4-29

SAP AG 1999

Reference Variables

CLASS lcl_airplane DEFINITION.
PUBLIC SECTION.

...
PRIVATE SECTION.

...
ENDCLASS.

CLASS lcl_airplane IMPLEMENTATION.
...

ENDCLASS.

DATA: airplane1 TYPE REF TO cl_airplane,
airplane2 TYPE REF TO cl_airplane. Main memory

airplane2

airplane1

DATA: airplane1 TYPE REF TO lcl_airplane declares the reference variable airplane1. This acts as a
pointer to an object.

(C) SAP AG BC404 4-30

SAP AG 1999

Creating Objects: Syntax

DATA: airplane1 TYPE REF TO lcl_airplane,
airplane2 TYPE REF TO lcl_airplane.

CREATE OBJECT airplane1.
CREATE OBJECT airplane2.

CREATE OBJECT <reference>.

Main memory

airplane1

airplane2

name:
weight: 0

name:
weight: 0

The CREATE OBJECT statement creates an object in the main memory. The attribute values of this object
are either initial values or correspond to the VALUE entry.

(C) SAP AG BC404 4-31

SAP AG 1999

Assigning References

...
DATA: airplane1 TYPE REF TO lcl_airplane,

airplane2 TYPE REF TO lcl_airplane.

CREATE OBJECT airplane1.
CREATE OBJECT airplane2.

airplane1 = airplane2.

Main memory

airplane1

airplane2

name:
weight: 0

name:
weight: 0

Reference variables can also be assigned to each other. The above example shows that once it has been
assigned, airplane1 points to the same object as reference airplane2.

(C) SAP AG BC404 4-32

SAP AG 1999

Garbage Collector

...
DATA: airplane1 TYPE REF TO lcl_airplane,

airplane2 TYPE REF TO lcl_airplane.

CREATE OBJECT airplane1 EXPORTING
CREATE OBJECT airplane2 EXPORTING

airplane1 = airplane2.

Main memory

airplane1

airplane2

name: LH B
weight: 30,000 kg

name: AA Bost
weight: 45,000 kg

As soon as no more references point to an object, the Garbage Collector removes it from the memory.

The Garbage Collector is a system routine that automatically deletes objects that can no longer be
addressed from the main memory and releases the memory space they occupied.

(C) SAP AG BC404 4-33

SAP AG 1999

Garbage Collector: Concept

Main memory

All independent references in the global main memory are checked. The
references point to active objects, which are marked internally.

If class or instance attribute references point to other objects, these are
also marked.

Objects that are not marked are deleted from the main memory.

Independent references are references that have not been defined within a class.

(C) SAP AG BC404 4-34

SAP AG 1999

Principles: Overview (6)

ObjectsObjects

ClassesClasses

AttributesAttributes

MethodsMethods

Instantiation, Garbage CollectorInstantiation, Garbage Collector

Working with ObjectsWorking with Objects

Further PrinciplesFurther Principles

(C) SAP AG BC404 4-35

SAP AG 1999

Object Identity

DATA: airplane1 TYPE REF TO lcl_airplane,
airplane2 TYPE REF TO lcl_airplane.

CREATE OBJECT airplane1 EXPORTING im_name = ‘LH Berlin‘ ...
CREATE OBJECT airplane2 EXPORTING im_name = ‘LH Berlin‘ ...

IF airplane1 = airplane2. “not equal to
...
ENDIF.

Main memory

airplane1

airplane2

n: LH Berlin
w: 30,000 kg

n: LH Berlin
w: 30,000 kg

(C) SAP AG BC404 4-36

SAP AG 1999

DATA: airplane TYPE REF TO cl_airplane,
airplane_table TYPE TABLE OF REF TO cl_airplane.

CREATE OBJECT airplane.
APPEND airplane TO airplane_table.

Assigning References: Example

CREATE OBJECT airplane.
APPEND airplane TO airplane_table.

Main memory

airplane_table

airplane

Main memory

airplane_table

airplane

If you want to keep several objects from the same class in your program, you can define an internal table,
which might, for example, only consist of one column with the object references for this class.

(C) SAP AG BC404 4-37

SAP AG 1999

LOOP AT TO airplane_table INTO airplane.

* work with the current instance

ENDLOOP.

Assigning References: Example (2)

Main memory

airplane_table

airplane
1

2

You can work with the objects using the internal table within the loop.

(C) SAP AG BC404 4-38

SAP AG 1999

Object References as Attributes

lcl_airplane lcl_wings

orientat.: left
length: 15 m

name: LH Berlin
weight: 30,000 kg
left_wing:
right_wing:

orientat.: right
length: 15 m

If a class defines object references to a second class as attributes (in the above example: left_wing,
right_wing), then only these object references will be stored in the objects belonging to that class. The
objects in the second class have their own identity.

(C) SAP AG BC404 4-39

SAP AG 1999

External Access to Public Attributes

Instance attribute:
<reference>-><instance_attribute>

Class attribute:
<classname>=><class_attribute>

CLASS lcl_airplane DEFINITION.

PUBLIC SECTION.
DATA: name TYPE string READ-ONLY.
CLASS-DATA: count TYPE I READ-ONLY.
...

ENDCLASS.
...

DATA: airplane1 TYPE REF TO lcl_airplane.
DATA: airplane_name TYPE STRING,

n_o_airplanes TYPE i.
...

airplane_name = airplane1->name.
n_o_airplanes = lcl_airplane=>count.

name: LH Berlin

Public attributes can be accessed from outside the class in various ways:

Static attributes are accessed using <classname>=><class_attribute>.

Instance attributes are accessed using <instance>-><instance_attribute>.

(C) SAP AG BC404 4-40

SAP AG 1999

Calling Methods

O2

Data
Do_it

Data
Run

O1

call method O2->Do_it

Every object behaves in a certain way. This behavior is determined by its methods. There are three types
of method:

1. Methods that cause behavior and do not pass values
2. Methods that pass a value

3. Methods that pass or change several values

An object that requires services from another object sends a message to the object providing the services.
This message names the operation to be executed. The implementation of this operation is known as a
method.
For the sake of simplicity, method is used below as a synonym for operation and message.

(C) SAP AG BC404 4-41

SAP AG 1999

Calling Methods: Syntax

Instance methods: CALL METHOD <instance>-><instance_method>
EXPORTING <im_var> = <variable>
IMPORTING <ex_var> = <variable>
CHANGING <ch_var> = <variable>
RECEIVING <re_var> = <variable>
EXCEPTIONS <exception> = <nr>.

Static methods: CALL METHOD <classname>=><class_method>
EXPORTING

DATA: airplane TYPE REF TO lcl_airplane.
DATA: name TYPE string.
DATA: count_planes TYPE I.

CREATE OBJECT airplane.

CALL METHOD airplane->set_name EXPORTING im_name = name.
CALL METHOD lcl_airplane=>get_count RECEIVING re_count = count_planes.

Public methods can be called from outside the class in a number of ways:

Instance methods are called using CALL METHOD <reference>-><instance_method>.

Static methods are called using CALL METHOD <classname>=><class_method>.
Static methods are addressed by class name, since they do not need instances.
Note:
If you are calling a static method from within the class, you can omit the class name.
When calling an instance method from within another instance method, you can omit the instance name.
The method is automatically executed for the current object.

(C) SAP AG BC404 4-42

SAP AG 1999

Functional Methods

When defining:

RETURNING parameters

Only IMPORTING parameters and exceptions are also possible

When calling:

RECEIVING parameters, or ...

... Various forms of direct call possible:

MOVE, CASE, LOOP

Logical expressions (IF, ELSEIF, WHILE, CHECK, WAIT)

Arithmetic expressions and bit expressions (COMPUTE)

Methods that have a RETURNING parameter are described as functional methods. These methods cannot
have EXPORTING or CHANGING parameters, but has many (or as few) IMPORTING parameters and
EXCEPTIONS as required.
Functional methods can be used directly in various expressions (although EXCEPTIONS are not catchable
at the moment - you must use the long form of the method call):

in logical expressions (IF, ELSEIF, WHILE, CHECK, WAIT)
in the CASE statement (CASE, WHEN)

in the LOOP statement
in arithmetic expressions (COMPUTE)

in Bit expressions (COMPUTE)

in the MOVE statement.

(C) SAP AG BC404 4-43

SAP AG 1999

Functional Methods: Examples

CLASS lcl_airplane DEFINITION.
PUBLIC SECTION.

METHODS: estimated_fuel_consumption
IMPORTING im_distance TYPE ty_distance
RETURNING VALUE(re_fuel) TYPE ty_fuel,

CLASS-METHODS: get_count RETURNING VALUE(re_count) TYPE i.
ENDCLASS.

DATA: plane1 TYPE REF TO lcl_airplane,
plane2 TYPE REF TO lcl_airplane,
fuel_consumption TYPE ty_fuel,
count_planes TYPE i.

* Instantiation omitted

* CALL METHOD plane1->get_count RECEIVING re_count = count_planes.
count_planes = lcl_airplane=>get_count().

fuel_consumption = plane1->estimated_fuel_consumption(1000)
+ plane2->estimated_fuel_consumption(im_distance = 1500).

The syntax for instance methods (analogous to static methods) is as follows, depending on the number of
IMPORTING parameters :

no IMPORTING parameters: ref->func_method()
exactly 1 IMPORTING parameter : ref->func_method(p1) oder
 ref->func_method(im_1 = p1)

several IMPORTING parameters : ref->func_method(im_1 = p1 im_2 = p2)

(C) SAP AG BC404 4-44

SAP AG 1999

Constructor

CREATE OBJECT

lcl_airplane

name

weight

count

constructor

METHODS CONSTRUCTOR IMPORTING <im_parameter>
EXCEPTIONS <exception>.

METHODS CONSTRUCTOR IMPORTING <im_parameter>
EXCEPTIONS <exception>.

name: LH Berlin
weight: 30,000 kg

Special method for creating
objects with defined initial
state

Only has IMPORTING
parameters and
EXCEPTIONS

Exactly one constructor is
defined per class (explicitly
or implicitly)

Is executed exactly once per
instance

The constructor is a special (instance) method in a class and is always named CONSTRUCTOR. The
following rules apply:

Each class has exactly one constructor.
The constructor does not need to be defined if no implementation is defined.

The constructor is automatically called during runtime within the CREATE OBJECT statement.

If you need to implement the constructor, then you must define and implement it in the PUBLIC SECTION.
When EXCEPTIONS are triggered in the constructor, instances are not created (as of 4.6a), so no main
memory space is taken up.

(C) SAP AG BC404 4-45

SAP AG 1999

CLASS lcl_airplane DEFINITION.
PUBLIC SECTION.

METHODS CONSTRUCTOR IMPORTING im_name TYPE string
im_weight TYPE I.

PRIVATE SECTION.
DATA: name TYPE string, weight TYPE I.
CLASS-DATA count TYPE I.

ENDCLASS.

CLASS lcl_airplane IMPLEMENTATION.
METHOD CONSTRUCTOR.

name = im_name.
weight = im_weight.
count = count + 1.

ENDMETHOD.
ENDCLASS.

DATA airplane TYPE REF TO lcl_airplane.
...
CREATE OBJECT airplane

EXPORTING im_name = `LH Berlin`
im_weight = 30000.

Constructor: Example

name: LH Berlin
weight: 30,000 kg

You need to implement the constructor when, for example

You need to allocate (external) resources

You need to initialize attributes that cannot be covered by the VALUE supplement to the DATA statement
You need to modify static attributes

You cannot normally call the constructor explicitly.

(C) SAP AG BC404 4-46

SAP AG 1999

Static Constructor: Implementation

CLASS lcl_airplane DEFINITION.
PUBLIC SECTION.
CLASS-METHODS:

CLASS_CONSTRUCTOR,
get_count RETURNING

VALUE(re_count) TYPE I.
CLASS-DATA: count TYPE I.

ENDCLASS.

CLASS lcl_airplane IMPLEMENTATION.
METHOD CLASS_CONSTRUCTOR.
...

ENDMETHOD.
...

ENDCLASS.

CLASS <classname> DEFINITION.
PUBLIC SECTION.

CLASS-METHODS CLASS_CONSTRUCTOR.
ENDCLASS.

CLASS <classname> IMPLEMENTATION.
METHOD CLASS_CONSTRUCTOR.

...
ENDMETHOD.

ENDCLASS.

CLASS <classname> DEFINITION.
PUBLIC SECTION.

CLASS-METHODS CLASS_CONSTRUCTOR.
ENDCLASS.

CLASS <classname> IMPLEMENTATION.
METHOD CLASS_CONSTRUCTOR.

...
ENDMETHOD.

ENDCLASS.

The static constructor is a special static method in a class and is always named CLASS_CONSTRUCTOR.
It is executed precisely once per program. The static constructor of class <classname> is called
automatically before the class is first accessed, that is, before any of the following actions are executed:

Creating an instance in the class using CREATE OBJECT obj, where obj has the data type
REF TO <classname>.
Addressing a static attribute using <classname>=><an_attribute>.

Calling a static attribute using CALL METHOD <classname>=><a_classmethod>.
Registering a static event handler method using SET HANDLER <classname>=><handler_method> for
obj.

Registering an event handler method for a static event in class <classname>.
The static constructor cannot be called explicitly.

(C) SAP AG BC404 4-47

SAP AG 1999

Static Constructor: Call Examples

* Example 1:

DATA airplane TYPE REF TO cl_airplane.

CREATE OBJECT airplane.

* Example 2:

DATA class_id TYPE string.

class_id = lcl_airplane=>count.

* Example 3:

DATA count_airplane TYPE I.

CALL METHOD lcl_airplane=>get_count
RECEIVING re_count = count_airplane.

Special static method

Automatically called
before the class is first
accessed

Only executed once per
program

(C) SAP AG BC404 4-48

SAP AG 1999

Principles: Overview (7)

Objects Objects

ClassesClasses

AttributesAttributes

MethodsMethods

Instantiation, Garbage CollectorInstantiation, Garbage Collector

Working with ObjectsWorking with Objects

Further PrinciplesFurther Principles

(C) SAP AG BC404 4-49

SAP AG 1999

Encapsulation

Class as capsule for functions

Defined responsibilities within a capsule (class)

Defined interfaces using

Public components of class (PUBLIC SECTION)

Interfaces

Implementation of component remains hidden through
limited visibility (PRIVATE SECTION)

Encapsulation
The principle of encapsulation is to hide the implementation of a class from other components in the
system, so that these components cannot make assumptions about the internal state of the objects in that
class or of the class itself. This prevents dependencies on specific implementations from arising.

The class is the capsule surrounding related functions.

The principle of visibility ensures that the implementation of the functions and the information administered
within a class is hidden.

(C) SAP AG BC404 4-50

SAP AG 1999

Client/Server Behavior

Server

DataDo_itData
Run

Client

CALL METHOD server->Do_it

Classes behave toward each other as client/server
systems.

Classes normally play both roles.

Responsibilities between the classes must be established.

Classes behave like client/server systems: When a class is called by a method of another class, it
automatically becomes the client of the other (server) class. This creates two requirements :
- The client class must observe the protocol of the server class.
- The server class protocol must be clear and detailed enough that a potential client has no trouble in
orienting by it.

Classes normally play both roles. Every class is a potential server class, and when it is called by a method
of another class it then becomes a client class too.

Establishing logical business and software responsibilities between classes results in a true client/server
software system in which redundancy is avoided.

(C) SAP AG BC404 4-51

SAP AG 1999

The Delegation Principle

lcl_tank

fuel : i

fuel_max : i

get_fuel_level () : re_level

lcl_client

lcl_airplane

tank : lcl_tank

get_fuel_level () : re_level

re_level = fuel / fuel_max * 100.re_level = tank->get_fuel_level ().

In delegation, two objects are involved in handling a request: the recipient of the request delegates the
execution of the request to a delegate.

Example:
The pilot (lcl_client) calls the method get_fuel_level from the airplane class (lcl_airplane). The airplane
cannot carry out this task itself. Therefore the airplane calls the get_fuel_level method from the tank class
(lcl_tank), that is, the airplane delegates the execution of the method to the tank.
The main advantage of delegation (as a re-use mechanism) lies in the option of changing the behavior of
the recipient by substituting the delegate (at runtime). For example, delegation enables the airplane to be
equipped with a new tank, without the call changing for the client or for the airplane class.

Good capsulation often forces you to use delegation: if tank in the above example were a private attribute
in class lcl_airplane, then the user cannot address the tank directly, but only through the airplane!

(C) SAP AG BC404 4-52

SAP AG 1999

Sequence Diagram: Delegation

pilot : lcl_client airbus : lcl_airplane tank : lcl_tank

1: get_fuel_level ()

2: get_fuel_level ()

re_level

re_level

(C) SAP AG BC404 4-53

SAP AG 1999

Namespace Within a Class

The same namespace for

Attribute names

Method names

Event names

Type names

Constant names

ALIAS names

There is a local namespace within methods

Within a class, attribute names, method names, event names, constant names, type names and alias
names all share the same namespace.

There is a local namespace within methods. Definitions of variables can cover components in one class.

(C) SAP AG BC404 4-54

SAP AG 1999

Namespace: Example

CLASS lcl_airplane DEFINITION.
PUBLIC SECTION.
METHODS CONSTRUCTOR

IMPORTING im_name TYPE string
im_weight TYPE I.

PRIVATE SECTION.
DATA name TYPE string.
DATA weight TYPE I.

ENDCLASS.

CLASS cl_airplane IMPLEMENTATION.
METHOD CONSTRUCTOR.

DATA name TYPE string VALUE `-airplane`.

CONCATENATE im_name name INTO ME->name.

weight = im_weight.
ENDMETHOD.

ENDCLASS.

You can address the object itself within object methods using the implicitly available reference variable ME.

Description of the example:
In the CONSTRUCTOR, the instance attribute name is covered by the locally defined variable name. In
order to still be able to address the instance attribute, you need to use ME.

(C) SAP AG BC404 4-55

SAP AG 1999

Create classes

Create objects

Call methods

Explain how the Garbage Collector works

You are now able to:

Principles: Summary

(C) SAP AG BC404 4-56

Principles Exercises

Unit: Principles

Topic: Creating Classes

At the end of this exercise you will be able to:

Create a class

An airline needs to manage its airplanes.

1-1 Create development class for your group ZBC404_## (##: group number) and save all the
repository objects you have created during the course in this development class.

1-2 Create include program ZBC404_##_LCL_AIRPLANE
(##: group number) .

1-3 Create class lcl_airplane in the above include program.

1-3-1 This class has two private instance attributes:
 - name

 - planetype.
The attribute for the name of the airplane should be type C, length 25. Define the type
in the PUBLIC SECTION. Define the attribute for the plane type using the table field
saplane-planetyp.

1-3-2 The class has a private static attribute:
 - n_o_airplanes.
This attribute should be type I.

1-3-3 The class has a public instance method set_attributes to set the private instance
attributes name and plane type. Enter two corresponding importing parameters for the
declaration of the method in the definition part. The definition of these parameters
should be analogous to the two attributes.
Implement the method in the implementation part. Each time the method is called, the
static attribute n_o_airplanes should increase by one.

1-3-4 The class has another public instance method display_attributes to display the
instance attributes. Declare this method and output the attribute in the implementation
part using the WRITE statement.

1-3-5 Declare and implement a public static method display_n_o_airplanes to display the
static attribute n_o_airplanes.

(C) SAP AG BC404 4-57

Unit: Principles

Topic: Instantiating Objects

At the end of this exercise you will be able to:

Instantiate objects

Call methods

An airline needs to manage its airplanes.

2-1 Create program ZBC404_##_MAINTAIN_AIRPLANES
(##: group number).

2-2 Use the INCLUDE statement to include program ZBC404_##_LCL_AIRPLANE (##: group
number) from the previous exercise .

2-3 Create a reference to class lcl_airplane.

2-4 Call the static method display_n_o_airplanes (before instantiating an object in class
lcl_airplane).

2-5 Create an object in class lcl_airplane.

2-6 Set the object attributes using the set_attributes method.

2-6-1 Invent an airplane name and airplane type and pass them as text literal.

2-7 Display the object attributes using the display_attributes method.

2-8 Call the static method display_n_o_airplanes for a second time .

(C) SAP AG BC404 4-58

Unit: Principles

Topic: Constructor

At the end of this exercise you will be able to:

Create a constructor for a class

Create an object using the constructor

An airline needs to manage its airplanes.

3-1 Create a constructor for class lcl_airplane (in the include program
ZBC404_##_LCL_AIRPLANE)

1-1-1 The constructor must have two importing parameters that fill the instance attributes
name and planetype.

1-1-2 The static attribute n_o_airplanes should have an ascending sequence of one in the
constructor.

3-2 In the method set_attributes, comment out the line in which the static attribute n_o_airplanes is
increased by one.

3-3 In the main program ZBC404_##_MAINTAIN_AIRPLANES, extend the creation of the object
with the constructor interface.

1-3-1 Fill the constructor interface parameters with the same values you used when calling
the set_attributes method.

3-4 Comment out the set_attributes method call.

(C) SAP AG BC404 4-59

Principles Solutions

Unit: Principles

Topic: Creating Classes

--

* CLASS lcl_airplane DEFINITION *
--

CLASS lcl_airplane DEFINITION.

