. BC404 ABAP Objects: Object-Oriented Programming in R/3
BC404

Release 46B
09.01.2003




©

R/3 System

Release 4.6A

Status: 09.99

Material no. : 50034774

"



»y

Copyright 2001 SAP AG. All rights reserved.

Neither this training manual nor any part thereof may

be copied or reproduced in any form or by any means,

or translated into another language, without the prior
consent of SAP AG. The information contained in this
document is subject to change and supplement without prior
notice.

All rights reserved.

© SAP AG 2001

Trademarks:

Microsoft ®, Windows ®, NT ®, PowerPoint ®, WinWord ®, Excel ®, Project ®, SQL-Server ®, Multimedia
Viewer ®, Video for Windows ®, Internet Explorer ®, NetShow ®, and HTML Help ® are registered
trademarks of Microsoft Corporation.

Lotus ScreenCam ® is a registered trademark of Lotus Development Corporation.

Vivo ® and VivoActive ® are registered trademarks of RealNetworks, Inc.

ARIS Toolset ® is a registered Trademark of IDS Prof. Scheer GmbH, Saarbricken
Adobe ® and Acrobat ® are registered trademarks of Adobe Systems Inc.

TouchSend Index ® is a registered trademark of TouchSend Corporation.

Visio ® is a registered trademark of Visio Corporation.

IBM ®, OS/2 ®, DB2/6000 ® and AlX ® are a registered trademark of IBM Corporation.
Indeo ® is a registered trademark of Intel Corporation.

Netscape Navigator ®, and Netscape Communicator ® are registered trademarks of Netscape
Communications, Inc.

OSF/Motif ® is a registered trademark of Open Software Foundation.

ORACLE ® is a registered trademark of ORACLE Corporation, California, USA.
INFORMIX ®-OnLine for SAP is a registered trademark of Informix Software Incorporated.
UNIX ® and X/Open ® are registered trademarks of SCO Santa Cruz Operation.
ADABAS ® is a registered trademark of Software AG



The following are trademarks or registered trademarks of SAP AG; ABAP™, InterSAP, RIVA, R/2, R/3, R/3
Retail, SAP (Word), SAPaccess, SAPfile, SAPfind, SAPmail, SAPoffice, SAPscript, SAPtime, SAPtronic,
SAP-EDI, SAP EarlyWatch, SAP ArchivelLink, SAP Business Workflow, and ALE/WEB. The SAP logo and
all other SAP products, services, logos, or brand names included herein are also trademarks or registered
trademarks of SAP AG.

Other products, services, logos, or brand names included herein are trademarks or registered trademarks
of their respective owners.



ABAP Workbench

Level 3
BC414
Programming
Database Updates
BC415 2 days
Communication ﬁ
Interfaces in ABAP

BC425 3 days
Enhancements
and Modifications

BC412 2 days

BC402 3 days
ABAP Programming
Techniques

BC404 3 days

ABAP Objects: Object-
Oriented Programming
in R/3

BC405

Techniques of List
Processing and SAP Query

BC410 5 days

BC490 3 days

ABAP Performance
Tuning

2 days

3 days

Programming Dialog Programming
BC400 5 days User Dialogs using EnjoySAP Controls
ABAP Workbench: g BC420 5 days BC440 5 days
Concepts and Tools Data Transfer Developing

BC430 2 days Internet Applications

MBC40 2 days ABAP Dictionary
Managing ABAP Recommended supplementary
Development Projects s oU Sdene courses are:

SAPscript: Forms Design
and Text Management
CA610 2 days

CATT:Test Workbench and
Computer Aided Test Tool

Business Process Technologies
CA925, CA926, CA927
BC095 (Business Integration
Technology)

BC619 (ALE), BC620, BC621

© SAP AG 1999




Course Prerequisites

® BC400

or comparable knowledge

® Experience of programming in the R/3 environment

© SAP AG 1999




Target Group

® Audience:
m IT staff
m Project team members

® Duration: 3 days

© SAP AG 1999

Notes to the user

The training materials are not teach-yourself programs . They complement the course instructor’s
explanations. Your material includes space for noting down this additional information.