* Public section

 PUBLIC SECTION.

 TYPES: name_type(25) TYPE c.

 CONSTANTS: pos_1 TYPE i VALUE 30.

 METHODS: set_attributes IMPORTING

 im_name TYPE name_type
 im_planetype TYPE saplane-planetype,

 display_attributes.

 CLASS-METHODS: display_n_o_airplanes.

* Private section
 PRIVATE SECTION.

 DATA: name TYPE name_type,
 planetype TYPE saplane-planetype.

 CLASS-DATA: n_o_airplanes TYPE i.

ENDCLASS.

(C) SAP AG BC404 4-60

--

* CLASS lcl_airplane IMPLEMENTATION *

--
CLASS lcl_airplane IMPLEMENTATION.

* Method set_attributes
 METHOD set_attributes.

 name = im_name.

 planetype = im_planetype.
 n_o_airplanes = n_o_airplanes + 1.

 ENDMETHOD.

* Method display_attributes

 METHOD display_attributes.
 WRITE: / 'Name of the airplane: '(001), AT pos_1 name,

 / 'Plane type: '(002), AT pos_1 planetype.

 ENDMETHOD.

* Method display_n_o_airplanes

 METHOD display_n_o_airplanes.
 WRITE: /, / 'Total number of airplanes: '(ca1),

 AT pos_1 n_o_airplanes LEFT-JUSTIFIED, /.

 ENDMETHOD.

ENDCLASS.

(C) SAP AG BC404 5-61

Unit: Principles

Topic: Instantiating Objects

REPORT sapbc404bass_create_object .

* Including class lcl_airplane

INCLUDE sapbc404bass_lcl_airplane_1.

DATA: airplane TYPE REF TO lcl_airplane.

START-OF-SELECTION.

 CALL METHOD lcl_airplane=>display_n_o_airplanes.

 CREATE OBJECT airplane.

 CALL METHOD airplane->set_attributes EXPORTING

 im_name = 'LH Berlin'
 im_planetype = '747-400'.

 CALL METHOD airplane->display_attributes.

 CALL METHOD lcl_airplane=>display_n_o_airplanes.

Include program SAPBC404BASS_LCL_AIRPLANE_1
--

* CLASS lcl_airplane DEFINITION *

--
CLASS lcl_airplane DEFINITION.

* Public section

 PUBLIC SECTION.

 TYPES: name_type(25) TYPE c.

 CONSTANTS: pos_1 TYPE i VALUE 30.

 METHODS: set_attributes IMPORTING

 im_name TYPE name_type

 im_planetype TYPE saplane-planetype,

(C) SAP AG BC404 5-62

 display_attributes.

 CLASS-METHODS: display_n_o_airplanes.

* Private section

 PRIVATE SECTION.

 DATA: name TYPE name_type,

 planetype TYPE saplane-planetype.

 CLASS-DATA: n_o_airplanes TYPE i.

ENDCLASS.

--

* CLASS lcl_airplane IMPLEMENTATION *

--
CLASS lcl_airplane IMPLEMENTATION.

* Method set_attributes
 METHOD set_attributes.

 name = im_name.

 planetype = im_planetype.
 n_o_airplanes = n_o_airplanes + 1.

 ENDMETHOD.

* Method display_attributes

 METHOD display_attributes.

 WRITE: / 'Name of the airplane: '(001), AT pos_1 name,
 / 'Plane type: '(002), AT pos_1 planetype.

 ENDMETHOD.

* Method display_n_o_airplanes

 METHOD display_n_o_airplanes.
 WRITE: /, / 'Total number of airplanes: '(ca1),

 AT pos_1 n_o_airplanes LEFT-JUSTIFIED, /.

 ENDMETHOD.

ENDCLASS.

(C) SAP AG BC404 5-63

Unit: Principles

Topic: Constructor

REPORT sapbc404bass_constructor .

include sapbc404bass_lcl_airplane_2.

DATA: airplane TYPE REF TO lcl_airplane.

START-OF-SELECTION.

 CALL METHOD lcl_airplane=>display_n_o_airplanes.

* Create object with constructor

 CREATE OBJECT airplane EXPORTING im_name = 'LH Berlin'
 im_planetype = '747-400'.

* CALL METHOD airplane->set_attributes EXPORTING
* im_name = 'LH Berlin'

* im_planetype = '747-400'.

 CALL METHOD airplane->display_attributes.

 CALL METHOD lcl_airplane=>display_n_o_airplanes.

Include program SAPBC404BASS_LCL_AIRPLANE_2
--

* CLASS lcl_airplane DEFINITION *
--

CLASS lcl_airplane DEFINITION.

 PUBLIC SECTION.

 TYPES: name_type(25) TYPE c.

 CONSTANTS: pos_1 TYPE i VALUE 30.

* NEW: constructor

 METHODS: constructor importing

 im_name TYPE name_type

(C) SAP AG BC404 5-64

 im_planetype TYPE saplane-planetype,
 set_attributes IMPORTING

 im_name TYPE name_type

 im_planetype TYPE saplane-planetype,
 display_attributes.

 CLASS-METHODS: display_n_o_airplanes.

 PRIVATE SECTION.

 DATA: name TYPE name_type,

 planetype TYPE saplane-planetype.

 CLASS-DATA: n_o_airplanes TYPE i.

ENDCLASS.

--

* CLASS lcl_airplane IMPLEMENTATION *

--
CLASS lcl_airplane IMPLEMENTATION.

* NEW: constructor
 METHOD constructor.

 name = im_name.

 planetype = im_planetype.
 n_o_airplanes = n_o_airplanes + 1.

 ENDMETHOD.

 METHOD set_attributes.

 name = im_name.
 planetype = im_planetype.

* n_o_airplanes = n_o_airplanes + 1.

 ENDMETHOD.

 METHOD display_attributes.

 WRITE: / 'Name of the airplane: '(001), at pos_1 name,
 / 'Plane type: '(002), at pos_1 planetype.

 ENDMETHOD.

 METHOD display_n_o_airplanes.

 WRITE: /, / 'Total number of airplanes: '(ca1),

 AT pos_1 n_o_airplanes left-justified, /.
 ENDMETHOD.

ENDCLASS.

(C) SAP AG BC404 5-65

(C) SAP AG BC404 6-1

SAP AG 1999

Inheritance

Cast

Polymorphism

Interfaces

Compound interfaces

Contents:

Generalization/Specialization

(C) SAP AG BC404 6-2

SAP AG 1999

Use inheritance

Carry out casts

Define and implement interfaces

Develop generic programs using polymorphism

At the conclusion of this unit, you will be able to:

Generalization/Specialization: Unit Objectives

(C) SAP AG BC404 6-3

SAP AG 1999

Generalization/Specialization: Course Overview
Diagram

Introduction

Analysis and Design

Principles

Generalization/
Specialization

Events

Global Classes/Interfaces

Summary and Outlook

(C) SAP AG BC404 6-4

SAP AG 1999

Generalization/Specialization: Overview (1)

InheritanceInheritance

CastCast

PolymorphismPolymorphism

Further Characteristics of InheritanceFurther Characteristics of Inheritance

InterfacesInterfaces

Compound InterfacesCompound Interfaces

(C) SAP AG BC404 6-5

SAP AG 1999

Inheritance (1)

lcl_cargo_airplane

- cargo
. . .

+ get_cargo () : ty_cargo
. . .

lcl_passenger_airplane

- seats
- emergency_exits
. . .
+ get_seats () : i
. . .

lcl_airplane

- name
- weight
. . .

+ get_fuel_level () : ty_level
+ estimate_fuel_consumption () : i
. . .

“is-a” relationship

Inheritance is a relationship in which one class (the subclass) inherits all the main characteristics of another
class (the superclass). The subclass can also add new components (attributes, methods, and so on) and
replace inherited methods with its own implementations.
Inheritance is an implementation relationship that emphasizes similarities between classes. In the example
above, the similarities between the passenger plane and cargo plane classes are extracted to the airplane
superclass. This means that common components are only defined/implemented in the superclass and are
automatically present in the subclasses.

The inheritance relationship is often described as an “is-a” relationship: a passenger plan is an airplane.

(C) SAP AG BC404 6-6

SAP AG 1999

Inheritance (2)

S
pe

ci
al

iz
at

io
n

G
en

er
al

iz
at

io
n

lcl_1

lcl_2 lcl_7lcl_6

lcl_3 lcl_4 lcl_8

lcl_5

No multiple
inheritance

Inheritance should be used to implement generalization and specialization relationships. A superclass is a
generalization of its subclasses. The subclass in turn is a specialization of its superclasses.

The situation in which a class, for example lcl_8, inherits from two classes (lcl_6 and lcl_7) simultaneously,
is known as multiple inheritance. This is not realized in ABAP Objects. ABAP Objects only has single
inheritance.
However, you can simulate multiple inheritance in ABAP Objects using interfaces (see the section on
interfaces).

Single inheritance does not mean that the inheritance tree only has one level. On the contrary, the direct
superclass of one class can in turn be the subclass of a further superclass. In other words: the inheritance
tree can have any number of levels, so that a class can inherit from several superclasses, as long as it only
has one direct superclass.
Inheritance is a “one-sided relationship”: subclasses know their direct superclasses, but (super)classes do
not know their subclasses.

(C) SAP AG BC404 6-7

SAP AG 1999

Inheritance: Syntax

CLASS lcl_airplane DEFINITION.

PUBLIC SECTION.
METHODS: get_fuel_level RETURNING VALUE(re_level) TYPE ty_level.

PRIVATE SECTION.
DATA: name TYPE string,

weight TYPE I.
ENDCLASS.

CLASS lcl_cargo_airplane DEFINITION INHERITING FROM lcl_airplane.

PUBLIC SECTION.
METHODS: get_cargo RETURNING VALUE(re_cargo) TYPE ty_cargo.

PRIVATE SECTION.
DATA: cargo TYPE ty_cargo.

ENDCLASS.

Normally the only other entry required for subclasses is what has changed in relation to the direct
superclass. Only additions are permitted in ABAP Objects, that is, in a subclass you can “never take
something away from a superclass”. All components from the superclass are automatically present in the
subclass.

(C) SAP AG BC404 6-8

SAP AG 1999

Relationships between Superclasses and Subclasses

Common components are only present once in the
superclass

New components in the superclass are automatically available
to the subclasses

Amount of new coding is reduced (“programming by
difference”)

Subclasses are extremely dependent on superclasses

“White Box Re-use”:
Subclass must possess detailed knowledge of the
implementation of the superclass

If inheritance is used properly, it provides a significantly better structure, as common components only
need to be stored once centrally (in the superclass) and are then automatically available to subclasses.
Subclasses also profit immediately from changes (although the changes can also render them invalid!).
Inheritance provides very strong links between the superclass and the subclass. The subclass must
possess detailed knowledge of the implementation of the superclass, particularly for redefinition, but also in
order to use inherited components. Even if, technically, the superclass does not know its subclasses, the
subclass often makes additional requirements of the superclass, for example, because a subclass needs
certain protected components or because implementation details in the superclass need to be changed in
the subclass in order to redefine methods. The basic reason is that the developer of a (super)class cannot
normally predict all the requirements that subclasses will later need to make of the superclass.

(C) SAP AG BC404 6-9

SAP AG 1999

CLASS lcl_airplane DEFINITION.

PUBLIC SECTION.
METHODS get_name RETURNING
VALUE(re_name) TYPE string.

PROTECTED SECTION.
DATA tank TYPE REF TO lcl_tank.

PRIVATE SECTION.
DATA name TYPE string.

ENDCLASS.

lcl_airplane

tank : lcl_tank

- name : string

+ get_name () : string

+ public
protected
- private

Inheritance and Visibility

Public components

Visible to all

Direct access

Protected components

Only visible within their
class and within the
subclass

Private components

Only visible within the class

No access from outside the
class,not even from the
subclass

Inheritance provides an extension of the visibility concept: there are protected components. The visibility of
these components lies between that of the public components (visible to all users, all subclasses, and the
class itself), and private (visible only to the class itself). Protected components are visible to and can be
used by all subclasses and the class itself.

Subclasses cannot access the private components (particularly attributes) of the superclass. Private
components are genuinely private. This is particularly important if a (super)class needs to make local
enhancements to handle errors: it can use private components to do this without knowing or invalidating
subclasses.
In ABAP Objects, you must keep to the section sequence PUBLIC, PROTECTED, PRIVATE.

(C) SAP AG BC404 6-10

SAP AG 1999

Inheritance and the (Instance) Constructor

CLASS lcl_airplane DEFINITION.
PUBLIC SECTION.
METHODS: CONSTRUCTOR IMPORTING

im_name TYPE string.
ENDCLASS.

CLASS lcl_cargo_airplane DEFINITION INHERITING FROM lcl_airplane.
PUBLIC SECTION.

METHODS: CONSTRUCTOR IMPORTING im_name TYPE string
im_cargo TYPE ty_cargo.

PRIVATE SECTION.
DATA: cargo TYPE ty_cargo.

ENDCLASS.

CLASS lcl_airplane IMPLEMENTATION.
METHOD CONSTRUCTOR.

name = im_name.
ENDMETHOD.

ENDCLASS.

CLASS lcl_cargo_airplane IMPLEMENTATION.
METHOD CONSTRUCTOR.

CALL METHOD SUPER->CONSTRUCTOR EXPORTING im_name = im_name.
cargo = im_cargo.

ENDMETHOD.
ENDCLASS.

The constructor of the superclass must be called within the constructor of the subclass. The reason for this
is the special task of the constructor: to ensure that objects are initialized correctly. Only the class itself,
however, can initialize its own (private) components correctly; this task cannot be carried out by the
subclass. Therefore it is essential that all (instance) constructors are called in an inheritance hierarchy (in
the correct sequence).

For static constructors, unlike instance constructors, the static constructor in the superclass is called
automatically, that is, the runtime system automatically ensures that, before the static constructor in a
particular class is executed, the static constructors of all its superclasses have already been executed.

(C) SAP AG BC404 6-11

SAP AG 1999

DATA: ref2 TYPE REF TO lcl_2,
ref3 TYPE REF TO lcl_3.

CREATE OBJECT ref2 EXPORTING im_1 = 100.

CREATE OBJECT ref3 EXPORTING im_1 = 100
im_2 = 1000.

Parameters and CREATE OBJECT

lcl_2

lcl_3

+constructor
(im_a1:i,im_a2:i)

lcl_1

+ constructor
(im_a1:i)

a1:i

- a2:i

The class to which the instance to be created belongs has
a constructor

Fill its parameters.

The class to which the instance to be created belongs
does not have a constructor

Search for the next superclass with a constructor

in the inheritance tree.

Fill its parameters.

You must also consider the model described for instance constructors when using CREATE OBJECT. In
this model, the constructor of the immediate superclass must be called before the non-inherited instance
attributes can be initialized.
There are basically two methods of creating an instance in a class using CREATE OBJECT:

1. The instance constructor for that class has been defined (and implemented).

In this case, when you are using CREATE OBJECT, the parameters have to be filled according to the
constructor interface, that is, optional parameters may, and non-optional parameters must be filled with
actual parameters. If the constructor does not have any (formal) parameters, no parameters may or can be
filled.

2. The instance constructor for that class has not been defined.

In this case, you must search the inheritance hierarchy for the next highest superclass in which the
instance constructor has been defined and implemented. Then, when you are using CREATE OBJECT, the
parameters of that class must be filled (similarly to the first method above).
If there is no superclass with a defined instance constructor, then no parameters may or can be filled.
If no instance constructor has been defined for a class, then a default constructor, which is implicitly always
present is used. This default constructor calls the constructor from the immediate superclass.

(C) SAP AG BC404 6-12

SAP AG 1999

lcl_passenger_airplane
. . .

+ estimate_fuel_consumption (): fuel

lcl_airplane
. . .

+ estimate_fuel_consumption (): fuel

lcl_cargo_airplane
. . .

+ estimate_fuel_consumption (): fuel

Redefining Methods in ABAP Objects

Inherited methods can be redefined in subclasses

Redefined methods must be re-implemented in subclasses

The signature of redefined methods cannot be changed

You can only redefine instance methods, not static methods

In ABAP Objects, you can not only add new components, but also provide inherited methods with new
implementations. This is known as redefinition. You can only redefine (public and protected) instance
methods, other components (static methods, attributes and so on) cannot be redefined. Furthermore,
implementation is restricted to (re-)implementation of an inherited method; you cannot change method
parameters (signature change).
You also cannot redefine a class’s (instance) constructor.
In UML, the redefinition of a method is represented by listing the method again in the subclass. Methods
(and all other components) that are inherited but not redefined are not listed in the subclass, as their
presence there is clear from the specialization relationship.

You should not confuse redefinition with “overlaying”. This describes the ability of a class to have methods
with the same name but a different signature (number and type of parameters). This option is not available
in ABAP Objects.

(C) SAP AG BC404 6-13

SAP AG 1999

Redefining Methods: Example (1)

CLASS lcl_airplane DEFINITION.
PUBLIC SECTION.

METHODS estimate_fuel_consumption
IMPORTING im_distance TYPE ty_distance
RETURNING VALUE(re_fuel) TYPE ty_fuel.

ENDCLASS.

CLASS lcl_passenger_airplane DEFINITION INHERITING FROM lcl_airplane.
PUBLIC SECTION.

METHODS estimate_fuel_consumption REDEFINITION.
...

ENDCLASS.

CLASS lcl_passenger_airplane IMPLEMENTATION.
METHOD estimate_fuel_consumption.

...
ENDMETHOD.

ENDCLASS.

The REDEFINITION statement for the inherited method must be in the same SECTION as the definition of
the original method. (It can therefore not be in the PRIVATE SECTION, since a class’s private methods are
not visible and therefore not redefinable in subclasses!)
If you redefine a method, you do not need to enter its interface again in the subclass, but only the name of
the method. The reason for this is that ABAP Objects does not support overlaying (see notes to previous
slide).

(C) SAP AG BC404 6-14

SAP AG 1999

Redefining Methods: Example (2)

lcl_cargo_airplane

+ estimate_fuel_consumption (): fuel

lcl_passenger_airplane

+ estimate_fuel_consumption (): fuel

lcl_airplane

+ estimate_fuel_consumption (): fuel

METHOD estimate_fuel_consumption.
DATA: total_weight ...
total_weight = cargo + weight.

re_fuel = total_weight *
im_distance * factor.

ENDMETHOD.

METHOD estimate_fuel_consumption.
DATA: total_weight ...
total_weight = seats *

average_weight + weight.
re_fuel = total_weight *

im_distance * factor.
ENDMETHOD.

In the above example, both redefined methods calculate the return code in different ways. The important
point is that the semantics stay the same.

To implement a redefined method in a subclass, you often need to call the method of the same name in the
immediate superclass. In ABAP Objects you can call the method from the superclass using the pseudo-
reference super: CALL METHOD super->method_name.The pseudo-reference super can only be used in
redefined methods.

(C) SAP AG BC404 6-15

SAP AG 1999

Generalization/Specialization: Overview (2)

InheritanceInheritance

CastCast

PolymorphismPolymorphism

Further Characteristics of InheritanceFurther Characteristics of Inheritance

InterfacesInterfaces

Compound InterfacesCompound Interfaces

(C) SAP AG BC404 6-16

SAP AG 1999

DATA: airplane TYPE REF TO lcl_airplane,
cargo_airplane TYPE REF TO lcl_cargo_airplane,
level TYPE ty_level.

CREATE OBJECT cargo_airplane.

* Subclass instance understands the same messages
* as superclass instance
CALL METHOD cargo_airplane->get_fuel_level RECEIVING re_level = level.

* Narrowing Cast
airplane = cargo_airplane.

* Using the subclass instance in the superclass context
CALL METHOD airplane->get_fuel_level RECEIVING re_level = level.

Compatibility and Narrowing Cast

Instances from subclasses can be used in any context in
which the instances of the superclass appear

One of the significant principles of inheritance is that an instance from a subclass can be used in every
context in which an instance from the superclass appears. This is possible because the subclass has
inherited all components from the superclass and therefore has the same interface as the superclass. The
user can therefore address the subclass instance in the same way as the superclass instance.

Variables of the type “reference to superclass” can also refer to subclass instances at runtime.

The assignment of a subclass instance to a reference variable of the type “reference to superclass” is
described as a narrowing cast, because you are switching from a view with more detail to a view with less
detail.
The description “up-cast” is also used.

What is a narrowing cast used for? A user who is not interested in the finer points of cargo or passenger
planes (but only, for example, in the tank gauge) does not need to know about them. This user only needs
to work with (references to) the lcl_airplane class. However, in order to allow the user to work with cargo or
passenger planes, you would normally need a narrowing cast.

(C) SAP AG BC404 6-17

SAP AG 1999

DATA: airplane TYPE REF TO lcl_airplane,
cargo_airplane TYPE REF TO lcl_cargo_airplane.

CREATE OBJECT cargo_airplane.

airplane = cargo_airplane.

Principles of the Narrowing Cast

namename
weightweight

cargocargo

airplane LH Berlin
30,000 kg

100 t

namename
weightweight

cargocargo

airplane

cargo_airplane

LH Berlin
30,000 kg

100 t

cargo_airplane

After the narrowing cast you can use the airplane reference to access the components of the cargo plane
instance that were inherited from lcl_airplane, obviously in some cases with the limitations entailed by their
visibility. You can no longer access the cargo-plane-specific part of the instance (cargo in the above
example) using the airplane reference.