Course Overview

Contents:

Course Goals
Course Objectives
Course Contents

Course Overview Diagram

Main Business Scenario

© SAP AG 1999

(C) SAPAG

BC404

1-1




Course Goals

© SAP AG 1999

This course will enable you to:

® Learn the principles of object-oriented
programming

® Learn the structure and application of
ABAP Objects

»y

(C) SAPAG

BC404

1-2



Course Objectives Fr
S

© SAP AG 1999

At the conclusion of this course, you will be able to:

® Describe and use the most important principles:
m Classes
= Inheritance
= Interfaces
m Polymorphism
s Events

® Program in ABAP Objects

(C) SAPAG

BC404

1-3




Course Contents

»y

Preface
Unit 1 Course Overview Unit 6 Events
Unit 2 Introduction Unit 7 Global Classes/
_ _ _ Interfaces
Unit 3 Analysis and Design _
_ o Unit 8 Summary and Outlook
Unit4 Principles
Unit 5 Generalization/
Specialization
Appendix
© SAP AG 1999
(C) SAPAG BC404 1-4



Course Overview Diagram

Summary and Outlook

Global Classes/Interfaces

Generalization/

. Events
Specialization

Principles

Analysis and Design

Introduction

© SAP AG 1999

(C) SAPAG BC404 15



Main Business Scenario !’
ul

D

© SAP AG 1999

[
[

® An airline needs to manage its flights and planes.

® A travel agent maintains its connections to
partners, such as, for example, airlines and hotels.

(C) SAPAG

BC404

1-6



Demo Programs, Templates and Solutions

® Development class BC404

® Naming convention:
B Demos: SAPBC404xxxD_...
B Templates: SAPBC404xxxT_...
B Solutions: SAPBC404xxxS_...

W XXX: Acronym for individual units

© SAP AG 1999

Acronyms for the individual units:
- Unit 4: BAS
- Unit 5: GEN
- Unit 6: EVE
- Unit 7: GLO

(C) SAPAG BC404 1-7



Introduction F’
A

Contents:
® Procedural programming
® Object-oriented programming

® Aims of the ABAP Objects programming language

© SAP AG 1999

(C) SAPAG

BC404

2-1




Introduction: Unit Objectives H’
S

At the conclusion of this unit, you will be able to:

® Name the most significant differences between
procedural and object-oriented programming

® State the aims behind developing the ABAP
Objects programming language

© SAP AG 1999

(C) SAPAG BC404

2-2



Introduction: Course Overview Diagram

Summary and Outlook

Global Classes/Interfaces

Generalization/

. Events
Specialization

Principles

Analysis and Design

Introduction

© SAP AG 1999

(C) SAPAG BC404 2-3



Introduction: Overview (1)

} ProcediyaiNEregiamming

OB ECIEOENEdNeEEming

© SAP AG 1999

(C) SAPAG BC404 2-4



Procedural Programming m’
b e W i

® Functions are defined independently
'ﬂ of data structures

¥ ® Direct access to data

Function || Function || Function

1
PP |

© SAP AG 1999

Information systems used to be defined primarily by their functions: data and functions were stored
separately and linked using input-output relationships.

(C) SAPAG BC404 2-5



Structure of an ABAP Program

TYPES:

DATA:

PERFORM f1 ...

CALL FUNCTION ...

® Data declaration

® Main program
= Call subroutines

= Call function modules

FORMf1 ... ® Define subroutines
ENDFORM
© SAP AG 1999
(C) SAPAG BCA04 20




Working with Function Groups

ABAP Program Function groups

Function group A

Function module Al
CALL FUNCTI ON “ A2

Function module A2 Data

Function module A3

CALL FUNCTI ON ‘ B1' _
Function group B

Function module B1
Data
Function module B2

© SAP AG 1999

(C) SAPAG BC404 2-7



Example: The Function Group as Counter - Definition

FUNCTI ON- POOL count er .
DATA: count TYPE I.

FUNCTI ON SET_COUNTER.

* Local interface | MPORTI NG VALUE(set val ue)
count = set_val ue

ENDFUNCTI ON.