(C) SAP AG BC404 6-18

SAP AG 1999

DATA: airplane TYPE REF TO lcl_airplane,
cargo_airplane TYPE REF TO lcl_cargo_airplane.

CREATE OBJECT cargo_airplane.
airplane = cargo_airplane.

Static and Dynamic Types: Example

namename
weightweight

cargocargo

airplane LH Berlin
30,000 kg

100 tcargo_airplane

Static type for airplane

Dynamic type for airplane

A reference variable always has two types: static and dynamic:

- The static type of a reference variable is determined by variable definition using TYPE REF TO. It cannot
and does not change. It establishes which attributes and methods can be addressed
- The dynamic type of a reference variable is the type of the instance currently being referred to, it is
therefore determined by assignment and can change during the program run. It establishes what coding is
to be executed for redefined methods.
In the example, the static type of the airplane variable is always ‘REF TO lcl_airplane’, but its dynamic type
after the cast is ‘REF TO lcl_cargo_airplane’.
The reference ME can be used to determine the dynamic type in the Debugger.

(C) SAP AG BC404 6-19

SAP AG 1999

Static and Dynamic Types for References

The static type of a reference variable

Is determined using TYPE REF TO

Remains constant throughout the program run

Establishes which attributes and methods can be
addressed

The dynamic type of a reference variable

Is determined by assignment

Can change during the program run

Establishes what coding is to be executed for redefined
methods

(C) SAP AG BC404 6-20

SAP AG 1999

Widening Cast (1)

CREATE OBJECT cargo_airplane.
airplane = cargo_airplane.

DATA: airplane TYPE REF TO lcl_airplane,
cargo_airplane TYPE REF TO lcl_cargo_airplane,
cargo_airplane2 TYPE REF TO lcl_cargo_airplane.

cargo_airplane2 ?= airplane.

namename
weightweight

cargocargo

airplane LH Berlin
30,000 kg

100 t

namename
weightweight

cargocargo

airplane LH Berlin
30,000 kg

100 t

cargo_airplane

cargo_airplane

cargo_airplane2

cargo_airplane2

The type of case described above is known as a widening cast because it changes the view to one with
more details. The instance assigned (a cargo plane in the above example) must correspond to the object
reference (cargo_airplane in the above example), that is, the instance must have the details implied by the
reference.

This is also known as a “down cast”.

The widening cast in this case does not cause an error because the reference airplane actually points to an
instance in the subclass lcl_cargo_airplane. The dynamic type is therefore ‘REF TO lcl_cargo_airplane’.

(C) SAP AG BC404 6-21

SAP AG 1999

Widening Cast (2)

DATA: airplane TYPE REF TO lcl_airplane,
cargo_airplane TYPE REF TO lcl_cargo_airplane.

CREATE OBJECT airplane.

cargo_airplane ?= airplane.
Runtime
error!

namename
weightweight

airplane
LH Berlin
30,000 kg

namename
weightweight

airplane
LH Berlin
30,000 kg

cargo_airplane

cargo_airplane

Here the widening cast produces the MOVE_CAST_ERROR runtime error that can be caught with
“CATCH ... ENDCATCH”, because the airplane reference does not point to an instance in the subclass
lcl_cargo_airplane, but to a “general airplane object”. Its dynamic type is therefore ‘REF TO lcl_airplane’
and does not correspond to the reference type cargo_airplane.

(C) SAP AG BC404 6-22

SAP AG 1999

Widening Cast (3)

CATCH SYSTEM-EXCEPTION MOVE_CAST_ERROR = 4.
cargo_airplane ?= airplane.

ENDCATCH.
IF SY-SUBRC EQ 4.
...

ENDIF.

Cannot be checked statically

If unsuccessful, ends with a catchable runtime
error

The widening cast logically represents the opposite of the narrowing cast. The widening cast cannot be
checked statically, only at runtime. The Cast Operator “?=” (or the equivalent “MOVE ... ?TO …”) must be
used to make this visible.
With this kind of cast, a check is carried out at runtime to ensure that the current content of the source
variable corresponds to the type requirements of the target variables. In this case therefore, it checks that
the dynamic type of the source reference airplane is compatible with the static type of the target reference
cargo_airplane. If it is, the assignment is carried out. Otherwise the catchable runtime error
“MOVE_CAST_ERROR” occurs, and the original value of the target variable remains the same.

(C) SAP AG BC404 6-23

SAP AG 1999

Inheritance Semantics

Dynamic type, often unknown to userDynamic type, often unknown to userUsed by userUsed by user

namename
weightweight

cargocargo

airplane LH Berlin
30,000 kg

100 t

CALL METHOD airplane->estimate_fuel_consumption.

Inherited components must behave in subclasses exactly
as they do in superclasses for all users

Redefined methods must keep the semantics of the
inherited components

Inheritance only for generalization/specialization

No “coding inheritance”

A subclass instance can be used in any context in which a superclass instance also appears. Moreover:
the user does not and is not intended to know whether he/she is dealing with a subclass or a superclass.
The user therefore works only with references to the superclass and must rely on the inherited components
behaving in the subclass instances exactly as they do in the superclass instances, otherwise the program
will not work!

On the other hand, this ensures useful restrictions on the implementation of the subclasses: inherited
components must keep their inherited semantics. You cannot use inherited attributes or events in any way
other than intended in the superclass, and you cannot change method semantics by redefinition!
You must avoid coding inheritance: it is not correct for one class to inherit from another simply because
part of the functionality required is already implemented there.

(C) SAP AG BC404 6-24

SAP AG 1999

Generalization/Specialization: Overview (3)

InheritanceInheritance

CastCast

PolymorphismPolymorphism

Further Characteristics of InheritanceFurther Characteristics of Inheritance

InterfacesInterfaces

Compound InterfacesCompound Interfaces

(C) SAP AG BC404 6-25

SAP AG 1999

Polymorphism and Inheritance

0..*0,1

lcl_cargo...

+ estimate_fuel_consu..

lcl_passenger...

+ estimate_fuel_consu..

lcl_airplane

+ estimate_fuel_consumption:re_fuel

lcl_airport

- plane_list :internal table

+ Calculate_required_fuel:re_fuel

DATA: plane TYPE REF TO lcl_airplane.
LOOP AT plane_list INTO plane.

re_fuel = re_fuel +
plane->estimate_fuel_consumption...

ENDLOOP.

When objects from different classes react differently to the same method call, this is known as
polymorphism. To do this, the classes implement the same method in different ways. This can done using
inheritance, by redefining a method from the superclass in subclasses and implementing it differently.
Interfaces are also introduced below: they too can enable polymorphic behavior!

When an instance receives a message to execute a particular method, then that method is executed if it
has been implemented by the class the instance belongs to. If the class has not implemented that method,
but only inherited and not redefined it, then a search up through the inheritance hierarchy is carried out until
an implementation of that method is found.
Technically speaking, the dynamic type of the reference variable, not the static type, is used to search for
the implementation of a method. In the above example of CALL METHOD plane-
>estimate_fuel_consumption, the class of the instance that plane actually refers to is used to search for the
implementation of estimate_fuel_consumption; the static type of plane, which is always ‘REF TO
lcl_airplane’ is not used.

Polymorphism is one of the main strengths of inheritance: the user can work in the same way with different
classes, regardless of their implementation. The search for the right implementation of a method is carried
out by the runtime system, not the user!

(C) SAP AG BC404 6-26

SAP AG 1999

DATA: cargo_plane TYPE REF TO lcl_cargo_airplane,
passenger_plane TYPE REF TO lcl_passenger_airplane,
plane_list TYPE TABLE OF REF TO lcl_airplane.

CREATE OBJECT: cargo_plane.
APPEND cargo_plane TO plane_list.
CREATE OBJECT passenger_plane.
APPEND passenger_airplane TO plane_list.

Polymorphism: Example (1)

plain_list

cargo_airplane
1

2

1
2
3
4

3

4

passenger_airplane

Objects from different classes (lcl_cargo_airplane and lcl_passenger_airplane in the above example) can
be stored in an internal table consisting of references to the superclass (lcl_airplane in the above example,
and then processed identically (polymorphically) (see next slide).

(C) SAP AG BC404 6-27

SAP AG 1999

METHOD calculate_required_fuel.
DATA: plane TYPE REF TO lcl_airplane.
LOOP AT plane_list INTO plane.

re_fuel = re_fuel
+ plane->estimate_fuel_consumption(distance).

ENDLOOP.
ENDMETHOD.

Polymorphism: Example (2)

plane_list

plane

METHOD estimate_fuel_consumption.
...
total_weight = cargo_max + weight.
re_fuel = total_weight * ...

ENDMETHOD.
cargocargo

passengerpassenger

METHOD estimate_fuel_consumption.
...
total_weight =
n_o_seats * human_weight + weight.
re_fuel = total_weight * ...

ENDMETHOD.

What coding is actually executed when estimate_fuel_consumption is called depends on the dynamic type
of the plane reference variable, that is, it depends on which object from which (sub)class plane points to.

You can use polymorphism to write programs that are generic to a high degree and that do not even need
to be changed if use cases are added. In the simple example above, this means that, should a further
subclass be added, for example, for airplanes that fly in space, the above coding would not need to be
changed.

(C) SAP AG BC404 6-28

SAP AG 1999

* Procedural realization of the polymorphism example
DATA: plane_list TYPE TABLE OF plane_list_type,

plane TYPE plane_list_type, ...
...
LOOP AT plane_list INTO plane.

CASE plane-category.
WHEN 'CARGO'.

PERFORM estimate_fuel_consum_for_cargo USING ...
CHANGING cargo_fuel.

needed_fuel = needed_fuel + cargo_fuel.
WHEN 'PASSENGER'.

PERFORM estimate_fuel_consum_for_pass USING ...
CHANGING passenger_fuel.

needed_fuel = needed_fuel + passenger_fuel.
ENDCASE.

ENDLOOP.

name category ...

plane_list

Polymorphism: Advantages Compared to
Procedural Programming

You often do not need to change the coding if you add use
cases

Using polymorphism makes generic programming easier. Instead of implementing a CASE or IF statement,
you can have one access or call, which improves readability and does not need to be changed if you
extend the program by adding further subclasses.

(C) SAP AG BC404 6-29

SAP AG 1999

Generalization/Specialization: Overview (4)

InheritanceInheritance

CastCast

PolymorphismPolymorphism

Further Characteristics of InheritanceFurther Characteristics of Inheritance

InterfacesInterfaces

Compound InterfacesCompound Interfaces

(C) SAP AG BC404 6-30

SAP AG 1999

CLASS lcl_airplane DEFINITION ABSTRACT.
PUBLIC SECTION.
METHODS estimate_fuel_consumption ABSTRACT

IMPORTING ...
ENDCLASS.

lcl_airplane
{abstract}

+ estimate_fuel_consumption ()
{abstract}

Abstract Classes and Methods

Abstract classes themselves cannot be instantiated
(although their subclasses can)

References to abstract classes can refer to instances in
subclasses

Abstract (instance) methods are defined in the class, but
not implemented

They must be redefined in subclasses

You cannot instantiate objects in an abstract class. This does not, however, mean that references to such
classes are meaningless. On the contrary, they are very useful, since they can (and must) refer to
instances in subclasses of the abstract class during runtime. The CREATE-OBJECT statement is extended
in this context. You can enter the class of the instance to be created explicitly:
CREATE OBJECT <RefToAbstractClass> TYPE <NonAbstractSubclassName>.

Abstract classes are normally used as an incomplete blueprint for concrete (that is, non-abstract)
subclasses, in order to define a uniform interface, for example.

Abstract instance methods are used to specify particular interfaces for subclasses, without having to
immediately provide implementation for them. Abstract methods need to be redefined and thereby
implemented in the subclass (here you also need to include the corresponding redefinition statement in the
DEFINITION part of the subclass).
Classes with at least one abstract method are themselves abstract

Static methods and constructors cannot be abstract (they cannot be redefined).

(C) SAP AG BC404 6-31

SAP AG 1999

CLASS lcl_passenger_airplane DEFINITION FINAL
INHERITING FROM lcl_airplane.

...
ENDCLASS.

CLASS lcl_passenger_airplane DEFINITION INHERITING FROM lcl_airplane.
PUBLIC SECTION.

METHODS estimate_number_of_free_seats FINAL.
ENDCLASS.

Final Classes and Methods

Final methods cannot be redefined in subclasses.

Final classes cannot have subclasses.

A final class cannot have subclasses, and can protect itself in this way against (uncontrolled) specialization.

A final method in a class cannot be redefined in a subclass, and can protect itself in this way against
(uncontrolled) redefinition.
Some characteristics:

A final class implicitly only contains final methods. You cannot enter FINAL explicitly for these methods in
this case.
Methods cannot be both final and abstract.

Classes, on the other hand, can usefully be both abstract and final: only static components can be used
there.

(C) SAP AG BC404 6-32

SAP AG 1999

Inheritance and Static Components

With inheritance, static components are shared:

A class shares its non-private static attributes with all
its subclasses

Static methods cannot be redefined

In ABAP Objects, all static components in an inheritance relationship are shared.

For attributes this means that each static attribute only exists once per roll area. In this way a class that
defines a public or protected static attribute shares this attribute with all its subclasses. The significant point
here is that subclasses do not each receive their own copy of the static attribute.

Shared static methods cannot be redefined in subclasses. However, you can call inherited (public or
protected) static methods using subclasses.

(C) SAP AG BC404 6-33

SAP AG 1999

Component Namespaces in Classes

lcl_airplane

name : string

lcl_passenger_airplane

- seats: i

Seats:i

There is a common namespace in a class for

all components in that class itself and

all public and protected components in all its superclasses

Adding public or protected components may invalidate
subclasses

Adding private components is never a problem. Adding public or protected components to a class can
however invalidate that class’s subclasses, if they already contain components with the same name. When
you add that component, you get the syntax error message that that component has already been
declared.

(C) SAP AG BC404 6-34

SAP AG 1999

Using Inheritance

Classes can be extended using specialization

Re-use

Polymorphic behavior through redefinition

No need to program CASE structures

Inheritance is often used incorrectly

To simply recycle coding

Instead of additional attributes/aggregation/role concepts

The use of inheritance does not always correspond to
expectations in the real world

Using inheritance instead of attributes, or a misunderstanding of inheritance as an “is-one” relationship
often leads to the following kind of design: the superclass “car” has the subclasses “red car”, “green car”,
and so on. These subclasses all have an identical structure and identical behavior.
As an instance cannot change its class, in circumstances like the following, you should not use inheritance
directly, but use additional attributes to differentiate between cases (see appendix):
The class “employee” has the subclasses “full-time employee” and “part-time employee”. What happens
when a part-time employee becomes a full-time employee? A new full-time-employee object would have to
instantiated and all the information copied from the part-time-employee object. However, users who still
have a reference to the part-time-employee instance would then be working with a part-time-employee
object that logically does not exist anymore!

The use of inheritance does not always correspond to expectations in the real world: for example, if the
class ‘square’ inherits from the class ‘rectangle’, the latter will have two separate methods for changing
length and width, although the sides of the square actually need to be changed by the same measurement.

(C) SAP AG BC404 6-35

SAP AG 1999

Generalization/Specialization: Overview (5)

InheritanceInheritance

CastCast

PolymorphismPolymorphism

Further Characteristics of InheritanceFurther Characteristics of Inheritance

InterfacesInterfaces

Compound InterfacesCompound Interfaces

(C) SAP AG BC404 6-36

SAP AG 1999

Interfaces

Document Library:
Print and Display

Documents

Document Library:
Print and Display

Documents

File Browser:
Show File
Hierarchy

File Browser:
Show File
Hierarchy

Plain_text Spreadsheet Folder

In ABAP Objects, interfaces are implemented in addition to and independently of classes. Interfaces
exclusively describe the external point of contact of a class, but they do not contain their own
implementation part.
Interfaces are usually defined by a user. The user describes in the interface which services (technical and
semantic) it needs in order to carry out a task. The user never actually knows the providers, but
communicates with them through the interface. In this way the user is protected from actual
implementations and can work in the same way with different classes/objects, as long as they provide the
services required (this is polymorphism using interfaces).
The above example shows two users: the document library and the file browser. Both define the tasks that
potential providers must be able to carry out: display and print in the first case and show a node for the file
folder display in the second. Various providers (plain text files, spreadsheets) can perform all the services
required, but one provider (the folder) can only perform the service required by the File Browser and can
therefore not be used by the Document Library.

(C) SAP AG BC404 6-37

SAP AG 1999

Interfaces in UML

«interface»
lif_document

author : lcl_author

display ()
print ()

«interface»
lif_tree_node

display ()

lcl_folder lcl_executablelcl_plain_text lcl_text_document lcl_spreadsheet

lcl_document_library lcl_file_browser

«uses» «uses»

In UML, interfaces can represented in the same way as classes. However, they always have stereotype
«interface» above their name and can therefore be told apart from classes.

The use of an interface is represented by a dotted line with a two-sided arrow from the user to the interface,
the stereotype «uses» is optional. The fact that a class implements an interface is represented by a dotted
line with a three-sided arrow from the class to the interface. The similarity to the representation of
inheritance is intentional, as the interface can be seen as a generalization of the class implemented or the
class can be seen as a specialization of the interface.

In ABAP Objects, the same components can be defined in interfaces and in classes. This allows you to
shift part of the public point of contact of a class into an interface, even though the class is already in use;
users will not notice the difference as long as you use alias names (see appendix) for the components that
are now in the interface.
A class can implement any number of interfaces and an interface can be implemented by any number of
classes.

(C) SAP AG BC404 6-38

SAP AG 1999

Defining and Implementing an Interface

INTERFACE lif_document.
DATA: author TYPE REF TO lcl_author.
METHODS: print,

display.
ENDINTERFACE.

CLASS lcl_text_document DEFINITION.
PUBLIC SECTION.
INTERFACES lif_document.
METHODS: display.

ENDCLASS.

CLASS lcl_text_document IMPLEMENTATION.

METHOD lif_document~print.
ENDMETHOD.

METHOD lif_document~display.
ENDMETHOD.
METHOD display.
ENDMETHOD.

ENDCLASS.

Interface only has a
declaration

An interface
corresponds to an
abstract class that
only contains
abstract methods

Interfaces are
implemented in
classes

Interfaces do not
have visibility
sections

In ABAP Objects, the same components (attributes, methods, constants, types, alias names) can be
defined in an interface in largely the same way as in classes. However, interfaces do not have component
visibility sections.
Interfaces are implemented in classes.

The interface name is listed in the definition part of the class. Interfaces can only be implemented ‘publicly’
and are therefore always in the PUBLIC SECTION (this is only valid as of Release 4.6). If you do not do
this, you risk multiple implementations, if a superclass and a subclass both implement the same interface
privately.
The operations defined in the interface are implemented as methods of a class. A check is carried out to
ensure that all the methods defined in the interfaces are actually present in the implementation part of the
class (for global interfaces, a missing or superfluous implementation of an interface method results in a
ToDo warning).

The attributes, events, constants and types defined in the interface are automatically available to the class
carrying out the implementation.
Interface components are addressed in the class carrying out the implementation by prefixing the interface
name, followed by a tilde (the Interface Resolution Operator): <interfacename>~<componentname>.

(C) SAP AG BC404 6-39

SAP AG 1999

Working with Interface Components

CLASS lcl_text_document IMPLEMENTATION.
METHOD lif_document~print. ...
ENDMETHOD.
METHOD lif_document~display. ...
ENDMETHOD.
METHOD display. ...
ENDMETHOD.

ENDCLASS.

«interface»
lif_document

display ()
print ()

lcl_text_document

DATA: text_doc TYPE REF TO lcl_text_document.

CREATE OBJECT text_doc.

CALL METHOD text_doc->lif_document~print.
CALL METHOD text_doc->lif_document~display.
CALL METHOD text_doc->display.

display ()

author : lcl_author

The interface resolution operator enables you to access interface components using an object reference
belonging to the class implementing the interface in exactly the same way as the method definition in the
implementation part of the class.
This allows you to differentiate between components defined in the interface and components of the same
name that are defined in the class itself. This is caused by the shared namespace.

(C) SAP AG BC404 6-40

SAP AG 1999

* Method call using interface reference
CALL METHOD i_doc->display.
* CALL METHOD text_doc->lif_document~display.

Interface References: Narrowing Cast

«interface»
lif_document

lcl_text_document

* Narrowing Cast:
i_doc = text_doc.

DATA: i_doc TYPE REF TO lif_document,
text_doc TYPE REF TO lcl_text_document.

CREATE OBJECT text_doc.

i_doc

displaydisplay

printprint
displaydisplay

text_doc

Interfaces are addressed using interface references. Interface references always refer to instances in the
classes carrying out the implementation. Interface references therefore always have both static and
dynamic types.
The assignment of an object reference to an interface reference is known as a narrowing cast since, as
with inheritance, only a part of the object interface is visible once you have assigned the reference.