FUNCTI ON | NCREMENT _COUNTER.
ADD 1 TO count.
ENDFUNCTI ON.

FUNCTI ON GET_COUNTER.

* Local interface EXPORTI NG VALUE(get val ue)
get _val ue = count.

ENDFUNCTI ON.

© SAP AG 1999

(C) SAPAG BC404 2-8



Example: The Function Group as Counter - Call

DATA: nunber TYPE | VALUE 3.

CALL FUNCTI ON ‘ SET_COUNTER EXPORTI NG set _val ue = nunber.
DO 4 TI MES.
CALL FUNCTI ON ‘ | NCREMENT _COUNTER' .
ENDDO.
CALL FUNCTI ON “ GET_COUNTER | MPORTI NG get _val ue = nunber.

WRI TE: ..., nunber,

© SAP AG 1999

(C) SAPAG BC404 29



Several Instances of One Function Group? !r
SAF

1 counter

Any number of counters

SET_COUNTER
INCREMENT_COUNTER

GET_COUNTER

Function group COUNTER

COUNTER

© SAP AG 1999

* Not possible using
function groups without
additional programming

(C) SAPAG

BC404

2-10



Introduction: Overview (2)

Proceclirzl Proejrannmine)

} OhjeciEOneEntedNPregramming

© SAP AG 1999

(C) SAPAG BC404 2-11



What Are Objects?

Real world

® Objects are an abstraction of the real world

® Objects are units made up of data and of the
functions belonging to that data

© SAP AG 1999

Object orientation focuses on objects that represent either abstract or concrete things in the real world.
They are first viewed in terms of their characteristics, which are mapped using the object’s internal
structure and attributes (data). The behavior of an object is described through methods and events
(functionality).

Objects form capsules containing the data itself and the behavior of that data. Objects should enable you to
draft a software solution that is a one-to-one mapping of the real-life problem area.

(C) SAPAG BC404 2-12



Object-Oriented Programming Model

® Class

m Gives a general description of objects
(“blueprint™)

m Establishes status types (attributes) and
behavior (methods)

® Object
m Reflection of real world

m Specific instance of a class

© SAP AG 1999

Icl_class

Attribute
Attribute

Method
Method

Data

(C) SAPAG BC404

2-13




Advantages of the Object-Oriented Approach !r
SAF

Consistency throughout the software development process
Encapsulation
Polymorphism

Inheritance

© SAP AG 1999

Consistency throughout the software development process

The “language” used in the various phases of software development (analysis, specification, design and
implementation) is uniform. The ideal would be for changes made during the implementation phase to flow
back into the design automatically.

Encapsulation

Encapsulation means that the implementation of an object is hidden from other components in the system,
so that they cannot make assumptions about the internal status of the object and therefore dependencies
on specific implementations do not arise.

Polymorphism
Polymorphism (ability to have multiple forms) in the context of object technology signifies that objects in
different classes have different reactions to the same message.

Inheritance

Inheritance defines the implementation relationship between classes, in which one class (the subclass)
shares the structure and the behavior defined in one or more other classes (superclasses).

Note: ABAP Objects only allows single inheritance.

(C) SAPAG BC404 2-14



History of Programming Languages

183c —_—
190% C__ Assembler
1934 o R
180F _d__________—-——'
180F

1aac -
190z
1904
190
1088
197C
e
149
e
1a7e
198C
198z
1984
198
198¢
194C
1949z
19494
1992
100¢
Leo7
11

Lbge  ZEMEET aiggise

=my )k Pagy

ABAP Objects

© SAP AG 1999

Before ABAP, SAP used to use a macro assembler.

ABAP was created with the intention of improving reporting. ABAP is a relatively independent in-house
programming language, although it was influenced by other programming languages, for example, COBOL
and PASCAL.

ABAP Objects is a true extension of ABAP. ABAP Objects unites the most promising aspects of other
object-oriented programming languages, such as Java, C++ and Smalltalk.