With an interface reference, you can no longer address all components in the class carrying out the
implementation, but only the components defined in the interface. These components are now addressed
using the interface reference exclusively with their own ‘short’ name!
When an object reference is assigned to an interface reference, the static types must be convertible, that
is, the class that was used to define the object reference must have implemented the interface-reference
interface. Otherwise there will be a syntax error.

(C) SAP AG BC404 6-41

SAP AG 1999

Interface References: Widening Cast

«interface»
lif_document

lcl_text_document

CREATE OBJECT text_doc.

i_doc = text_doc.
* work with i_doc
...
* Widening Cast:
text_doc2 ?= i_doc.

DATA: i_doc TYPE REF TO lif_document,
text_doc TYPE REF TO lcl_text_document,
text_doc2 TYPE REF TO lcl_text_document.

i_doc

displaydisplay

printprint
displaydisplay

text_doc

text_doc2

The widening cast is, as with inheritance, the opposite of the narrowing cast: here it is used to retrieve an
object reference from an interface reference. Obviously it cannot be statically checked, since an interface
can be implemented by more than one class.
An object reference cannot be assigned to an interface reference if it has itself not implemented the
corresponding interface. It cannot be assigned even if a subclass has implemented the interface and the
interface reference points to an object in this class.

(C) SAP AG BC404 6-42

SAP AG 1999

CLASS lcl_text_document DEFINITION.
PUBLIC SECTION.

INTERFACES: lif_document,
lif_tree_node.

METHODS: display.
ENDCLASS.

«interface»
lif_document

«interface»
lif_tree_node

lcl_folderlcl_text_document

DATA: i_doc TYPE REF TO lif_document,
i_tree_node TYPE REF TO lif_tree_node,
text_doc TYPE REF TO lcl_text_document.

CREATE OBJECT: text_doc.
i_doc = text_doc.
i_tree_node = text_doc.

Using Several Interfaces

i_doc

i_tree_node

text_doc

In the above example, one class is implementing several interfaces. Even if these interfaces contain
components with the same name, they are differentiated in the class carrying out the implementation by the
prefix “<interfacename>~”.

(C) SAP AG BC404 6-43

SAP AG 1999

«interface»
lif_tree_node

lcl_folder

«interface»
lif_document

lcl_text_document

CREATE OBJECT: text_doc.
i_tree_node = text_doc.
i_doc ?= i_tree_node.

CREATE OBJECT folder.
i_tree_node = folder.
i_doc ?= i_tree_node. Runtime

error!

Cast Between Interface References

DATA:
i_doc TYPE REF TO lif_document,
i_tree_node TYPE REF TO lif_tree_node,
text_doc TYPE REF TO lcl_text_document,
folder TYPE REF TO lcl_folder.

i_doc

i_tree_node

i_doc

i_tree_node

text_doc

folder

Assignments between interface references whose interfaces are not related to each other cannot be
checked statically and must therefore be formulated using the cast operator “?=”.

For this type of assignment, a check must be carried out at runtime to see whether the class of the instance
that the source reference points to also supports the interface that the target reference refers to. If this is
the case, the cast is carried out, otherwise the catchable runtime MOVE_CAST_ERROR occurs.

This type of cast is neither a widening nor a narrowing cast, rather a switch from one view of an object to
another.

(C) SAP AG BC404 6-44

SAP AG 1999

Polymorphism and Interfaces

DATA: document TYPE REF TO lif_document.

LOOP AT document_list INTO document.
CALL METHOD document->display.

ENDLOOP.

0..*0..*
«interface»

lif_document

display ()
print ()

lcl_invoice lcl_text_document lcl_spreadsheet

lcl_document_library

- document_list
document_list

+ show

Polymorphism can also be used for interfaces: you can use interface references to call methods that can
have a different implementation depending on the object behind the reference.

The dynamic type, not the static type of the reference variable is used to search for the implementation of a
method. CALL METHOD document->display above therefore uses the class of the instance that document
actually refers to to search for the implementation of display. The static type for document, which is always
‘REF TO lif_doc’ is not used.

(C) SAP AG BC404 6-45

SAP AG 1999

Differences Between Polymorphism and
Inheritance and Polymorphism and Interfaces

Polymorphism and inheritance

Can only be used with objects from classes that are
connected by an inheritance hierarchy

Polymorphism and interfaces

Can be used with objects from any class, as long as
these classes have implemented the corresponding
interface

If you want to write polymorphic programs, you must first decide how the objects that you want to work with
are related to each other. If the objects are dependent on each other through inheritance, then choose
polymorphism and inheritance. However, if the objects are not directly related to each other, but simply
‘happen’ to have the same characteristics, then use interfaces to achieve polymorphism.

(C) SAP AG BC404 6-46

SAP AG 1999

Generalization/Specialization: Overview (6)

InheritanceInheritance

CastCast

PolymorphismPolymorphism

Further Characteristics of InheritanceFurther Characteristics of Inheritance

InterfacesInterfaces

Compound InterfacesCompound Interfaces

(C) SAP AG BC404 6-47

SAP AG 1999

Compound Interfaces

Problem:
extending interfaces

Solution:
compound interfaces

is_well_formed ()

«interface»
lif_markup_doc

is_well_formed ()

lcl_html_doc lcl_sgml_doclcl_xml_doc

«interface»
lif_document

print ()

lcl_html_doc lcl_sgml_doclcl_xml_doc

«interface»
lif_document

print ()

Changes to an interface usually invalidate all the classes implementing it.

ABAP Objects contains a composition model for interfaces. A compound interface contains other interfaces
as components (component interfaces) and is therefore a summarized extension of these component
interfaces. An elementary interface does not itself contain other interfaces.

One interface can be used as a component interface in several compound interfaces.

UML only deals with the specialization/generalization of interfaces. This relationship is represented by a
dotted line with a three-sided arrow from the specialized to the generalized interface.

Compound interfaces in ABAP Objects can always be seen as specializations of their component
interfaces and represented as such in UML.

(C) SAP AG BC404 6-48

SAP AG 1999

Compound Interfaces: Example

INTERFACE lif_doc.
METHODS edit.

ENDINTERFACE.

INTERFACE lif_markup_doc.
INTERFACES lif_doc.
METHODS is_well_formed.

ENDINTERFACE.

CLASS lcl_html_doc DEFINITION.
PUBLIC SECTION.
INTERFACES lif_markup_doc.

ENDCLASS.
CLASS lcl_html_doc IMPLEMENTATION.

METHOD lif_doc~edit.
ENDMETHOD.
METHOD lif_markup_doc~is_well_formed.
ENDMETHOD.

ENDCLASS.

DATA: i_doc TYPE REF TO lif_doc,
i_markup_doc TYPE REF TO lif_markup_doc,
html_doc TYPE REF TO lcl_html_doc.

i_doc = i_markup_doc. “Narrowing Cast

CALL METHOD i_markup_doc->lif_doc~edit.
*CALL METHOD i_doc->edit.
*CALL METHOD html_doc->lif_doc~edit.

i_markup_doc ?= i_doc. “Widening Cast

In a compound interface, the components of the component interface keep their original names, that is
<component-interfacename>~<componentname>; no more prefixes are added! In other words: all
components in a compound interface are on the same level, and components inherited from component
interfaces are marked with the usual interface prefix.

This ‘equality principle’ for compound interfaces also affects how they are implemented. The procedure is
as follows: first you implement the elementary interfaces, then the additional methods from the compound
interfaces. For multiple compound interfaces, the process is simply repeated. In the class carrying out the
implementation, all components of all interfaces implemented are again on the same level.
This means that interface components only ever exist once and are known by their original names
<interfacename>~<componentname>. This is true both for compound interfaces and for the classes that
implement them.

(C) SAP AG BC404 6-49

SAP AG 1999

«interface»
lif_int

lcl_server1 lcl_server2

lcl_client

«uses»

Using Interfaces (1)

Separation of external point of contact
(interface) and implementation (class)

The client defines the external point of
contact, the server implements it

“Black Box principle”:
Client only knows the interface, not
the implementation

Looser linkage between client and server

Interfaces are the means of choice for describing external points of contact, without linking them to a type
of implementation. An extra layer is introduced between the client and the server to protect the client
explicitly from the server, thereby making it much more independent!

(C) SAP AG BC404 6-50

SAP AG 1999

«interface»
lif_int

lcl_server1 lcl_server2

lcl_client

«uses»

«interface»
lif_int

lcl_server1 lcl_server2

lcl_1

lcl_server3

Using Interfaces (2)

Polymorphism

Generic handling of objects

from different classes

Abstraction

Interface as a generalization of
the class carrying out the
implementation

Simulation of

multiple inheritance

Interfaces enable you to work uniformly with different classes (providers). In particular, they always ensure
polymorphic behavior as they do not have their own implementation, but instead allow the providers to
carry it out.
The definition of an interface is always an abstraction: the user wants to handle various providers in the
same way and must therefore abstract concrete implementations to a description of the services required
to fulfill the task.
You can also use interfaces to achieve multiple inheritance by defining the functionality to be inherited by a
second class as an interface that the inheriting class then has to implement.

(C) SAP AG BC404 6-51

SAP AG 1999

Use inheritance

Carry out casts

Define and implement interfaces

Nest interfaces

Develop generic programs using polymorphism

You are now able to:

Generalization/Specialization: Unit Summary

(C) SAP AG BC404 6-52

Generalization/Specialization Exercises

Unit: Generalization/Specialization

Topic: Inheritance

At the end of this exercise you will be able to:

Define subclasses

Redefine superclass methods in subclasses

An airline needs to manage its airplanes.

1-1 Make both instance attributes in class lcl_airplane (in the include program
ZBC404_##_LCL_AIRPLANE) visible to their subclasses (PRIVATE SECTION ->
PROTECTED SECTION).

1-2 Create subclass lcl_passenger_airplane for class lcl_airplane. Create the include program
ZBC404_##_LCL_PASSENGER_PLANE for class lcl_passenger_airplane.

1-2-1 The class has a private instance attribute n_o_seats, that has the same type as table
field sflight-seatsmax.

1-2-2 A public constructor is defined and implemented in the class. This constructor provides
all instance attributes in the class with values.

1-2-3 Redefine method display_attributes of class lcl_airplane, so that, using the redefined
method, the WRITE statement displays all instance attributes.

1-3 Create subclass lcl_cargo_airplane for class lcl_airplane. Create the include program
ZBC404_##_LCL_CARGO_PLANE for class lcl_cargo_airplane.

1-3-1 The class has the private instance attribute cargo_max, that has the same type as
table field scplane-cagomax.

1-3-2 A public constructor has been defined and implemented in the class. This constructor
provides all instance attributes in the class with values.

1-3-3 Redefine method display_attributes of class lcl_airplane, so that, using the redefined
method, the WRITE statement displays all instance attributes.

1-4 Create program ZBC404_##_MAIN (##: group number).

1-4-1 Use the INCLUDE statement to include the following programs
 - ZBC404_##_LCL_AIRPLANE
 - ZBC404_##_LCL_PASSENGER_PLANE
 - ZBC404_##_LCL_CARGO_PLANE.

(C) SAP AG BC404 6-53

1-4-2 Use the DATA statement to create a reference for each subclass
(lcl_passenger_airplane, lcl_cargo_airplane).

1-4-3 Call the static method display_n_o_airplanes (before instantiating any objects).

1-4-4 Use the references 1-4-2 from to create one instance in each of the subclasses
lcl_passenger_airplane and lcl_cargo_airplane. Decide for yourself how to fill the
attributes.

1-4-5 Call the display_attributes method for each of the instances.

1-4-6 Call the static method display_n_o_airplanes again.

(C) SAP AG BC404 6-54

Unit: Generalization/Specialization

Topic: Polymorphism and Inheritance

At the end of this exercise you will be able to:

Use references in internal tables

Implement polymorphic method calls

An airline needs to manage its airplanes.

2-1 Copy the template SAPBC404GENT_LCL_CARRIER and call your new include program
ZBC404_##_ LCL_CARRIER.

2-2 Add two public instance methods from program ZBC404_##_ LCL_CARRIER to the class
lcl_carrier:

2-2-1 The first method is add_a_new_airplane, which adds airplanes to the list_of_airplanes
list of airplanes already defined in the class. The transfer parameter is a reference to
class lcl_airplane. Check the definition of the internal table list_of_airplanes.

2-2-2 The second method is display_airplanes, which displays the airplane attributes from
the list_of_airplanes list. The display_attributes method from class lcl_airplane should
be called at this point.
Question: which program part is executed for the method call display_attributes?

2-3 Go into program ZBC404_##_MAIN.

Add another INCLUDE statement including program ZBC404_##_ LCL_CARRIER to the
existing INCLUDE statements. Make sure the include programs are in the correct
sequence.

Use the DATA statement to create a reference to class lcl_carrier.

Comment out all the method calls in your program up till now that display data
(display_n_o_airplane, display_attributes). (But only these!)

Create an airline instance using the reference from
2-3-2. Fill the transfer parameters with your own data.

Add the two planes you have created in the last exercise (one passenger and one cargo plane)
to the list_of_airplanes list of planes. To do this, call method add_a_new_airplane from
class lcl_carrier.
Create more planes and add them to the airplane list.

Display the attributes of all the planes in the airplane list by calling the display_airplanes
method from class lcl_carrier.

(C) SAP AG BC404 6-55

Unit: Generalization/Specialization

Topic: Interfaces

At the end of this exercise, you will be able to:

Define and implement interfaces

Use polymorphism with interfaces

A travel agency needs to maintain its business connections to partners, such as
airlines and hotels.

3-1 Create the include program ZBC404_##_LIF_BUSI_PARTNERS. Define the
lif_business_partners interface in this program. The interface consists solely of the method
display_company_data.

3-2 Go into the include program ZBC404_##_ LCL_CARRIER. Implement the
lif_business_partners interface in class lcl_carrier.

3-2-1 Enter the interface in the definition part of the class.

3-2-2 Implement the interface's method display_company_data. Use the WRITE statement
to display important data about an airline, such as the name and number of airplanes
available for business partners. Use the list_of_airplanes internal table to find out the
number of planes (-> statement DESCRIBE TABLE ...
LINES ...).

3-3 Copy template SAPBC404GENT_LCL_HOTEL and call the new include program
ZBC404_##_ LCL_HOTEL. Implement the lif_business_partners interface in class lcl_hotel.

Enter the interface in the definition part of the class.

Implement the interface's method display_company_data. Use the WRITE statement to display
important data on a hotel, such as the name, the town and the number of rooms
available (see class attributes) for business partners.

(C) SAP AG BC404 6-56

3-4 Copy template SAPBC404GENT_LCL_TRAVEL_AGENCY and call the new include program

ZBC404_##_ LCL_ TRAVEL_AGENCY. In class lcl_travel_agency, create a list of business
partners using references from the lif_business_partners interface.

Create a list_of_business_partners internal table as a private instance attribute using
references to the lif_business_partners interface.

Create a public instance method add_business_partner , which adds business partners to the
list_of_business_partners list. The transfer parameter is a reference to the
lif_business_partners interface .

3-4-3 Create a public instance method display_business_partners, that displays the most
important company data of all business partners in the list_of_business_partners list.
The display_company_data method from the lif_business_partners interface must be
called.
Question: which program part is executed for the method call
display_ company_data?

3-5 Go into program ZBC404_##_MAIN.

Use the INCLUDE statement to include the following include programs in your program:
- ZBC404_##_LIF_BUSI_PARTNERS
- ZBC404_##_ LCL_HOTEL
- ZBC404_##_ LCL_ TRAVEL_AGENCY.
Make sure that the INCLUDE statement with
ZBC404_##_ LCL_ CARRIER comes before INCLUDE
ZBC404_##_ LCL_ TRAVEL_AGENCY.

Use the DATA statement to define a reference to class lcl_travel_agency and at least one
reference to class lcl_hotel.

Comment out the "CALL METHOD carrier->display_airplanes." statement from the last
exercise.

At the end of the program, create a travel agency and at least one hotel using the reference(s)
defined in 3-5-2. Fill the transfer parameters with your own data.

Add the airline instance you created in the last exercise and the hotels you created in 3-5-4 to
the list_of_business_partners list of the travel agency you created in 3-5-4. To do this,
call method add_business_partner.

Call method display_business_partners to display a list of important company data for all the
travel agency's business partners.

(C) SAP AG BC404 6-57

Generalization/Specialization Solutions

Unit: Generalization/Specialization

Topic: Inheritance

REPORT sapbc404gens_inheritance .

INCLUDE sapbc404gens_lcl_airplane.

INCLUDE sapbc404gens_lcl_passenger_air.

INCLUDE sapbc404gens_lcl_cargo_air.

DATA: passenger_airplane TYPE REF TO lcl_passenger_airplane,

 cargo_airplane TYPE REF TO lcl_cargo_airplane.

START-OF-SELECTION.

 CALL METHOD lcl_airplane=>display_n_o_airplanes.

 CREATE OBJECT passenger_airplane EXPORTING

 im_name = 'LH Berlin'
 im_planetype = '747-400'

 im_n_o_seats = 580.

 CREATE OBJECT cargo_airplane EXPORTING

 im_name = 'US Hercules'

 im_planetype = 'Galaxy'
 im_cargo_max = 30000.

 CALL METHOD passenger_airplane->display_attributes.

 CALL METHOD cargo_airplane->display_attributes.

 CALL METHOD lcl_airplane=>display_n_o_airplanes.

(C) SAP AG BC404 6-58

Include program SAPBC404GENS_LCL_AIRPLANE
--

* CLASS lcl_airplane DEFINITION *
--

CLASS lcl_airplane DEFINITION.

 PUBLIC SECTION.

 TYPES: name_type(25) TYPE c.
 CONSTANTS: pos_1 TYPE i VALUE 30.

 METHODS: constructor IMPORTING

 im_name TYPE name_type

 im_planetype TYPE saplane-planetype,
 set_attributes IMPORTING

 im_name TYPE name_type

 im_planetype TYPE saplane-planetype,
 display_attributes.

 CLASS-METHODS: display_n_o_airplanes.

* NEW: protected section

 PROTECTED SECTION.

 DATA: name TYPE name_type,

 planetype TYPE saplane-planetype.

 PRIVATE SECTION.

 CLASS-DATA: n_o_airplanes TYPE i.

ENDCLASS.

--

* CLASS lcl_airplane IMPLEMENTATION *

--
CLASS lcl_airplane IMPLEMENTATION.

 METHOD constructor.
 name = im_name.

 planetype = im_planetype.

 n_o_airplanes = n_o_airplanes + 1.
 ENDMETHOD.

(C) SAP AG BC404 6-59

 METHOD set_attributes.
 name = im_name.

 planetype = im_planetype.

 ENDMETHOD.

 METHOD display_attributes.

 WRITE: / 'Name of the airplane: '(001), AT pos_1 name,
 / 'Plane type: '(002), AT pos_1 planetype.

 ENDMETHOD.

 METHOD display_n_o_airplanes.

 WRITE: /, / 'Total number of airplanes: '(ca1),
 AT pos_1 n_o_airplanes LEFT-JUSTIFIED, /.

 ENDMETHOD.

ENDCLASS.

Include program SAPBC404GENS_LCL_PASSENGER_AIR
--
* CLASS lcl_passenger_airplane DEFINITION *

--

CLASS lcl_passenger_airplane DEFINITION INHERITING FROM
 lcl_airplane.

 PUBLIC SECTION.

 METHODS: constructor IMPORTING

 im_name TYPE name_type
 im_planetype TYPE saplane-planetype

 im_n_o_seats TYPE sflight-seatsmax,
 display_attributes REDEFINITION.

 PRIVATE SECTION.

 DATA: n_o_seats TYPE sflight-seatsmax.

ENDCLASS.

(C) SAP AG BC404 6-60

--

* CLASS lcl_passenger_airplane IMPLEMENTATION *

--
CLASS lcl_passenger_airplane IMPLEMENTATION.

 METHOD constructor.
 CALL METHOD super->constructor EXPORTING

 im_name = im_name

 im_planetype = im_planetype.
 n_o_seats = im_n_o_seats.

 ENDMETHOD.

 METHOD display_attributes.

 CALL METHOD super->display_attributes.
 WRITE: / 'Number of seats: '(003), 25 n_o_seats, /.

 ENDMETHOD.

ENDCLASS.

Include program SAPBC404GENS_LCL_CARGO_AIR
--
* CLASS lcl_cargo_airplane DEFINITION *

--

CLASS lcl_cargo_airplane DEFINITION INHERITING FROM lcl_airplane.

 PUBLIC SECTION.

 METHODS: constructor IMPORTING

 im_name TYPE name_type
 im_planetype TYPE saplane-planetype

 im_cargo_max TYPE p,

 display_attributes REDEFINITION.

 PRIVATE SECTION.

 DATA: cargo_max TYPE scplane-cargomax.

ENDCLASS.

(C) SAP AG BC404 6-61

--

* CLASS lcl_cargo_airplane IMPLEMENTATION *

--
CLASS lcl_cargo_airplane IMPLEMENTATION.

 METHOD constructor.
 CALL METHOD super->constructor EXPORTING

 im_name = im_name

 im_planetype = im_planetype.
 cargo_max = im_cargo_max.

 ENDMETHOD.

 METHOD display_attributes.

 CALL METHOD super->display_attributes.
 WRITE: / 'Maximal cargo: '(004),

 at pos_1 cargo_max left-justified, /.

 ENDMETHOD.

ENDCLASS.

(C) SAP AG BC404 6-62

Unit: Generalization/Specialization

Topic: Polymorphism and Inheritance

REPORT sapbc404gens_inh_polymorphism .

INCLUDE sapbc404gens_lcl_airplane.

INCLUDE sapbc404gens_lcl_passenger_air.

INCLUDE sapbc404gens_lcl_cargo_air.
* New include

INCLUDE sapbc404gens_lcl_carrier_1.

DATA: passenger_airplane TYPE REF TO lcl_passenger_airplane,

 cargo_airplane TYPE REF TO lcl_cargo_airplane,
* new reference

 carrier TYPE REF TO lcl_carrier.

START-OF-SELECTION.

* CALL METHOD lcl_airplane=>display_n_o_airplanes.

 CREATE OBJECT passenger_airplane EXPORTING
 im_name = 'LH Berlin'

 im_planetype = '747-400'

 im_n_o_seats = 580.

 CREATE OBJECT cargo_airplane EXPORTING

 im_name = 'US Hercules'
 im_planetype = 'Galaxy'

 im_cargo_max = 30000.

* CALL METHOD passenger_airplane->display_attributes.

* CALL METHOD cargo_airplane->display_attributes.

* CALL METHOD lcl_airplane=>display_n_o_airplanes.

* new coding
* Create a carrier

 CREATE OBJECT carrier EXPORTING im_name = 'Lufthansa'.

(C) SAP AG BC404 6-63

* Add passenger airplane to airplane list
 CALL METHOD carrier->add_a_new_airplane EXPORTING

 im_airplane = passenger_airplane.

* Create new passenger airplane

 CREATE OBJECT passenger_airplane EXPORTING

 im_name = 'LH München'
 im_planetype = 'A310-300'

 im_n_o_seats = 280.

* Add new passenger airplane to airplane list

 CALL METHOD carrier->add_a_new_airplane EXPORTING
 im_airplane = passenger_airplane.

* Add cargo airplane to airplane list

 CALL METHOD carrier->add_a_new_airplane EXPORTING

 im_airplane = cargo_airplane.

* Display all airplanes of airplane list

 CALL METHOD carrier->display_airplanes.

Include program SAPBC404GENS_LCL_AIRPLANE
--

* CLASS lcl_airplane DEFINITION *

--
CLASS lcl_airplane DEFINITION.

 PUBLIC SECTION.

 TYPES: name_type(25) TYPE c.
 CONSTANTS: pos_1 TYPE i VALUE 30.

 METHODS: constructor IMPORTING
 im_name TYPE name_type

 im_planetype TYPE saplane-planetype,

 set_attributes IMPORTING
 im_name TYPE name_type

 im_planetype TYPE saplane-planetype,

 display_attributes.

 CLASS-METHODS: display_n_o_airplanes.

(C) SAP AG BC404 6-64

* NEW: protected section

 PROTECTED SECTION.

 DATA: name TYPE name_type,

 planetype TYPE saplane-planetype.

 PRIVATE SECTION.

 CLASS-DATA: n_o_airplanes TYPE i.

ENDCLASS.

--
* CLASS lcl_airplane IMPLEMENTATION *

--

CLASS lcl_airplane IMPLEMENTATION.

 METHOD constructor.

 name = im_name.
 planetype = im_planetype.

 n_o_airplanes = n_o_airplanes + 1.

 ENDMETHOD.

 METHOD set_attributes.

 name = im_name.
 planetype = im_planetype.

 ENDMETHOD.

 METHOD display_attributes.

 WRITE: / 'Name of the airplane: '(001), AT pos_1 name,
 / 'Plane type: '(002), AT pos_1 planetype.

 ENDMETHOD.

(C) SAP AG BC404 6-65

 METHOD display_n_o_airplanes.

 WRITE: /, / 'Total number of airplanes: '(ca1),

 AT pos_1 n_o_airplanes LEFT-JUSTIFIED, /.
 ENDMETHOD.

ENDCLASS.

Include program SAPBC404GENS_LCL_PASSENGER_AIR
--
* CLASS lcl_passenger_airplane DEFINITION *

--

CLASS lcl_passenger_airplane DEFINITION INHERITING FROM
 lcl_airplane.

 PUBLIC SECTION.

 METHODS: constructor IMPORTING

 im_name TYPE name_type
 im_planetype TYPE saplane-planetype

 im_n_o_seats TYPE sflight-seatsmax,

 display_attributes REDEFINITION.

 PRIVATE SECTION.

 DATA: n_o_seats TYPE sflight-seatsmax.

ENDCLASS.

--
* CLASS lcl_passenger_airplane IMPLEMENTATION *

--

CLASS lcl_passenger_airplane IMPLEMENTATION.

 METHOD constructor.

 CALL METHOD super->constructor EXPORTING
 im_name = im_name

 im_planetype = im_planetype.

 n_o_seats = im_n_o_seats.
 ENDMETHOD.

(C) SAP AG BC404 6-66

 METHOD display_attributes.
 CALL METHOD super->display_attributes.

 WRITE: / 'Number of seats: '(003), 25 n_o_seats, /.

 ENDMETHOD.

ENDCLASS.

Include program SAPBC404GENS_LCL_CARGO_AIR
--

* CLASS lcl_cargo_airplane DEFINITION *
--

CLASS lcl_cargo_airplane DEFINITION INHERITING FROM lcl_airplane.

 PUBLIC SECTION.

 METHODS: constructor IMPORTING
 im_name TYPE name_type

 im_planetype TYPE saplane-planetype

 im_cargo_max TYPE p,
 display_attributes REDEFINITION.

 PRIVATE SECTION.

 DATA: cargo_max TYPE scplane-cargomax.

ENDCLASS.

--

* CLASS lcl_cargo_airplane IMPLEMENTATION *

--
CLASS lcl_cargo_airplane IMPLEMENTATION.

 METHOD constructor.
 CALL METHOD super->constructor EXPORTING

 im_name = im_name

 im_planetype = im_planetype.
 cargo_max = im_cargo_max.

 ENDMETHOD.

 METHOD display_attributes.

 CALL METHOD super->display_attributes.

(C) SAP AG BC404 6-67

 WRITE: / 'Maximal cargo: '(004),
 at pos_1 cargo_max left-justified, /.

 ENDMETHOD.

ENDCLASS.

Include program SAPBC404GENS_LCL_CARRIER_1
--
* CLASS lcl_carrier DEFINITION *

--
CLASS lcl_carrier DEFINITION.

 PUBLIC SECTION.

 TYPES: BEGIN OF flight_list_type,

 connid TYPE sflight-connid,
 fldate TYPE sflight-fldate,

 airplane TYPE REF TO lcl_airplane,

 seatsocc TYPE sflight-seatsocc,
 cargo(5) TYPE p DECIMALS 3,

 END OF flight_list_type.

 METHODS: constructor IMPORTING im_name TYPE string,

 get_name returning value(ex_name) type string,

* add a new airplane
 add_a_new_airplane IMPORTING

 im_airplane TYPE REF TO lcl_airplane,

 create_a_new_flight IMPORTING
 im_connid TYPE sflight-connid

 im_fldate TYPE sflight-fldate
 im_airplane TYPE REF TO lcl_airplane

 im_seatsocc TYPE sflight-seatsocc

 OPTIONAL
 im_cargo TYPE p OPTIONAL,

* display airplanes

 display_airplanes.

 PRIVATE SECTION.

 DATA: name TYPE string,

 list_of_airplanes TYPE TABLE OF REF TO lcl_airplane,
 list_of_flights TYPE TABLE OF flight_list_type.

(C) SAP AG BC404 6-68

ENDCLASS.

--
* CLASS lcl_carrier IMPLEMENTATION

--

CLASS lcl_carrier IMPLEMENTATION.

 METHOD constructor.

 name = im_name.
 ENDMETHOD.

 METHOD get_name.

 ex_name = name.

 ENDMETHOD.

* add a new airplane

 METHOD add_a_new_airplane.
 APPEND im_airplane TO list_of_airplanes.

 ENDMETHOD.

 METHOD create_a_new_flight.

 DATA: wa_list_of_flights TYPE flight_list_type.

 wa_list_of_flights-connid = im_connid.

 wa_list_of_flights-fldate = im_fldate.

 wa_list_of_flights-airplane = im_airplane.
 IF im_seatsocc IS INITIAL.

 wa_list_of_flights-cargo = im_cargo.

 ELSE.
 wa_list_of_flights-seatsocc = im_seatsocc.

 ENDIF.
 APPEND wa_list_of_flights TO list_of_flights.

 ENDMETHOD.

* display airplanes
 METHOD display_airplanes.

 DATA airplane TYPE REF TO lcl_airplane.

 LOOP AT list_of_airplanes INTO airplane.

* Polymorphism: calling different method implementations

* by one call
 CALL METHOD airplane->display_attributes.

 ENDLOOP.

 ENDMETHOD.

(C) SAP AG BC404 6-69

ENDCLASS.

(C) SAP AG BC404 6-70

Unit: Generalization/Specialization

Topic: Interfaces

REPORT sapbc404gens_interfaces .

INCLUDE sapbc404gens_lcl_airplane.

INCLUDE sapbc404gens_lcl_passenger_air.

INCLUDE sapbc404gens_lcl_cargo_air.
* new includes

INCLUDE sapbc404gens_lif_busi_partners.

INCLUDE sapbc404gens_lcl_hotel.
* lcl_carrier is implementing the interface BUSINESS_PARTNERS

INCLUDE sapbc404gens_lcl_carrier_2.
INCLUDE sapbc404gens_lcl_travel_agency.

DATA: passenger_airplane TYPE REF TO lcl_passenger_airplane,

 cargo_airplane TYPE REF TO lcl_cargo_airplane,

 carrier TYPE REF TO lcl_carrier,
* New references for hotels and travel agency

 hotel1 TYPE REF TO lcl_hotel, hotel2 TYPE REF TO lcl_hotel,

 agency TYPE REF TO lcl_travel_agency.

START-OF-SELECTION.

 CREATE OBJECT passenger_airplane EXPORTING
 im_name = 'LH Berlin'

 im_planetype = '747-400'

 im_n_o_seats = 580.

 CREATE OBJECT cargo_airplane EXPORTING
 im_name = 'US Hercules'

 im_planetype = 'Galaxy'

 im_cargo_max = 30000.

 CREATE OBJECT carrier EXPORTING im_name = 'Lufthansa'.

 CALL METHOD carrier->add_a_new_airplane EXPORTING

 im_airplane = passenger_airplane.

(C) SAP AG BC404 6-71

 CREATE OBJECT passenger_airplane EXPORTING

 im_name = 'LH München'

 im_planetype = 'A310-300'
 im_n_o_seats = 280.

 CALL METHOD carrier->add_a_new_airplane EXPORTING
 im_airplane = passenger_airplane.

 CALL METHOD carrier->add_a_new_airplane EXPORTING

 im_airplane = cargo_airplane.

* CALL METHOD carrier->display_airplanes.

* Create hotels

 CREATE OBJECT hotel1 EXPORTING im_name = 'Budget Inn'
 im_city = 'Washington'

 im_n_o_rooms = 112.

 CREATE OBJECT hotel2 EXPORTING im_name = 'Ambassador'

 im_city = 'Frankfurt'

 im_n_o_rooms = 85.

* Create travel agency

 CREATE OBJECT agency EXPORTING im_name = 'Happy Holiday'.

* Add new business partners

 CALL METHOD agency->add_business_partner
 EXPORTING im_business_partner = carrier.

* narrowing cast: type ref to interface =
* type ref to LCL_CARRIR

 CALL METHOD agency->add_business_partner
 EXPORTING im_business_partner = hotel1.

* narrowing cast: type ref to interface =

* type ref to LCL_HOTEL

 CALL METHOD agency->add_business_partner
 EXPORTING im_business_partner = hotel2.

* narrowing cast: type ref to interface =

* type ref to LCL_HOTEL

* Display business partners: Polymorphism with interfaces

 CALL METHOD agency->display_business_partners.

(C) SAP AG BC404 6-72

Include program SAPBC404GENS_LCL_AIRPLANE
--

* CLASS lcl_airplane DEFINITION *

--
CLASS lcl_airplane DEFINITION.

 PUBLIC SECTION.

 TYPES: name_type(25) TYPE c.
 CONSTANTS: pos_1 TYPE i VALUE 30.

 METHODS: constructor IMPORTING
 im_name TYPE name_type

 im_planetype TYPE saplane-planetype,

 set_attributes IMPORTING
 im_name TYPE name_type

 im_planetype TYPE saplane-planetype,

 display_attributes.

 CLASS-METHODS: display_n_o_airplanes.

* NEW: protected section

 PROTECTED SECTION.

 DATA: name TYPE name_type,

 planetype TYPE saplane-planetype.

 PRIVATE SECTION.

 CLASS-DATA: n_o_airplanes TYPE i.

ENDCLASS.

--
* CLASS lcl_airplane IMPLEMENTATION *

--

CLASS lcl_airplane IMPLEMENTATION.

 METHOD constructor.

 name = im_name.
 planetype = im_planetype.

 n_o_airplanes = n_o_airplanes + 1.

(C) SAP AG BC404 6-73

 ENDMETHOD.

 METHOD set_attributes.

 name = im_name.
 planetype = im_planetype.

 ENDMETHOD.

 METHOD display_attributes.

 WRITE: / 'Name of the airplane: '(001), AT pos_1 name,

 / 'Plane type: '(002), AT pos_1 planetype.
 ENDMETHOD.

 METHOD display_n_o_airplanes.

 WRITE: /, / 'Total number of airplanes: '(ca1),

 AT pos_1 n_o_airplanes LEFT-JUSTIFIED, /.
 ENDMETHOD.

ENDCLASS.

(C) SAP AG BC404 6-74

Include program SAPBC404GENS_LCL_PASSENGER_AIR
--

* CLASS lcl_passenger_airplane DEFINITION *
--

CLASS lcl_passenger_airplane DEFINITION INHERITING FROM

 lcl_airplane.

 PUBLIC SECTION.

 METHODS: constructor IMPORTING

 im_name TYPE name_type
 im_planetype TYPE saplane-planetype

 im_n_o_seats TYPE sflight-seatsmax,

 display_attributes REDEFINITION.

 PRIVATE SECTION.

 DATA: n_o_seats TYPE sflight-seatsmax.

ENDCLASS.

--

* CLASS lcl_passenger_airplane IMPLEMENTATION *
--

CLASS lcl_passenger_airplane IMPLEMENTATION.

 METHOD constructor.

 CALL METHOD super->constructor EXPORTING
 im_name = im_name

 im_planetype = im_planetype.

 n_o_seats = im_n_o_seats.
 ENDMETHOD.

 METHOD display_attributes.
 CALL METHOD super->display_attributes.

 WRITE: / 'Number of seats: '(003), 25 n_o_seats, /.

 ENDMETHOD.

ENDCLASS.

(C) SAP AG BC404 6-75

Include program SAPBC404GENS_LCL_CARGO_AIR
--

* CLASS lcl_cargo_airplane DEFINITION *

--
CLASS lcl_cargo_airplane DEFINITION INHERITING FROM lcl_airplane.

 PUBLIC SECTION.

 METHODS: constructor IMPORTING

 im_name TYPE name_type
 im_planetype TYPE saplane-planetype

 im_cargo_max TYPE p,
 display_attributes REDEFINITION.

 PRIVATE SECTION.

 DATA: cargo_max TYPE scplane-cargomax.

ENDCLASS.

--
* CLASS lcl_cargo_airplane IMPLEMENTATION *

--

CLASS lcl_cargo_airplane IMPLEMENTATION.

 METHOD constructor.

 CALL METHOD super->constructor EXPORTING
 im_name = im_name

 im_planetype = im_planetype.
 cargo_max = im_cargo_max.

 ENDMETHOD.

 METHOD display_attributes.

 CALL METHOD super->display_attributes.

 WRITE: / 'Maximal cargo: '(004),
 at pos_1 cargo_max left-justified, /.

 ENDMETHOD.

ENDCLASS.

Include program SAPBC404GENS_LIF_BUSI_PARTNERS

INTERFACE lif_business_partners.

(C) SAP AG BC404 6-76

 METHODS: display_company_data.

ENDINTERFACE.

Include program SAPBC404GENS_LCL_HOTEL
--

* CLASS lcl_hotel DEFINITION *
--

CLASS lcl_hotel DEFINITION.

 PUBLIC SECTION.

* Interface declaration

 INTERFACES: lif_business_partners.

 METHODS: constructor IMPORTING im_name TYPE string

 im_city TYPE string

 im_n_o_rooms TYPE i.

 PRIVATE SECTION.

 DATA: name TYPE string,

 city TYPE string,

 n_o_rooms TYPE i.
ENDCLASS.

--

* CLASS lcl_hotel IMPLEMENTATION *
--

CLASS lcl_hotel IMPLEMENTATION.

 METHOD constructor.

 name = im_name.

 city = im_city.
 n_o_rooms = im_n_o_rooms.

 ENDMETHOD.

* Interface Implementation

 METHOD lif_business_partners~display_company_data.

 WRITE: / 'Hotel '(h01), name COLOR COL_NEGATIVE, 'in'(h02), city,
 / 'The number of available rooms is'(h03),

 n_o_rooms left-justified, /.

(C) SAP AG BC404 6-77

 ENDMETHOD.

ENDCLASS.

Include program SAPBC404GENS_LCL_CARRIER_2
--

* CLASS lcl_carrier DEFINITION *

--
CLASS lcl_carrier DEFINITION.

 PUBLIC SECTION.

 TYPES: BEGIN OF flight_list_type,
 connid TYPE sflight-connid,

 fldate TYPE sflight-fldate,

 airplane TYPE REF TO lcl_airplane,
 seatsocc TYPE sflight-seatsocc,

 cargo(5) TYPE p DECIMALS 3,

 END OF flight_list_type.

* Interface declaration

 INTERFACES: lif_business_partners.

 METHODS: constructor IMPORTING im_name TYPE string,

 get_name RETURNING value(ex_name) TYPE string,
 add_a_new_airplane IMPORTING

 im_airplane TYPE REF TO lcl_airplane,

 create_a_new_flight IMPORTING
 im_connid TYPE sflight-connid

 im_fldate TYPE sflight-fldate
 im_airplane TYPE REF TO lcl_airplane

 im_seatsocc TYPE sflight-seatsocc

 OPTIONAL
 im_cargo TYPE p OPTIONAL,

 display_airplanes.

 PRIVATE SECTION.

 DATA: name TYPE string,

 list_of_airplanes TYPE TABLE OF REF TO lcl_airplane,

 list_of_flights TYPE TABLE OF flight_list_type.

ENDCLASS.

(C) SAP AG BC404 6-78

--

* CLASS lcl_carrier IMPLEMENTATION *
--

CLASS lcl_carrier IMPLEMENTATION.

 METHOD constructor.

 name = im_name.

 ENDMETHOD.

 METHOD get_name.
 ex_name = name.

 ENDMETHOD.

* Interface Implementation

 METHOD lif_business_partners~display_company_data.

 DATA: n_o_airplanes TYPE i.
 DESCRIBE TABLE list_of_airplanes LINES n_o_airplanes.

 WRITE: / name COLOR COL_POSITIVE, / 'Number of Airplanes:'(c01),

 n_o_airplanes LEFT-JUSTIFIED, /.
 ENDMETHOD.

 METHOD add_a_new_airplane.
 APPEND im_airplane TO list_of_airplanes.

 ENDMETHOD.

 METHOD create_a_new_flight.

 DATA: wa_list_of_flights TYPE flight_list_type.

 wa_list_of_flights-connid = im_connid.

 wa_list_of_flights-fldate = im_fldate.
 wa_list_of_flights-airplane = im_airplane.

 IF im_seatsocc IS INITIAL.

 wa_list_of_flights-cargo = im_cargo.

 ELSE.
 wa_list_of_flights-seatsocc = im_seatsocc.

 ENDIF.

 APPEND wa_list_of_flights TO list_of_flights.
 ENDMETHOD.

 METHOD display_airplanes.
 DATA airplane TYPE REF TO lcl_airplane.

 LOOP AT list_of_airplanes INTO airplane.

(C) SAP AG BC404 6-79

 CALL METHOD airplane->display_attributes.
 ENDLOOP.

 ENDMETHOD.

ENDCLASS.

Include program SAPBC404GENS_LCL_TRAVEL_AGENCY
--
* CLASS lcl_travel_agency DEFINITION *

--
CLASS lcl_travel_agency DEFINITION.

 PUBLIC SECTION.

 METHODS: constructor IMPORTING im_name TYPE string,

* Add new business partner
 add_business_partner IMPORTING im_business_partner

 TYPE REF TO lif_business_partners,

* Display business partners
 display_business_partners.

 PRIVATE SECTION.

 DATA: name TYPE string,

* List of business partners
 list_of_business_partners TYPE TABLE OF REF TO

 lif_business_partners.

ENDCLASS.

--

* CLASS lcl_travel_agency IMPLEMENTATION
--

CLASS lcl_travel_agency IMPLEMENTATION.

 METHOD constructor.

 name = im_name.

 ENDMETHOD.