(C) SAPAG BC404 2-15



ABAP Objects: Design Aims

As simple as possible

Only object-oriented concepts, that have proved
themselves in other object-oriented programming
languages

® More frequent use of type checks

© SAP AG 1999

You need to assign types more frequently in ABAP Objects than in ABAP. For example, in ABAP Objects,
when you are defining interface parameters for methods, you must assign types to the parameters. The
correct pass by value is then checked by the system when the method is called.

By comparison, in ABAP you do not need to assign types to the parameters of function modules, for
example.

(C) SAPAG BC404 2-16



ABAP Objects

»y

True, compatible extension of ABAP

ABAP Objects statements can be used in “conventional”

ABAP programs

® ABAP statements can be used in ABAP Objects programs

* ABAP Program
CLASS | cl _airplane DEFI NI TI O\.

ENDCLASS.

* ABAP (bj ects Program

DATA: counter TYPE i.

CREATE OBJECT ...
counter = counter + 1.
TYPES:
DATA:

© SAP AG 1999

ABAP Obijects is not a new language, but has been developed as an extension of ABAP. It integrates
seamlessly into ABAP syntax and the ABAP programming model. All enhancements are strictly upward
compatible.

(C) SAPAG BC404 2-17



Areas Covered by the Course

© SAP AG 1999

In object-oriented programming, the analysis and design phase is even more important than it is for
procedural programming. The reason for this is that in object-oriented programming, decisions taken during
the analysis and design phase have even more pronounced effects on implementation than they do in
procedural programming.

(C) SAPAG BC404 2-18



Introduction: Summary Hr
A

‘Z You are now able to:

® Name the most significant differences between
procedural and object-oriented programming

® State the aims behind developing the ABAP
Objects programming language

© SAP AG 1999

(C) SAPAG BC404

2-19



Analysis and Design

Contents:

® UML
® (Class diagrams

® Sequence diagrams

© SAP AG 1999

(C) SAPAG

BC404

31




Analysis and Design: Unit Objectives !’
YA

: At the conclusion of this unit, you will be able to:
°
® Listthe most important diagram types in UML
® Create a class diagram
® Create a sequence diagram
© SAP AG 1999
(C) SAPAG BC404

3-2




Analysis and Design: Course Overview Diagram

Summary and Outlook

Global Classes/Interfaces

Generalization/

. Events
Specialization

Principles

Analysis and Design

Introduction

© SAP AG 1999

(C) SAPAG BC404 3-3



Start of development

l ® Analysis
= Develop a model

Request,
Idea = Question: what needs
to be done?
® Design

= Establish implementation

= Question: how should you do it?

- ® Standardized language for description
= UML

© SAP AG 1999

(C) SAPAG BC404

34



»y

® An object-oriented modeling language:
Unified Modeling Language

® A language and form of notation for the specification,
construction, visualization and documentation of models
for software systems

m Various diagram types

® A global standard

© SAP AG 1999

UML (Unified Modeling Language) is a standardized modeling language. It is used for the specification,
construction, visualization and documentation of models for software systems and enables uniform
communication between various users.

UML does not describe the steps in the object-oriented development process.

UML is an industry standard and has been standardized by the OMG (Object Management Group) since
September 1997 as UML Version 1.1. The members of the OMG are continuously developing it further.

SAP uses UML as the company-wide standard for object-oriented modeling.
You can find the UML specifications on the OMG homepage at:

(C) SAPAG BC404 35


http://www.omg.org

Which Diagram Types Are Included in UML?

Use-case diagrams
Class diagrams

Behavior diagrams
= Sequence diagram Interaction diagrams
m Collaboration diagram
m Status diagram
m Activity diagram
® Implementation diagrams
m Component diagram

m Distribution diagram

© SAP AG 1999

UML describes a number of different diagram types in order to represent different views of a system.

Use-case diagrams show the relationships between agents and actions (use cases), that is, they represent
external system behavior from the user’s point of view.

Class diagrams show the static view of a model.

Interaction diagrams demonstrate the relationships and method calls between objects.
Sequence diagrams emphasize the timing sequence of the method calls, while collaboration diagrams
focus more on the object relationships and their topology.

Status diagrams show a sequence of statuses that an object can adopt during its lifetime, and the stimuli
that cause this status to change.

Activity diagrams are a special type of status diagrams. They mostly or exclusively contain activities.
Component diagrams show the organization and dependencies of components.
Distribution diagrams represent the dependencies of software and hardware.

(C) SAPAG BC404 3-6



Class Diagram

® Static view of a model

m Elements
¢ Classes
¢ Objects

m Their internal structure
¢ Attributes
¢ Methods

m Their relationships to other elements
¢ Generalization/specialization

¢ Association

© SAP AG 1999

(C) SAPAG BC404 37



Representation of a Class

Icl_airplane

- name: string

- count: i

+ set_name(im_name: string)

+ get _count(): i

Icl_airplane

© SAP AG 1999

UML notation:

The slide depicts two ways of representing classes. In the first, the class is represented by its name,
attributes and methods, in the second, the name only is used. UML also offers you the option of omitting
the either the attribute or the method part.

ABAP Objects events are not represented in class diagrams.

(C) SAPAG BC404



Example of a Class Diagram

Icl_flight Icl_flightbooking Icl_flightcustomer

Icl_airplane Icl_wing
/\

Icl_cargo_airplane Icl_passenger_airplane <

© SAP AG 1999

A class diagram describes the elements contained in the model and their various static relationships. There
are two basic forms of static relationships:

Associations (for example, a flight customer books a flight)

Generalization/specialization (for example a cargo plane and a passenger plane are planes)
Classes can also be shown with their attributes and methods in the class diagrams.

(C) SAPAG BC404



Association

One flight customer
can book several One flight booking
flights has only one flight
customer

Icl_flightbooking Icl_flightcustomer

. " Association
Common cardinalities -
*or0.* Many
1 Only one
1..* One or more

0..1 None or one

© SAP AG 1999

An association describes a semantic relationship between classes. The specific relationship between
objects in these classes is known as an object link. Object links are therefore the instances of an
association.

An association is usually a relationship between different classes. However, an association can also be
recursive; in this case, the class would have a relationship with itself. In most cases, recursive associations
are used to links two different objects in one class.

The points below assume that the associations are binary.

Each association has two roles, one for each direction of the association (flight booking->customer,
customer -> flight booking). Roles can have names (for example, the association flight->flight booking could
be called reservations).

Each role has a cardinality that shows how many instances participate in this relationship. The multiplicity is
the number of participating objects in one class that have a relationship to an object in the other class.

UML notation:
An association is represented by a line between the class symbols.
The cardinality of the relationship can be shown at each end of the line.

Associations can be given a name for ease of identification (a verb or a short text). This name is written in
italics above the line and may have a arrow to show the direction. Both are optional.

(C) SAPAG BC404 3-10



Aggregation and Composition

Aggregation symbol

Aggregation

» Special type of association :
« Whole-part relationships Ic_airplane pg

Composition Composition symbol

» Special type of aggregation

» Existence-dependent

© SAP AG 1999

Aggregation is a special kind of association. Aggregation describes one object that contains another or
consists of other objects (whole-part). An airplane consists of wings. The relationship can be described by
the words “consists of” or “is a part of”.

UML notation for aggregation:

An aggregation, like an association, is represented by a line between two classes, which then additionally
has a small rhombus at one end. The rhombus is always at the aggregate end, that is, the whole object
end. Otherwise the notation conventions are the same as for associations.

Composition is a special kind of aggregation. Composition describes the fact that the object contained
cannot exist without the aggregate (for example, a flight booking cannot exist without the relevant flight).

Differences between composition and aggregation:

The cardinality on the aggregate side can only be one. Each part is only part of one composite object,
otherwise the existence dependency would be contradictory. The lifetime of the individual parts is linked to
the lifetime of the aggregate: parts are created either with or immediately after the aggregate, and they are
destroyed either with or immediately before the aggregate.

UML notation for composition:

Like aggregation, composition is shown as a line between two classes and marked with a small rhombus
on the aggregate side. However, in contrast to aggregation, the rhombus is filled in.

(C) SAPAG BC404 3-11



Generalization and Specialization

cl_airplane

A

cl_cargo_airplane cl_passenger_airplane

> »:

cl_cargo_airplane cl_passenger_airplane

© SAP AG 1999

UML notation:

Generalization and specialization are denoted by triangular arrows that point from the subordinate class to
the superclass.