* Add new business partner

 METHOD add_business_partner.
 APPEND im_business_partner TO list_of_business_partners.

 ENDMETHOD.

(C) SAP AG BC404 6-80

* Display business partners

 METHOD display_business_partners.

 DATA business_partner TYPE REF TO lif_business_partners.
 write: / 'Travel Agency:'(ta1), name color col_heading,

 / 'Business partners:'(ta2), /.

 LOOP AT list_of_business_partners INTO business_partner.
 CALL METHOD business_partner->display_company_data.

 ENDLOOP.

 ENDMETHOD.

ENDCLASS.

(C) SAP AG BC404 7-1

SAP AG 1999

Define and trigger events

Register and handle events

Contents:

Events

(C) SAP AG BC404 7-2

SAP AG 1999

Define and trigger events

Handle events

Register and deregister events

Receive a reference from the sender

Explain the conceptual differences between
methods and events

At the conclusion of this unit, you will be able to:

Events: Unit Objectives

(C) SAP AG BC404 7-3

SAP AG 1999

Events: Course Overview Diagram

Introduction

Analysis and Design

Principles

Generalization/
Specialization

Events

Global Classes/Interfaces

Summary and Outlook

(C) SAP AG BC404 7-4

SAP AG 1999

Events: Overview

Airplane

LH Berlin

Pilot

Air-traffic controller

Passenger
Meyer

Miller

Schmidt

IF altitude = 0.
RAISE EVENT touched_down.
ENDIF.

By triggering an event, an object or a class announces a change of state, or that a certain state has been
achieved.

In the above example, the airplane class triggers the event ‘touched_down’. Other classes subscribe to this
event and process it. The air-traffic controller marks the plane as landed on the list, the pilot breathes a
sigh of relief and the passenger, Mr. Miller, applauds.

Note:
The events discussed here are not ABAP events such as INITIALIZATION,
START-OF-SELECTION, and so on.

(C) SAP AG BC404 7-5

SAP AG 1999

Characteristics and Uses

Looser linkage than for a method call

Different communication model

Trigger does not know the user

Important for GUI implementation

Conformity to other object models

COM

ActiveX Controls

OpenDoc

...

Events link objects or classes more loosely than direct method calls do. Method calls establish precisely
when and in which statement sequence the method is called. However, with events, the reaction of the
object to the event is determined by the triggering of the event itself.
Events are most often used in GUI implementations.

Other external object models, such as COM, ActiveX Controls etc, also provide events.

(C) SAP AG BC404 7-6

SAP AG 1999

Triggering and Handling Events: Overview

Triggering events

Class defines event
(EVENTS, CLASS-EVENTS)

Object or class triggers event
(RAISE EVENT)

Handling events

Event handler class defines and implements event handler method
([CLASS-]METHODS... FOR EVENT ... OF ...)

“Event handler object” or handler class registers itself to specific
object/class events at runtime

(SET HANDLER)

At the moment of implementation, a class defines its

instance events (using the statement EVENTS) and

static events (using the statement CLASS-EVENTS)
Classes or their instances that receive a message when an event is triggered at runtime and want to react
to this event define event handler methods.
 Statement : (CLASS-)METHODS <handler_method> FOR EVENT <event> OF <classname>.
These classes or their instances register themselves at runtime to one or more events.
 Statement : SET HANDLER <handler_method> FOR <reference>. (for instance events)
 SET HANDLER <handler_method>. (for static events).

A class or an instance can trigger an event at runtime using the statement RAISE EVENT.

(C) SAP AG BC404 7-7

SAP AG 1999

Defining and Triggering Events: Syntax

CLASS <classname> DEFINITION.
EVENTS: <event> EXPORTING VALUE(<ex_par>) TYPE type.

CLASS lcl_airplane DEFINITION.
PUBLIC SECTION.

METHODS arrive_at_airport.
EVENTS touched_down EXPORTING VALUE(ex_name) TYPE string.

PRIVATE SECTION.
DATA: name TYPE string.

ENDCLASS.

CLASS cl_airplane IMPLEMENTATION.
METHOD arrive_at_airport.

...
RAISE EVENT touched_down EXPORTING ex_name = name.

ENDMETHOD.
ENDCLASS.

CLASS <classname> IMPLEMENTATION.
METHOD <m>.
RAISE EVENT <event> EXPORTING <ex_par> = <act_par>.

LH Berlin

Both instance and static events can be triggered in instance methods.

Only static events can be triggered in static methods.

Events can only have EXPORTING parameters which must be passed by value.
Triggering an event using the statement RAISE EVENT has the following effect:

the program flow is interrupted at that point

the event handler methods registered to this event are called and processed
once all event handler methods have been executed, the program flow starts again.

If an event handler method in turn triggers an event, then the program flow is again interrupted and all
event handler methods are executed (nesting).

(C) SAP AG BC404 7-8

SAP AG 1999

Handling and Registering Events

Air-traffic
controller

Pilot

Passenger

Set handler

Set handler

Set handler

Set handler

METHODS on_touched_down FOR EVENT touched_down OF cl_airplane.

Miller

Schmidt

MeyerLH Munich

Romantica

AA New York

Events are registered using the command SET HANDLER. Registration is only active at program runtime.
Events cannot be persistent.

You want to register an object to an event belonging to another object. The SET HANDLER... statement
enters the registration in that object’s list. All handlers for one event are entered in this list.

When the event is triggered, the list shows which event handler methods need to be called.

(C) SAP AG BC404 7-9

SAP AG 1999

Handling Events: Syntax

CLASS <class_handle> DEFINITION.
METHODS: <on_event> FOR EVENT <event>

OF <classname> | <interface>
IMPORTING <ex_par1> ... <ex_parN> SENDER.

CLASS lcl_air_traffic_controller DEFINITION.
...
PRIVATE SECTION.

METHODS: on_touched_down FOR EVENT touched_down OF lcl_airplane
IMPORTING ex_name

SENDER.
ENDCLASS.

Schmidt
on_touched_down

Air-traffic controller

LH Berlin

Event handler methods are triggered by events (RAISE EVENT), although they can also be called like
normal methods (CALL METHOD).

The interface of the event handler method consists solely of IMPORTING parameters. Only parameters
from the definition of the corresponding event (event interface) can be used. An event interface only has
EXPORTING parameters and is defined using the EVENTS statement in the declaration of the event. The
parameters are typed in the event definition and the typing is passed to the event handler method, that is,
the interface parameters of the event handler method cannot be typed in the definition of the event handler
method.
In addition to the explicitly defined event interface parameters, the implicit parameter SENDER can also be
listed as an IMPORTING parameter for instance events. This passes on a reference to the object that
triggered the event.

(C) SAP AG BC404 7-10

SAP AG 1999

Registering for an Event: Syntax

SET HANDLER <ref_handle>-><on_event>
FOR <ref_sender> | FOR ALL INSTANCES
[ACTIVATION <var>].

CLASS lcl_air_traffic_controller DEFINITION.
PUBLIC SECTION.

METHODS: add_airplane IMPORTING im_plane TYPE REF TO lcl_airplane.
PRIVATE SECTION.

METHODS: on_touched_down FOR EVENT touched_down OF ...
ENDCLASS.

CLASS cl_air_traffic_controller IMPLEMENTATION.
METHOD add_airplane.

SET HANDLER on_touched_down FOR im_plane ACTIVATION `X`. ...
ENDMETHOD.
METHOD ...
ENDCLASS.

Schmidt
on_touched_downLH Berlin

Set handler

When an event is triggered, only those event handler methods that have registered themselves using SET
HANDLER by this point at runtime are executed.

You can register an event using Activation ‘X‘ (see above example), and deregister it using Activation
‘SPACE‘ (see next slide). You can also register and deregister using a variable <var>, which is filled with
one of these two values. If you do not specify a value for Activation, then the event is registered (default
setting).
You can register several methods in one SET-HANDLER statement:

SET HANDLER <ref_handle1>-><handler_method1> ...
 <ref_handlen>-><handler_methodN>

FOR <ref_sender> | FOR ALL INSTANCES.

(C) SAP AG BC404 7-11

SAP AG 1999

Deregistration and the Implicit Reference SENDER

CLASS lcl_air_traffic_controller DEFINITION.
PUBLIC SECTION.

METHODS: add_airplane IMPORTING im_plane TYPE REF TO lcl_airplane.
PRIVATE SECTION.

METHODS: on_touched_down FOR EVENT touched_down OF lcl_airplane
IMPORTING ex_name SENDER.

ENDCLASS.
...
CLASS cl_air_traffic_controller IMPLEMENTATION.
...
METHOD on_touched_down.

SET HANDLER on_touched_down FOR SENDER ACTIVATION SPACE.
...

ENDMETHOD.
ENDCLASS.

Schmidt
on_touched_downLH Berlin

Set handler

In the above example, air-traffic controller Schmidt deregisters himself from the event touch_down for the
airplane “LH Berlin” once it has landed, as the next time “LH Berlin” lands (again triggering touch_down) ,
this will be at a different airport and so of no interest to him.

(C) SAP AG BC404 7-12

SAP AG 1999

Registration/Deregistration: Handler Table

Handler table
for object “LH Berlin”

on_touched_down

touched_down (Event)

Registered
object airplane

Schmidt

Handling
method

LH Berlin

Airplane

airplaneTraffic_controller

Every object that has defined events has an internal table: the handler table. All objects that have
registered for events are entered in this table together with their event handler methods.

Objects that have registered themselves for an event that is still “live” also remain “live”. The methods of
these objects are called when the event is triggered, even if they can no longer be reached using main
memory references.

(C) SAP AG BC404 7-13

SAP AG 1999

Event Handling: Characteristics

Event handling is sequential.

Sequence in which event handler methods are called is not
defined.

As far as the Garbage Collector is concerned, registration
has the same effect as a reference to the object registered.

Registered objects are never deleted.

Immediate effects of SET HANDLER on event handler
methods:

Newly registered event handlers are also executed.

Deregistered handlers may already have been executed.

If several objects have registered themselves for an event, then the sequence in which the event handler
methods are called is not defined, that is, there is no guaranteed algorithm for the sequence in which the
event handler methods are called.
If a new event handler is registered in an event handler method for an event that has just been triggered,
then this event handler is added to the end of the sequence and is then also executed when its turn comes.
If an existing event handler is deregistered in an event handler method, then this handler is deleted from
the event handler method sequence.

(C) SAP AG BC404 7-14

SAP AG 1999

Events and Visibility

Event Event handler method
public public, protected, private
protected protected, private
private private

The visibility of an event establishes authorization for
event handling.

The visibility in an event handler method establishes
authorization for SET-HANDLER statements.

An event handler method must have either the same or more
restricted visibility than the event it refers to :

Events are also subject to the visibility concept and can therefore be either public, protected or private.
Visibility establishes authorization for event handling :

all users
only users within that class or its subclasses

only users in that class.

Event handler methods also have visibility characteristics. Event handler methods, however, can only have
the same visibility or more restricted visibility than the events they refer to.

The visibility of event handler methods establishes authorization for SET-HANDLER statements: SET
HANDLER statements can be made

anywhere

in that class and its subclasses
only in that class

(C) SAP AG BC404 7-15

SAP AG 1999

Define and trigger events

Handle events

Register and deregister events

Explain the conceptual differences between
methods and events

You are now able to:

Events: Unit summary

(C) SAP AG BC404 7-16

Events Exercises

Unit: Events

Topic: Events

At the end of this exercise you will be able to:

Define and trigger events

Handle events

Register for events

An airline creates new flights and publicizes them in the media. Travel agencies
can then include these flights in their offerings.

1-1 Go to the include program ZBC404_##_LCL_CARRIER and define an event flight_created,
that you also trigger in the class.

1-1-1 The event is a public event that has two transfer parameters: ex_connid (type: sflight-
connid) and ex_fldate (type: sflight-fldate).

1-1-2 The event should be triggered in the existing create_a_new_flight method, after the
APPEND statement. Consider carefully how to pass the parameters.

1-2 Go to the include program ZBC404_##_LCL_TRAVEL_AGENCY, write a handler method for
the flight_created event and register the travel agency to the flight_created event for all airlines
that are business partners of the travel agency. The flights created by these airlines should be
saved in the travel agency in a flight list .

1-2-1 In class lcl_travel_agency, create an internal table list_of_flights as a private attribute.
The table should have the structure bc404_flight_list_type, which is already defined in
the Dictionary. Examine the structure definition in the Dictionary.

Define a public instance method add_a_new_flight as a handler method for the flight_created
event in class lcl_carrier. Enter the flight number (ex_connid), the flight date (ex_fldate)
and a reference to the event trigger (sender) as IMPORTING parameters.

When implementing the add_a_new_flight method, enter the airline, the flight number and the
flight date in the list of flights (list_of_flights). To do this, create a table work area in the
method. This table work area must have the same structure as the internal table
list_of_flights. Use the APPEND statement to fill the table.

Define the public method subscribe_for_flight_creation for registering the travel agency to the
flight_created event. This method does not have any transfer parameters.

Since the travel agency only includes flights provided by airlines that are its business partners
in its offering, it can only register itself to the flight_created event of these airlines. To
do this, you must use a LOOP structure to determine all the business partners that are
airlines in the internal table list_of_business_partners (since business partners also
include hotels).
Warning: If, during registration (SET-HANDLER ...), you enter a reference to an object
that has not implemented the corresponding event, you will get a runtime error.

(C) SAP AG BC404 7-17

Tip: In the method, define a reference to class lcl_carrier and carry out a widening cast
check using the interface reference that you need to read from the internal table
list_of_business_partners. Use the CATCH SYSTEM-EXCEPTIONS statement to
catch the move_cast_error runtime error. If no runtime error occurs (sy-subrc = 0), then
you can register the method add_a_new_flight.

Define and implement the public instance method display_list_of_flights to display the flight list
list_of_flights. This method does not have any transfer parameters.

1-3 Go to program ZBC404_##_MAIN.

Comment out the line with the method call display_business_partners.

Register the travel agency to new flights provided by airlines that are its business partners. At
the end of the program, call method subscribe_for_flight_creation.

An airline creates a new flight (method create_a_new_flight). Fill the transfer parameters with
your own data.

Display the list of flights of your travel agency (method display_list_of_flights).

(C) SAP AG BC404 7-18

Events Solutions

Unit: Events

Topic: Events

REPORT sapbc404gens_interfaces .

INCLUDE sapbc404gens_lcl_airplane.

INCLUDE sapbc404gens_lcl_passenger_air.

INCLUDE sapbc404gens_lcl_cargo_air.
INCLUDE sapbc404gens_lif_busi_partners.

INCLUDE sapbc404gens_lcl_hotel.

* Definition and raising the event FLIGHT_CREATED
INCLUDE sapbc404eves_lcl_carrier.

* Subscribing and handling the event FLIGHT_CREATED
INCLUDE sapbc404eves_lcl_travel_agency.

DATA: passenger_airplane TYPE REF TO lcl_passenger_airplane,

 cargo_airplane TYPE REF TO lcl_cargo_airplane,

 carrier TYPE REF TO lcl_carrier,
 hotel1 TYPE REF TO lcl_hotel, hotel2 TYPE REF TO lcl_hotel,

 agency TYPE REF TO lcl_travel_agency.

START-OF-SELECTION.

 INCLUDE sapbc404eves_agency_partners.

 CREATE OBJECT agency EXPORTING im_name = 'Happy Holiday'.

 CALL METHOD agency->add_business_partner
 EXPORTING im_business_partner = carrier.

 CALL METHOD agency->add_business_partner

 EXPORTING im_business_partner = hotel1.

 CALL METHOD agency->add_business_partner

 EXPORTING im_business_partner = hotel2.

* call method agency->display_business_partners.

* Display empty flight list

(C) SAP AG BC404 7-19

 CALL METHOD agency->display_list_of_flights.

* Subscribe for event FLIGHT_CREATED of all business partners

 CALL METHOD agency->subscribe_for_flight_creation.

* One business partner is creating a new flight

 CALL METHOD carrier->create_a_new_flight
 EXPORTING im_connid = '815'

 im_fldate = '19991231'

 im_airplane = passenger_airplane.

* Display flight list
 CALL METHOD agency->display_list_of_flights.

Include program SAPBC404GENS_LCL_AIRPLANE
--
* CLASS lcl_airplane DEFINITION *

--

CLASS lcl_airplane DEFINITION.

 PUBLIC SECTION.

 TYPES: name_type(25) TYPE c.

 CONSTANTS: pos_1 TYPE i VALUE 30.

 METHODS: constructor IMPORTING

 im_name TYPE name_type

 im_planetype TYPE saplane-planetype,
 set_attributes IMPORTING

 im_name TYPE name_type
 im_planetype TYPE saplane-planetype,

 display_attributes.

 CLASS-METHODS: display_n_o_airplanes.

(C) SAP AG BC404 7-20

* NEW: protected section

 PROTECTED SECTION.

 DATA: name TYPE name_type,

 planetype TYPE saplane-planetype.

 PRIVATE SECTION.

 CLASS-DATA: n_o_airplanes TYPE i.

ENDCLASS.

--
* CLASS lcl_airplane IMPLEMENTATION *

--

CLASS lcl_airplane IMPLEMENTATION.

 METHOD constructor.

 name = im_name.
 planetype = im_planetype.

 n_o_airplanes = n_o_airplanes + 1.

 ENDMETHOD.

 METHOD set_attributes.

 name = im_name.
 planetype = im_planetype.

 ENDMETHOD.

 METHOD display_attributes.

 WRITE: / 'Name of the airplane: '(001), AT pos_1 name,
 / 'Plane type: '(002), AT pos_1 planetype.

 ENDMETHOD.

 METHOD display_n_o_airplanes.

 WRITE: /, / 'Total number of airplanes: '(ca1),

 AT pos_1 n_o_airplanes LEFT-JUSTIFIED, /.
 ENDMETHOD.

ENDCLASS.

(C) SAP AG BC404 7-21

Include program SAPBC404GENS_LCL_PASSENGER_AIR
--

* CLASS lcl_passenger_airplane DEFINITION *

--
CLASS lcl_passenger_airplane DEFINITION INHERITING FROM

 lcl_airplane.

 PUBLIC SECTION.

 METHODS: constructor IMPORTING
 im_name TYPE name_type

 im_planetype TYPE saplane-planetype
 im_n_o_seats TYPE sflight-seatsmax,

 display_attributes REDEFINITION.

 PRIVATE SECTION.

 DATA: n_o_seats TYPE sflight-seatsmax.

ENDCLASS.

--

* CLASS lcl_passenger_airplane IMPLEMENTATION *

--
CLASS lcl_passenger_airplane IMPLEMENTATION.

 METHOD constructor.
 CALL METHOD super->constructor EXPORTING

 im_name = im_name
 im_planetype = im_planetype.

 n_o_seats = im_n_o_seats.

 ENDMETHOD.

 METHOD display_attributes.

 CALL METHOD super->display_attributes.
 WRITE: / 'Number of seats: '(003), 25 n_o_seats, /.

 ENDMETHOD.

ENDCLASS.

Include program SAPBC404GENS_LCL_CARGO_AIR
--

* CLASS lcl_cargo_airplane DEFINITION *

(C) SAP AG BC404 7-22

--
CLASS lcl_cargo_airplane DEFINITION INHERITING FROM lcl_airplane.

 PUBLIC SECTION.

 METHODS: constructor IMPORTING

 im_name TYPE name_type
 im_planetype TYPE saplane-planetype

 im_cargo_max TYPE p,

 display_attributes REDEFINITION.

 PRIVATE SECTION.

 DATA: cargo_max TYPE scplane-cargomax.

ENDCLASS.

--
* CLASS lcl_cargo_airplane IMPLEMENTATION *

--

CLASS lcl_cargo_airplane IMPLEMENTATION.

 METHOD constructor.

 CALL METHOD super->constructor EXPORTING
 im_name = im_name

 im_planetype = im_planetype.

 cargo_max = im_cargo_max.
 ENDMETHOD.

 METHOD display_attributes.

 CALL METHOD super->display_attributes.

 WRITE: / 'Maximal cargo: '(004),
 at pos_1 cargo_max left-justified, /.

 ENDMETHOD.

ENDCLASS.

Include program SAPBC404GENS_LIF_BUSI_PARTNERS

INTERFACE lif_business_partners.

 METHODS: display_company_data.

(C) SAP AG BC404 7-23

ENDINTERFACE.

Include program SAPBC404GENS_LCL_HOTEL
--
* CLASS lcl_hotel DEFINITION *

--

CLASS lcl_hotel DEFINITION.

 PUBLIC SECTION.

* Interface declaration

 INTERFACES: lif_business_partners.

 METHODS: constructor IMPORTING im_name TYPE string

 im_city TYPE string
 im_n_o_rooms TYPE i.

 PRIVATE SECTION.

 DATA: name TYPE string,

 city TYPE string,
 n_o_rooms TYPE i.

ENDCLASS.

--

* CLASS lcl_hotel IMPLEMENTATION *
--

CLASS lcl_hotel IMPLEMENTATION.

 METHOD constructor.

 name = im_name.
 city = im_city.

 n_o_rooms = im_n_o_rooms.

 ENDMETHOD.