Several arrows can be summarized into a tree.

(C) SAPAG BC404 3-12



Behavior Diagrams: Sequence Diagrams

® Dynamic view of a model
m Objects in existence at runtime
m Interaction between objects

m Time sequence of the interaction

© SAP AG 1999

Sequence diagrams, unlike class diagrams, show the dynamics between objects. They are used to
represent a particular process or a particular situation.

Sequence diagrams focus on the time sequence of the information exchange:
Creating and deleting objects.

Message exchange between objects.

Sequence diagrams have no notation for representing static methods.

(C) SAPAG BC404 3-13




Sequence Diagrams: Example (1)

Object life line

© SAP AG 1999

UML notation:
Objects are represented by squares. You can write the object name in these squares in various ways:

Object name
Object name:class name

:class name

The object life line is represented by vertical dotted lines.

The control focus is shown as a vertical rectangle on the object life line. The control focus shows the
object's “active” period:

An object is active when actions are executed

An object is indirectly active if it is waiting for a subordinate procedure to end.

(C) SAPAG BC404 3-14



Sequence Diagrams: Example (2)

Airplane
- Sequence number

optional
Optional (op )

e

Can be represented in different
ways in response to message

© SAP AG 1999

Messages are shown as horizontal arrows between the object lines. The message is written over the arrow
as Method (parameter). There are various options for representing the reply; in this example, the arrow is
shown as a returning arrow.

You can also include a description of the process and add comments to the object life line as required.

(C) SAPAG BC404 3-15




Analysis and Design: Summary

‘Z You are now able to:
® Listthe most important diagram types in UML
® C(Create a class diagram

® Create a sequence diagram

© SAP AG 1999

(C) SAPAG BC404 3-16



Analysis and Design Exercises

X

Unit: Analysis and Design
Topic: UML Class Diagrams

At the end of this exercise, you will be able to:

e Create a UML class diagram

An airline needs to manage its airplanes.

D,

11

On a sheet of paper, create a class diagram using UML notation that contains the following
classes:

- Airline: Icl_carrier

— Airplane (general): Icl_airplane

— Passenger airplane: Icl_passenger_airplane
— Cargo airplane: Icl_cargo_airplane

1-1-1 Choose a few useful attributes and methods for each class.

1-1-2  Fill in the relationships between the classes and add possible cardinalities.

(C) SAPAG BC404

3-17



Analysis and Design Solutions

Icl_carrier

-name: ¢
-list_of arplanes:int. table
-list_of flights: int. table

+set_attributey )
+add a new arplang)
+display_airplaney)
+create a new flight()

Unit: Analysis and Design

/ Topic: UML Class Diagrams

Icl_airplane
#name: c
0.1 #planetyp : saplane-planetype
) 0.% |- n_o arplanes: i
<>

+ et attributes( )

+display_attributeq )
+display_n_o arplaney )

R

AN

Icl_passenger_airplane

Icl_cargo airplane

-N_0 seats: i

-cargo: p

+ set_attributey( )
+display_attributey( )

+set_attributey )
+display_attribute( )

(C) SAPAG

BC404

3-18



Contents:

Objects

Classes

Attributes

Methods
Visibility/encapsulation
Instantiation

Constructor

Garbage Collector

© SAP AG 1999

(C) SAPAG

BC404

4-1



Principles: Unit objectives

: At the conclusion of this unit, you will be able to:

°
® Create classes
® Create objects
® Call methods
® Explain how the Garbage Collector works

© SAP AG 1999

(C) SAPAG BC404 4-2




Principles: Course Overview Diagram

Summary and Outlook

Global Classes/Interfaces

Generalization/

L Events
Specialization

Principles

Analysis and Design

Introduction

© SAP AG 1999

(C) SAPAG BC404 4-3



Principles: Overview (1)

v

OBJECHS
Classes
ALTHPULES

VIETHEES
Ipistzipltizition), Celrgzieja Colleaioy
Werkisie) Wits) Ggjaets

EUAHEREIINCIPIES

© SAP AG 1999

(C) SAPAG BC404

4-4



The Object (1)

Example: airplane

Attributes

‘ Name: LH Berlin

| Weight: 30,000 kg

Length: 70 m
Methods
Events
Private access ess
» Encapsulation
* As a rule, attributes * As a rule,methods, events

© SAP AG 1999

The object in the above model has two layers: an outer shell and an inner core. Users can only see the
outer shell, while the inner core remains hidden (the internal status of an object can only be seen within the
object itself).