* Interface Implementation

 METHOD lif_business_partners~display_company_data.
 WRITE: / 'Hotel '(h01), name COLOR COL_NEGATIVE, 'in'(h02), city,

 / 'The number of available rooms is'(h03),

 n_o_rooms left-justified, /.
 ENDMETHOD.

(C) SAP AG BC404 7-24

ENDCLASS.

Include program SAPBC404EVES_LCL_CARRIER
--

* CLASS lcl_carrier DEFINITION *
--

CLASS lcl_carrier DEFINITION.

 PUBLIC SECTION.

 TYPES: BEGIN OF flight_list_type,

 connid TYPE sflight-connid,

 fldate TYPE sflight-fldate,
 airplane TYPE REF TO lcl_airplane,

 seatsocc TYPE sflight-seatsocc,

 cargo(5) TYPE p DECIMALS 3,
 END OF flight_list_type.

 INTERFACES: lif_business_partners.

 METHODS: constructor IMPORTING im_name TYPE string,

 get_name RETURNING value(ex_name) TYPE string,
 add_a_new_airplane IMPORTING

 im_airplane TYPE REF TO lcl_airplane,

 create_a_new_flight IMPORTING
 im_connid TYPE sflight-connid

 im_fldate TYPE sflight-fldate

 im_airplane TYPE REF TO lcl_airplane
 im_seatsocc TYPE sflight-seatsocc

 OPTIONAL
 im_cargo TYPE p OPTIONAL,

 display_airplanes.

* Definition of event FLIGHT_CREATED

 EVENTS: flight_created EXPORTING

 value(ex_connid) TYPE sflight-connid
 value(ex_fldate) TYPE sflight-fldate.

 PRIVATE SECTION.

 DATA: name TYPE string,

 list_of_airplanes TYPE TABLE OF REF TO lcl_airplane,
 list_of_flights TYPE TABLE OF flight_list_type.

(C) SAP AG BC404 7-25

ENDCLASS.

--
* CLASS lcl_carrier IMPLEMENTATION

--

CLASS lcl_carrier IMPLEMENTATION.

 METHOD constructor.

 name = im_name.
 ENDMETHOD.

 METHOD get_name.

 ex_name = name.

 ENDMETHOD.

 METHOD lif_business_partners~display_company_data.

 DATA: n_o_airplanes TYPE i.
 DESCRIBE TABLE list_of_airplanes LINES n_o_airplanes.

 WRITE: / name COLOR COL_POSITIVE, / 'Number of Airplanes:'(c01),

 n_o_airplanes LEFT-JUSTIFIED, /.
 ENDMETHOD.

 METHOD add_a_new_airplane.
 APPEND im_airplane TO list_of_airplanes.

 ENDMETHOD.

 METHOD create_a_new_flight.

 DATA: wa_list_of_flights TYPE flight_list_type.

 wa_list_of_flights-connid = im_connid.

 wa_list_of_flights-fldate = im_fldate.
 wa_list_of_flights-airplane = im_airplane.

 IF im_seatsocc IS INITIAL.

 wa_list_of_flights-cargo = im_cargo.
 ELSE.

 wa_list_of_flights-seatsocc = im_seatsocc.

 ENDIF.
 APPEND wa_list_of_flights TO list_of_flights.

* Raise event FLIGHT_CREATED

 RAISE EVENT flight_created EXPORTING ex_connid = im_connid
 ex_fldate = im_fldate.

 ENDMETHOD.

 METHOD display_airplanes.

 DATA airplane TYPE REF TO lcl_airplane.

(C) SAP AG BC404 7-26

 LOOP AT list_of_airplanes INTO airplane.
 CALL METHOD airplane->display_attributes.

 ENDLOOP.

 ENDMETHOD.

ENDCLASS.

Include program SAPBC404EVES_LCL_TRAVEL_AGENCY
--

* CLASS lcl_travel_agency DEFINITION *
--

CLASS lcl_travel_agency DEFINITION.

 PUBLIC SECTION.

 METHODS: constructor IMPORTING im_name TYPE string,
 add_business_partner IMPORTING im_business_partner

 TYPE REF TO lif_business_partners,

 display_business_partners,
* Subscribe for event FLIGHT_CREATED

 subscribe_for_flight_creation,

* Handler method for event FLIGHT_CREATED
 add_a_new_flight FOR EVENT flight_created

 OF lcl_carrier

 IMPORTING ex_connid ex_fldate sender,
* Display flight list

 display_list_of_flights.

 PRIVATE SECTION.

 DATA: name TYPE string,

* Internal table for flight list

 list_of_flights TYPE TABLE OF bc404_flight_list_type,
 list_of_business_partners TYPE TABLE OF REF TO

 lif_business_partners.

ENDCLASS.

--

* CLASS lcl_travel_agency IMPLEMENTATION

--
CLASS lcl_travel_agency IMPLEMENTATION.

(C) SAP AG BC404 7-27

 METHOD constructor.
 name = im_name.

 ENDMETHOD.

* Implementation of subscribe method

 METHOD subscribe_for_flight_creation.

 DATA: partner TYPE REF TO lif_business_partners,
 carrier type ref to lcl_carrier.

 LOOP AT list_of_business_partners INTO partner.

* Attention: widening cast ...
 CATCH SYSTEM-EXCEPTIONS move_cast_error = 4.

 carrier ?= partner.
 ENDCATCH.

 IF sy-subrc = 0.

* ... in SET HANDLER command
 SET HANDLER add_a_new_flight FOR partner.

 ENDIF.

 ENDLOOP.
 ENDMETHOD.

(C) SAP AG BC404 7-28

* Implementation of handler method

 METHOD add_a_new_flight.

 DATA: flight TYPE bc404_flight_list_type.
 flight-carrier = sender->get_name().

 flight-connid = ex_connid.

 flight-fldate = ex_fldate.
 APPEND flight TO list_of_flights.

 ENDMETHOD.

* Implementation of display flight list

 METHOD display_list_of_flights.
 DATA: flight TYPE bc404_flight_list_type.

 WRITE: / 'flight list of the travel agency'(ev1), name, /.

 LOOP AT list_of_flights INTO flight.
 WRITE: / flight-carrier, flight-connid, 30 flight-fldate.

 ENDLOOP.

 write: /, / 'created at'(ev2), sy-datum.
 skip 5.

 ENDMETHOD.

 METHOD add_business_partner.

 APPEND im_business_partner TO list_of_business_partners.

 ENDMETHOD.

 METHOD display_business_partners.

 DATA business_partner TYPE REF TO lif_business_partners.
 WRITE: / 'Travel Agency:'(ta1), name COLOR COL_HEADING,

 / 'Business partners:'(ta2), /.

 LOOP AT list_of_business_partners INTO business_partner.
 CALL METHOD business_partner->display_company_data.

 ENDLOOP.
 ENDMETHOD.

ENDCLASS.

(C) SAP AG BC404 7-29

Include program SAPBC404EVES_AGENCY_PARTNERS
CREATE OBJECT passenger_airplane EXPORTING

im_name = 'LH Berlin'
 im_planetype = '747-400'

 im_n_o_seats = 580.

 CREATE OBJECT cargo_airplane EXPORTING im_name = 'US Hercules'

 im_planetype = 'Galaxy'
 im_cargo_max = 30000.

 CREATE OBJECT carrier EXPORTING im_name = 'Lufthansa'.

 CALL METHOD carrier->add_a_new_airplane EXPORTING
 im_airplane = passenger_airplane.

 CREATE OBJECT passenger_airplane EXPORTING
 im_name = 'LH München'

 im_planetype = 'A310-300'

 im_n_o_seats = 280.

 CALL METHOD carrier->add_a_new_airplane EXPORTING

 im_airplane = passenger_airplane.

 CALL METHOD carrier->add_a_new_airplane EXPORTING
 im_airplane = cargo_airplane.

 create object hotel1 exporting im_name = 'Budget Inn'

 im_city = 'Washington'
 im_n_o_rooms = 112.

 create object hotel2 exporting im_name = 'Ambassador'
 im_city = 'Frankfurt'

 im_n_o_rooms = 85.

(C) SAP AG BC404 8-1

SAP AG 1999

Local vs. global classes/interfaces

Class Builder

Contents:

Global Classes/Interfaces

(C) SAP AG BC404 8-2

SAP AG 1999

Describe the difference between local and global
classes/interfaces

Create global classes/interfaces using the Class
Builder

At the conclusion of this unit, you will be able to:

Global Classes/Interfaces: Unit Objectives

(C) SAP AG BC404 8-3

SAP AG 1999

Global Classes/Interfaces: Course Overview Diagram

Introduction

Analysis and Design

Principles

Generalization/
Specialization

Events

Global Classes/Interfaces

Summary and Outlook

(C) SAP AG BC404 8-4

SAP AG 1999

Local Classes/Interfaces

REPORT prog_1.

CLASS lcl_airplane DEFINITION.
...

ENDCLASS.

CLASS lcl_airplane ...
...

ENDCLASS.
...

REPORT prog_2.
...
DATA: airplane

TYPE REF TO lcl_airplane.
...

Local in program

Local classes are only valid in the program they were defined
in

Not stored in the Repository

No global access

Local classes/interfaces are only known within the program in which they are defined and implemented.

Local classes/interfaces are not stored in the Repository (no TADIR entry). There is no “global” access to
these classes/interfaces (for example, from other programs).
If a local class is implemented in an include which is then embedded in two different programs, then
references to the “same” class still cannot be exchanged at runtime. Two classes that do not conform to
type are created at runtime.

(C) SAP AG BC404 8-5

SAP AG 1999

Stored in Repository

Access from all programs using TYPE REF TO

Class and interface names governed by the SAP
namespace concept

Customer namespace: Y* or Z*

Where-used list available

Own maintenance tool

Transaction SE24 - Class Builder

Global Classes/Interfaces

FI HR

SD

WM

MM

Unlike local in program classes/interfaces, global classes/interfaces can be created and implemented using
the ABAP Workbench Tool Class Builder or transaction SE24. These classes/interfaces are then available
to all developers.
Global class and interface names share the same namespace.

Global classes/interfaces have a TADIR entry: R3TR CLASS <name>

The smallest transport unit is method LIMU METH.

(C) SAP AG BC404 8-6

SAP AG 1999

Class Builder

Tool for creating, testing and administrating global
classes and interfaces

Menu-driven

Generates the framework coding

e.g. CLASS <name> DEFINITION

Administers the include programs in which the coding is
stored

The Class Builder is a tool in the ABAP Workbench that is used to create, define and test global ABAP
classes and interfaces.

(C) SAP AG BC404 8-7

SAP AG 1999

Class Builder: Structure

Initial screen

Basic data
maintenance

Class Editor

ABAP Editor

Test environment

Class
library

Class Builder Class
Browser

Navigation:
Data flow:

In the initial screen, select the object type you want to work with - class or interface. Then choose one of
the display, change, create or test functions.

In the initial screen you have the choice of viewing the contents of the R/3 class library using the Class
Browser or going straight to basic data maintenance of the object types and the Class Editor, where you
can define the object types and their components. The object type definition can be immediately followed
by method implementation in the ABAP Editor. You can also access the test environment from the initial
screen or from the Class Editor.

(C) SAP AG BC404 8-8

SAP AG 1999

Class Builder: Global Classes

Class ZCL_AIRPLANE

Properties Interfaces Attributes Methods Events Internal types

Attributes Level Visibility Read-Onl Typing Reference type Description Initial valu
NAME Instance AttribuPrivate Type STRING Name of airplane
WEIGHT Instance AttribuPrivate Type SAPLANE-WEIG Weight of airplane

Type
Type

Class Editor

In the Class Builder you have the same options for creating a global class as for creating a local class.

(C) SAP AG BC404 8-9

SAP AG 1999

Class Builder: Global Interfaces

Class Editor

Interface ZIF_BOOK

Properties Interfaces Attributes Methods Events

Parameters Exceptions

Methods Level Category Description Modeled
BOOK Instance Method Book various booking objects

DISPLAY Instance Method Display bookings

ABAP Editor

Double click

In the Class Builder you have the same options for creating a global interface as for creating a local
interface.

(C) SAP AG BC404 8-10

SAP AG 1999

Class Builder: Testing Classes (1)

Test environment

Instance

CONSTRUCTOR

Import Parameter

IM_LEFT_WING
IM_LENGTH
IM_NAME
IM_RIGHT_WING
IM_SEATS
IM_WEIGHT

7<ZCL_WING>

8<ZCL_WING>

120

280
35000

1

2

Create objects

(C) SAP AG BC404 8-11

SAP AG 1999

Class Builder: Testing Classes (2)

Test environment

ZCL_AIRPLANE

Methods
Attributes
Interfaces

Events

DISPLAY
TAKE_OFF
TOUCH_DOWN

TOUCHED_DOWN

Test methods

Trigger events

(C) SAP AG BC404 8-12

SAP AG 1999

Describe the difference between local and global
classes/interfaces

Create global classes/interfaces using the Class
Builder

You are now able to:

Global Classes/Interfaces: Unit Summary

(C) SAP AG BC404 8-13

Global Classes/Interfaces Exercises

Unit: Global Classes/Interfaces

Topic: Global Classes

At the end of this exercise you will be able to:

Create a global class in the Class Builder

Test a global class in the Class Builder

Use global classes in programs

An airline needs to manage its airplanes.

1-1 Create global class zcl_##_airplane in the Class Builder. Define the global class similarly to the
local class lcl_airplane (include program ZBC404_##_LCL_AIRPLANE).

1-1-1 Attributes:
- name (protected instance attribute, type string)
– planetyp (protected instance attribute, type saplane-planetyp)
– n_o_airplanes (private static attribute, type i)

1-1-2 Methods:
- constructor (parameters: im_name, im_planetype)
– display_attributes (no parameters)
– display_n_o_airplanes (no parameters)
You can copy the source code for the methods from your definition of the local class
lcl_airplane (program ZBC404_##_LCL_AIRPLANE).

1-2 Test your global class zcl_##_airplane in the Class Builder.

1-2-1 Create an instance.

1-2-2 Call methods display_attributes and display_n_o_airplanes.

1-3 Go to program ZBC404_##_MAINTAIN_AIRPLANES.

Comment out the INCLUDE statement with ZBC404_##_LCL_AIRPLANE.

Replace lcl_airplane throughout the program with zcl_##_airplane.

Start the program.

(C) SAP AG BC404 8-14

(C) SAP AG BC404 8-15

Global Classes/Interfaces Solutions

Unit: Global Classes/Interfaces

Topic: Global Classes

REPORT sapbc404glos_cl_airplane .

* No use of the local implementation

* include sapbc404bass_lcl_airplane_2.

* Use of global class BC404_CL_AIRPLANE

DATA: airplane TYPE REF TO bc404_cl_airplane.

START-OF-SELECTION.

* Use of global class BC404_CL_AIRPLANE

 CALL METHOD bc404_cl_airplane=>display_n_o_airplanes.

 CREATE OBJECT airplane EXPORTING im_name = 'LH Berlin'

 im_planetype = '747-400'.

 CALL METHOD airplane->display_attributes.

* Use of global class BC404_CL_AIRPLANE

 CALL METHOD bc404_cl_airplane=>display_n_o_airplanes.

(C) SAP AG BC404 9-1

SAP AG 1999

Overall aims of software development

Strengths and weaknesses of object-oriented
programming

Outlook

Contents:

Summary and Outlook

(C) SAP AG BC404 9-2

SAP AG 1999

Name the overall aims of software development

Describe the strengths and weaknesses of the
object-oriented approach

At the conclusion of this unit, you will be able to:

Summary and Outlook: Unit Objectives

(C) SAP AG BC404 9-3

SAP AG 1999

Summary and Outlook: Course Overview Diagram

Introduction

Analysis and Design

Principles

Generalization/
Specialization

Events

Global Classes/Interfaces

Summary and Outlook

(C) SAP AG BC404 9-4

SAP AG 1999

Overall Aims of Software Development

Quality
of a

software product

Correctness Robustness

Extensibility Re-usability

In the early stages of programming history, in the 1970s and 1980s, the principle aim was to write
programs that were correct and robust. A program is considered correct if it does exactly what is said in the
program specification. A program is considered robust if it can react appropriately to (user) errors and does
not just crash immediately.

As programs grew in scope and complexity, more attention began to be paid to the possibilities of
extensibility and re-usability, in order to avoid constantly having to re-invent the wheel. Extensibility is the
facility to enhance an existing program by adding new functions, while still using it in the same context. Re-
usability, on the other hand, is when a program or part of a program is taken out of its own context and
recycled in another context, that is, as part of another program that has different tasks.

(C) SAP AG BC404 9-5

SAP AG 1999

Characteristics of Object-Oriented Programming (1)

- name: string

- count: i

lcl_airplane

+ set_name(im_name: string)

+ get_count(): i

- set_count(im_count: i)

Classes

Summarization of data and functionality
into an “independent” software unit

Simple re-use of coding

Encapsulation

Communication only using interfaces (public
components)

No dependency on actual implementation

(C) SAP AG BC404 9-6

SAP AG 1999

lcl_airplane

lcl_passenger_airplanelcl_cargo_airplane

Characteristics of Object-Oriented Programming (2)

Polymorphism

Programs can be extended with
minimum effort

Inheritance

Re-use of implementations

Think in terms of responsibilities

Question: which class is responsible?

Avoid redundancies

(C) SAP AG BC404 9-7

SAP AG 1999

Strengths of the Object-Oriented Approach (1)

Extensibility

Re-usability

The following aims are better supported:

Extensibility through

Polymorphism

Inheritance

Re-usability through

Classes

Encapsulation

Inheritance

(C) SAP AG BC404 9-8

SAP AG 1999

Strengths of the Object-Oriented Approach (2)

Uniform language throughout the
development process

All participants

In all phases

Reality is reflected in appropriate software concepts

Objects -> objects

Their state -> attributes

Their functions -> methods

(C) SAP AG BC404 9-9

SAP AG 1999

Weaknesses of the Object-Oriented Approach

Longer development phase before first results ready

Paradigm break between object-oriented programs and
relational databases

Object-oriented programs normally lose out to procedural
programs in terms of performance

(C) SAP AG BC404 9-10

SAP AG 1999

Outlook

BOR

ABAP Objects

Class library

OO application OO application

The Business Object Repository, the object-oriented view of the R/3 System, will be migrated to the Class
Library by Rel5.0. Then classes, such as customer or invoice, will be available globally in the system for
use by any application.

(C) SAP AG BC404 10-1

SAP AG 1999

Additional course slides on

Principles

Inheritance

Interfaces

Events

The complete exercise scenario in UML

Summary of ABAP Objects syntax

Contents:

Appendix

(C) SAP AG BC404 10-2

SAP AG 1999

Appendix: Overview (1)

InheritanceInheritance

InterfacesInterfaces

EventsEvents

Exercise ScenarioExercise Scenario

Principles Principles

Summary of SyntaxSummary of Syntax

(C) SAP AG BC404 10-3

SAP AG 1999

CLASS <classname> DEFINITION
CREATE PROTECTED.

ENDCLASS.

CLASS <classname> DEFINITION
CREATE PRIVATE.

ENDCLASS.

CLASS <classname> DEFINITION
CREATE PUBLIC.

ENDCLASS.

Instantiating Objects

CLASS <classname> DEFINITION.
ENDCLASS.

oder

CREATE PUBLIC

Default

Object instantiation is not
restricted

CREATE PROTECTED

Objects can only be
instantiated in the class itself
and any of its subclasses

CREATE PRIVATE

Objects can only be
instantiated in the class itself

Instantiation using own
(static) methods

CREATE PUBLIC, the optional default supplement, allows unrestricted instantiation of objects in a class,
that is, instances in a class can be created in any part of this program/class.

CREATE PROTECTED only allows objects in a class to be instantiated in that class itself and in any of its
subclasses.

CREATE PRIVATE only allows objects in a class to be instantiated in that class itself. This is then done
using static methods (known as Factory Methods).

(C) SAP AG BC404 10-4

SAP AG 1999

Instantiating Objects: Example

CLASS lcl_manager DEFINITION CREATE PRIVATE.
PUBLIC SECTION.
CLASS-METHODS get_instance RETURNING

VALUE(re_instance) TYPE REF TO lcl_manager.
METHODS: CONSTRUCTOR IMPORTING

PRIVATE SECTION.
DATA
CLASS-DATA the_manager TYPE REF TO lcl_manager.

ENDCLASS.

CLASS lcl_manager IMPLEMENTATION.
METHOD get_instance.

IF the_manager IS INITIAL.
CREATE OBJECT the_manager EXPORTING

ENDIF.
re_instance = the_manager.

ENDMETHOD.
METHOD CONSTRUCTOR. ...
ENDMETHOD.

ENDCLASS.

DATA: manager TYPE REF TO
lcl_manager.

manager =
lcl_manager=>get_instance().

Example using the addition CREATE PRIVATE (see above):
Class lcl_manager wants to prevent several objects of this class existing at runtime. Only one instance is to
be instantiated.
Therefore the class defines the instantiation of objects as private and provides in its place the static method
get_instance, which a potential client can use to get a reference to the sole object.

(C) SAP AG BC404 10-5

SAP AG 1999

CREATE OBJECT <reference> TYPE <classname> [EXPORTING...]
[EXCEPTIONS ...].

CREATE OBJECT <reference> TYPE (<classname_string>).

DATA: doc TYPE REF TO if_document,
class_name(20) TYPE c VALUE ´CL_TEXT_DOC´.

CREATE OBJECT doc TYPE cl_html_doc.
CREATE OBJECT doc TYPE (class_name).

CREATE OBJECT with Class Name

«interface»
if_document

lcl_text_doc

You can enter the class name with CREATE OBJECT both
statically and dynamically

Subclasses possible with reference to class

Classes carrying out the implementation possible with
references to interfaces

The CREATE OBJECT statement is extended by the introduction of inheritance and interfaces: you can
enter the class of the instance to be created either statically, using the class name, or dynamically, using a
variable containing the class name. Once the statement has been executed (successfully), a (runtime)
instance of the class entered will have been created and the reference variable entered points to this
instance.

There are two possible situations:
For a reference variable referring to a class, enter the name of a subclass (or of the class itself).

For a reference variable referring to an interface, enter the name of the class carrying out the
implementation.

A check can be carried out in the static form “... TYPE <classname>…” to see if one of the two situations
above has occurred. If it has not, a syntax error will occur.
In the dynamic form “...TYPE (<classname_string>).” the classname_string field provides the class name. A
check can be carried out at runtime to ensure that the reference variable type is compatible with the class
entered. If this is not the case, a runtime error occurs.
In the dynamic form, you can only enter the names of classes whose (instance) constructor either has no
parameters or only optional parameters.

(C) SAP AG BC404 10-6

SAP AG 1999

Dynamic Method Calls

CALL METHOD <reference>->(<method_name>) ...

Dynamic method selection

Dynamic interface

Parameter table: type ABAP_PARMBIND_TAB

Exception table: type ABAP_EXCPBIND_TAB

Parameters entered as references

Dynamic information on methods using RTTI

(C) SAP AG BC404 10-7

SAP AG 1999

Dynamic Method Calls (Example)

CLASS CL_ABAP_OBJECTDESCR DEFINITION LOAD.

* Definition and implementation of lcl_airplane omitted

DATA: plane TYPE REF TO lcl_airplane,

method_name TYPE string VALUE 'SET_NAME',

plane_name TYPE string VALUE 'LH London'.

DATA: ptab TYPE abap_parmbind_tab,

ptab_line LIKE LINE OF ptab.

ptab_line-name = 'IM_NAME'.

ptab_line-kind = CL_ABAP_OBJECTDESCR=>EXPORTING. "Konstante

GET REFERENCE OF plane_name INTO ptab_line-value.

INSERT ptab_line INTO TABLE ptab.

*Instantiation of plane omitted

CALL METHOD plane->(method_name) PARAMETER-TABLE ptab.

*CALL METHOD plane->(method_name) exporting im_name = plane_name.

(C) SAP AG BC404 10-8

SAP AG 1999

Runtime Type Identification (RTTI)

DATA: type_descr TYPE REF TO cl_abap_typedescr,

object_descr TYPE REF TO cl_abap_objectdescr.

* Describe type of instance:

type_descr = cl_abap_typedescr=>describe_by_data(<data_field>).

object_descr ?= cl_abap_typedescr=>describe_by_object_ref(<reference>).

* Describe type:

type_descr = cl_abap_typedescr=>describe_by_name(<type_name>).

Comprehensive dynamic type inforamtion for all types

Classes with type description: CL_ABAP_*

CL_ABAP_TYPEDESCR as point of entry

(C) SAP AG BC404 10-9

SAP AG 1999

RTTI (Example)

TYPES: my_type TYPE i.
DATA: my_data TYPE my_type,

descr_ref TYPE ref to cl_abap_typedescr.

descr_ref = cl_abap_typedescr=>describe_by_data(my_data).

WRITE: / 'Typename:', descr_ref->absolute_name.
WRITE: / 'Kind :', descr_ref->type_kind.
WRITE: / 'Length :', descr_ref->length.
WRITE: / 'Decimals:', descr_ref->decimals.

Type name: \Program=!TEST_RTTI\TYPE=MY_TYPE
Kind: I
Length: 4
Decimals: 0

Output:

(C) SAP AG BC404 10-10

SAP AG 1999

TYPES: BEGIN OF linetype,
plane TYPE REF TO cl_airplane,

END OF linetype.
DATA: plane_list TYPE TABLE OF linetype.
DATA: wa TYPE linetype.

LOOP AT plane_list INTO wa WHERE plane->weight = 300.
...

ENDLOOP.

Access to Components in Internal Tables

Possible for LOOP, READ TABLE, SORT, DELETE, MODIFY

DATA: plane_list TYPE TABLE OF REF TO lcl_airplane.
DATA: wa TYPE linetype.

LOOP AT plane_list INTO wa WHERE TABLE_LINE->weight = 300.
...

ENDLOOP.

lcl_airplane

- name
+ weight

If the line type of an internal table contains references variables in the component comp, their attributes can
accessed in the following statements:

LOOP AT itab ... WHERE comp->attr ...
READ TABLE itab ... WITH [TABLE] KEY comp->attr ...

SORT itab BY comp->attr ...

DELETE itab WHERE comp->attr ...
MODIFY itab ... TRANSPORTING .. WHERE comp->attr ...

If an internal table has unstructured lines of the reference variable type, then the attributes of the object that
the line points to can be addressed using TABLE_LINE->attr.

(C) SAP AG BC404 10-11

SAP AG 1999

Appendix: Overview (2)

PrinciplesPrinciples

InterfacesInterfaces

EventsEvents

Exercise ScenarioExercise Scenario

Inheritance Inheritance

Summary of SyntaxSummary of Syntax

(C) SAP AG BC404 10-12

SAP AG 1999

lcl_cargo_airplane

lcl_airplane

+ get_ready()

+ prepare_start()
* general preparations

* special preparations

* do something
CALL METHOD super->get_ready.

+ get_ready()

+ prepare_start()

1

2

3

CALL METHOD cargo_airplane->get_ready.

* do something
CALL METHOD prepare_start.

Polymorphism in Methods

In ABAP Objects you can call a method from the superclass using the pseudo-reference super: CALL
METHOD super->method_name ...

You can only do this in the implementation of the redefined method method_name in a subclass.
In the above example, the reference variable cargo_airplane calls the method get_ready, in which the
superclass method get_ready is called. This calls the method prepare_start, which is redefined in the
subclass. As the dynamic type of the calling reference variable is the subclass cl_cargo_airplane, the call is
polymorphic, that is, the implementation of the subclass is carried out.
 In the above example, the implementation of the superclass method prepare_start cannot be accessed
from the superclass method get_ready.

(C) SAP AG BC404 10-13

SAP AG 1999

lcl_cargo_airplane

lcl_airplane

+ constructor()

+ create_parts ()
* Create general parts

name = im_name.
Call METHOD create_parts.

* Create special parts

CALL METHOD super->CONSTRUCTOR
EXPORTING im_name = im_name.

CALL METHOD create_parts. + constructor()

+ create_parts ()

Polymorphism in the (Instance) Constructor

4

1

3

2

5

CREATE OBJECT cargo_airplane EXPORTING

Within the instance constructor, methods from the same
class cannot be called polymorphically!

What happens when a cargo plane instance is created in the above example? Firstly, the constructor of
superclass lcl_airplane is called in the constructor, which in turn calls the method create_parts. As this
method is (implicitly) carried out on an instance in the lcl_cargo_airplane class, the call was, as usual,
polymorphic, that is, the implementation for class lcl_cargo_airplane was carried out. This causes a
problem: an instance method is running for an object whose constructor is not yet finished!

Therefore ABAP Objects works according to a different model: within the (instance) constructor, (instance)
methods from that class cannot be polymorphic! In other words: within the constructor, subclass method
implementations are ignored.
In the above situation, in which the constructor in the lcl_cargo_airplane class calls the superclass
constructor, which in turn calls create_parts, the implementation in the superclass lcl_airplane is used.
Therefore, once the superclass constructor has been executed, the create_parts method is called again in
the subclass constructor, so that the specialized parts of the cargo plane are also created.

The consequences of this are: the create_parts method in the superclass must be able to cope with several
calls for one and the same object. Why? Normally, the subclass method would call the method of the same
name in the immediate superclass. However, during the constructor, the superclss implementation of
create_parts is called twice.

(C) SAP AG BC404 10-14

SAP AG 1999

Incorrect Use of Inheritance: Example (1)

Problem:

Unnecessary
inheritance
relationship

lcl_red_car lcl_blue_car

lcl_car

Solution:
Additional
attribute or
aggregation

lcl_car

- color

(C) SAP AG BC404 10-15

SAP AG 1999

Incorrect Use of Inheritance: Example (2)

Problem:

Unnecessary
inheritance
relationship

Solution:
Aggregation

lcl_airplane

lcl_technical_airplane

- tank
+ get_fuel_level

lcl_airplane

- tank
+ get_fuel_level

lcl_tank

+ get_fuel_level

tank

(C) SAP AG BC404 10-16

SAP AG 1999

Incorrect Use of Inheritance: Example (3)

Problem:
One person can be
both client and
vendor at different
times lcl_client lcl_contractor

lcl_person

lcl_client lcl_contractor

lcl_role
{abstract}lcl_person

Solution:
Roles

(C) SAP AG BC404 10-17

SAP AG 1999

Problematic Use of Inheritance: Example

Problem: the inheritance relationship does not correspond to
the real world: it does not make sense to have 2
methods to increase the side length of a square.

+ lengthen
+ widen

lcl_rectangle

+ lengthen
+ widen

lcl_square

(C) SAP AG BC404 10-18

SAP AG 1999

Appendix: Overview(3)

InheritanceInheritance

PrinciplesPrinciples

EventsEvents

Exercise ScenarioExercise Scenario

Interfaces Interfaces

Summary of SyntaxSummary of Syntax

(C) SAP AG BC404 10-19

SAP AG 1999

Alias Names in Interfaces

CLASS lcl_text_document DEFINITION.
PUBLIC SECTION.

INTERFACES: lif_document.
METHODS: display.
ALIASES: normal_display

FOR lif_document~display.
ENDCLASS.

DATA: text_doc TYPE REF TO lcl_text_document.

CREATE OBJECT text_doc.

*CALL METHOD text_doc->lif_document~display.
CALL METHOD text_doc->normal_display.

CLASS lcl_text_document IMPLEMENTATION.
METHOD lif_document~display.

...
ENDMETHOD.

ENDCLASS.

«interface»
lif_document

author : lcl_author

display ()
print ()

lcl_text_document

display ()

In the class carrying out the implementation, you can assign an alias name to an interface component
using the ALIASES statement for the class itself and all its users. This is however only an abbreviation of
the long name. Even if an alias is assigned for an interface method, the method only needs to be
implemented once as <interfacename>~<methodname>. Alias names are subject to the usual visibility
rules.

The most important use for alias names is in nested interfaces. In the definition of a nested interface, the
components of the component interfaces cannot be addressed directly, but only using their alias names.

Alias names can be used in classes to enable class-specific components that have been replaced by
components from interfaces during the course of the development cycle to continue to be addressed by
their old names. This means that the users of the class to not need to be adjusted in accordance with the
new names.
Alias names cannot be used in the IMPLEMENTATION part of the class itself.

(C) SAP AG BC404 10-20

SAP AG 1999

Inheritance and Supported Interfaces

CLASS lcl_html_doc DEFINITION
INHERITING FROM lcl_plain_text.

PUBLIC SECTION.
INTERFACES lif_markup_doc.
METHODS lif_doc~print REDEFINITION.

ENDCLASS.

«interface»
lif_markup_doc

edit
print

lcl_plain_text

lcl_html_doc

«interface»
lif_doc

Is_well_formed

CLASS lcl_html_doc IMPLEMENTATION.
METHOD lif_doc~print.
ENDMETHOD.
METHOD lif_markup_doc~is_well_formed.
ENDMETHOD.
ENDCLASS.

CLASS lcl_plain_text IMPLEMENTATION.
METHOD lif_doc~edit.
ENDMETHOD.
METHOD lif_doc~print.
ENDMETHOD.
ENDCLASS.

A subclass always co-inherits the supported interfaces from its superclass, but does have the options of
implementing additional interfaces and redefining inherited interface methods.

If the subclass supports a compound interface, one of whose component interfaces is already implemented
in the superclass, then the subclass does not need to do anything about the implementation of the
component interface, but simply inherits its implementation (as long as there are no ABSTRACT constructs
involved). In this case it would only need to implement the additional methods of the compound interface,
although it could also redefine methods from the component interface.

The principle that interface components are only present once in any one class or interface is still valid. In
the situation described above, it is therefore irrelevant, whether the subclass is supporting the interface
method because it is implementing a compound interface, or because the superclass is implementing a
component interface. The unique <interfacename>~<componentname> names of interface components
ensure that interface components that are ‘inherited’ in a variety of ways can always be correctly identified
and distinguished from one another.

(C) SAP AG BC404 10-21

SAP AG 1999

Appendix: Overview(4)

InheritanceInheritance

InterfacesInterfaces

PrinciplesPrinciples

Exercise ScenarioExercise Scenario

Events Events

Summary of SyntaxSummary of Syntax

(C) SAP AG BC404 10-22

SAP AG 1999

Static Events

CLASS-EVENTS: <event> EXPORTING VALUE(<ex_par>) TYPE <type>.

RAISE EVENT <event> EXPORTING <ex_par> = <act_par>.

SET HANDLER <ref>-><on_event> | <subscriber_class>=><on_event>
[ACTIVATION <var>].

[CLASS-]METHODS: <on_event> FOR EVENT <event> OF
<sender_class> | <interface>.

There is only one static event (per roll area)

All registrations for a static event always refer to one and the same
static event

Triggering a static event (even in a subclass) activates all current
handlers for this static event

Static events can be triggered in instance methods and in static methods.

Classes or their instances that want to receive a message if an event is triggered and react to this event
define event handler methods
Statement: (CLASS-)METHODS <handler_method> FOR EVENT <event> OF <classname>.

This class or its instances register themselves for one or more events at runtime.
Statement: SET HANDLER <handler_method>.
At runtime a class/instance can trigger a static event using the RAISE EVENT statement.

Static events, like attributes, only exist once per roll area. It is not the case that every subclass has its own
copy of the static event.
All registrations for an event therefore refer to a single event, even if the event handler method registered is
defined with reference to the inherited static event of a subclass.
Consequently, triggering a static event, be it in the defining class or in a subclass, activates all current
handlers for this event, and not just those that are defined with reference to a specific class.

(C) SAP AG BC404 10-23

SAP AG 1999

Appendix: Overview(5)

InheritanceInheritance

InterfacesInterfaces

EventsEvents

PrinciplesPrinciples

Exercise Scenario Exercise Scenario

Summary of SyntaxSummary of Syntax

(C) SAP AG BC404 10-24

SAP AG 1999

Exercise Scenario for UML Notation

lcl_cargo_airplane
- cargo : p

+ constructor()
+ display_attributes()

lcl_passenger_airplane
- n_o_seats : i

+ constructor()
+ display_attributes()

lcl_airplane
name : c
planetyp : saplane-planetype
- n_o_airplanes : i

+ constructor()
+ display_attributes()
+ display_n_o_airplanes()

lcl_carrier
- name : c
- list_of_airplanes : int. table
- list_of_flights : int. table
- flight_created : event

+ constructor()
+ get_name()
+ add_a_new_airplane()
+ display_airplanes()
+ create_a_new_flight()

interface
lif_business_partners

display_company_data()

lcl_hotel
- name : string
- city : string
- n_o_rooms : i

+ constructor()

lcl_travel_agency
- name : string
- list_of_business_partners : int. table
- list_of_flights : int. table

+ constructor()
+ add_business_partner()
+ display_business_partners()
+ add_new_flight()
+ subscribe_for_flight_creation()
+ display_flights()

(C) SAP AG BC404 10-25

SAP AG 1999

Appendix: Overview(6)

InheritanceInheritance

InterfacesInterfaces

EventsEvents

PrinciplesPrinciples

Summary of SyntaxSummary of Syntax

Exercise ScenarioExercise Scenario

(C) SAP AG BC404 10-26

ABAP Objects – Summary of Syntax

Availability: There is a brief comment on availability under each syntax summary. If there is no specific
comment, then these components are available as of Rel. 4.5A.

Global class definition (in the CLASS-POOL):

CLASS-POOL.
 TYPES: … " local types

 TYPE-POOLS: … " refer to type-pools (global types)

 CLASS c … . " local helper classes

 …

 ENDCLASS

 CLASS pc DEFINITION PUBLIC. " the public class of the class pool

 …
 ENDCLASS.

 CLASS pc IMPLEMENTATION.
 …

 ENDCLASS.

Availability: all available as of 4.5A

Class definition:

CLASS c DEFINITION
 [PUBLIC]

 [ABSTRACT]

 [FINAL]
 [INHERITING FROM superclass]

 [CREATE {PUBLIC | PROTECTED | PRIVATE}].

[PUBLIC SECTION.

 … <definition of public components>]

[PROTECTED SECTION.

 … <definition of protected components>]

[PRIVATE SECTION.

 … <definition of private components>]

ENDCLASS.

CLASS c IMPLEMENTATION.
 …

ENDCLASS.

(C) SAP AG BC404 10-27

*--- forward definition of class for mutual recursive references

CLASS c DEFINITION DEFERRED.

Availability: all available as of 4.5A

(C) SAP AG BC404 10-28

Class components:

CLASS c DEFINITION.

{PUBLIC|PROTECTED|PRIVATE} SECTION.

 TYPES … .

 CONSTANTS … .

 [CLASS-]DATA a TYPE t [READ-ONLY].

 METHODS m REDEFINITION.

 [CLASS-]METHODS m [ABSTRACT | FINAL]

 [IMPORTING …] [EXPORTING …] [CHANGING …]

 [RETURNING VALUE(result) TYPE t] [EXCEPTIONS …] .

 [CLASS-]METHODS m [ABSTRACT | FINAL]

 FOR EVENT e OF {c|i}
 [IMPORTING fp1 fp2 … fpn] .

 [CLASS-]EVENTS e [EXPORTING …].

 ALIASES alias FOR i~a.

 INTERFACES i [VALUE a1 = v1 …].

ENDCLASS.

Availability:

as of 4.5A: all components, except
as of 4.6A: METHODS: REDEFINITION, ABSTRACT, FINAL

Implementation of classes/methods:

CLASS c IMPLEMENTATION.

 "--- implementation of methods for class, interfaces, events:

 METHOD m1.
 …

 ENDMETHOD.

ENDCLASS.

Interface definition :

INTERFACE i.

* --> like public components of classes <--

ENDINTERFACE.

(C) SAP AG BC404 10-29

*--- forward definition of interface

INTERFACE i DEFERRED.

*---

INTERFACE i SUPPORTING REMOTE INVOCATION.

Availability:

as of 4.5A: all components, except
as of 4.6A: compound interfaces

(C) SAP AG BC404 10-30

Using OO:

Create objects:

CREATE OBJECT objvar [TYPE class | TYPE (classname)]

 [EXPORTING arg = val …].

Availability:

as of 4.5A: CREATE OBJECT … [EXPORTING …]
as of 4.6A: TYPE …

Call methods:

CALL METHOD o->m [EXPORTING …] [IMPORTING …] [CHANGING …]

 [RECEIVING …] [EXCEPTIONS …].
CALL METHOD o->m(… [IMPORTING …] [CHANGING …][EXCEPTIONS …]).

a = o->m([IMPORTING …]). "functional method call

a = o->m([arg =] val). "ditto, with only one parameter

Availability:

as of 4.5A: CALL METHOD …
as of 4.6A: functional method call
Examples of functional method calls:

IF o->m(4711) = TRUE. … ENDIF.

CASE order->status(). WHEN … WHEN … ENDCASE.
LOOP AT itab WHERE name = o->hostname(). … ENDLOOP.

len = strlen(adr1->get_name()) + strlen(adr2->get_name)).

MOVE o->m(p1 = val1 p2 = val2) TO dest.

Trigger event:

RAISE EVENT e [EXPORTING arg = val …].

RAISE EVENT I e [EXPORTING arg = val …].

Activate/deactivate event handler:

*--- general form

SET HANDLER h1 h2 … FOR … <see below> … [ACTIVATION cval].

*--- standard registration

SET HANDLER h1 … FOR i|o. "- register instance event for instance

SET HANDLER h1 … . "- handler for class event

*--- group registration

SET HANDLER h1 … FOR ALL INSTANCES.

"- for "e of C" event: all instances of C

"- for "e OF I" event: all instances of all C implementing I

Availability:

as of 4.5A: all components

Widening Cast:

"--- CAST

i1 ?= o1. "--- does o1 implement interface of i1?

MOVE o1 ?TO i1. "--- same as above

(C) SAP AG BC404 10-31

(C) SAP AG BC404 10-32

Special compiler statements:

*--- make class definition known to compiler before accessing class comp.

CLASS ddic_class DEFINITION LOAD.

*--- make interface known to compiler before accessing interface comp.

INTERFACE LOAD.

Component selection:

Symbol Meaning

-> o->a
i->a

Component access using object or interface reference

- x-a Component access for structures (and embedded objects)

~ I~a Compound names for interface components

=> c=>a Access to the static components of class c

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