Public components (outer shell): the outer shell contains the components of the object that are visible to
users, such as attributes (data), methods (functions) and events. All users have direct access to these
components. The public components of an object form its external point of contact.

Private components (inner core): the components of the inner core (attributes, methods and events) are
only visible within the object itself. The attributes of an object are generally private. These private attributes
of an object can only be accessed using the methods of that object itself.

Why are the private components of an object “hidden”?

This principle is called “information hiding” or “encapsulation” and is used to protect the user.

Let us assume that an object changes its private components, while its external point of contact remains
unchanged. Any user who simply needs to access the object’s external point of contact can carry on
working with the object as usual. The user does not notice the change.

However, if an object changes its public components, then any user who accesses these public
components must take these changes into account.

(C) SAPAG BC404 4-5



The Object (2)

® \What characterizes an object?
= Ildentity
m Status (quantity of attributes)

m Behavior (quantity of methods and events)
® What synonyms are used for objects?

m Object

m Instance

© SAP AG 1999

Every object has an identity, a status (quantity of attributes) and behavior (quantity of methods and events).
The structure and behavior of similar objects are defined in a class which they share.

Identity is a characteristic that differentiates each object from all other objects. Identity is often confused
with having the same attribute values or with a unique name. Two different objects can have identical
attribute values and still not be identical.

Example:

Two coffee cups are the same height and diameter, have the same handle and are both white. Although
they look exactly the same, they are still two separate cups.

(C) SAPAG BC404 4-6



Examples of Objects

© SAP AG 1999

A number of different objects are shown on this slide. Similar objects can be grouped into classes.

(C) SAPAG BC404 4-7



Classification H’

Plane Plane ticket
D\;ﬁf} \ @ & o
\ e\\@‘“e(:\“\\e\% .\/\,'7’66
X e}“\“ \3(\\(:(\‘

Q
: ! ! AR N
; &
06
S o0 o

S e Q\a(\e’ @‘

© SAP AG 1999

In the real world, there are objects, such as various airplanes and plane tickets. Some of these objects are
very similar, that is, they can be described using the same attributes or characteristics and provide the
same functions.

Similar objects are grouped together in classes. Each class is described once, and each object is then
created in accordance with this blueprint.

A class is therefore a description of a quantity of objects characterized by the same structure and the same
behavior.

An object is a concrete example of a class, the airplane class is a description of the objects LH Munich, LH
New York etc.. Objects that belong to the same class have the same attributes and can be accessed using
the same methods. There is only one of each class within a software system, but each class can contain
several objects.

(C) SAPAG BC404 4-8



Principles: Overview (2)

OB ECILS

Classes

v

ALUHIPULES

VIEtHeES

Iristapifziijog), Gergzieja Colleaioy
Weridne) Wit @ojecis

Furinler Prifeioles

© SAP AG 1999

(C) SAPAG BC404

4-9



Different Abstractions of a Class

Airplane

Airline Hangar management

Seats
Window seats
Cargo space

© SAP AG 1999

In this context, abstractions are a simplified representations of complex relationships in the real world. An
actually existing object is abstracted to the significant dimensions that are to be mapped. Insignificant
details are left out in order to aid understanding of the overall system.

This example concerns airplanes. Software for airlines and software for an airport’'s hangar management
contain different abstractions (classes) for these objects.

(C) SAPAG BC404 4-10



Different Abstractions of a Class (2) H’
A

Airplane Airplane

© SAP AG 1999

A class can contain very different objects depending on the abstraction.

While in one software system the class ‘airplane’ only describes ‘actual’ airplanes, in the other system
describes all aircraft.

Both classes have the same name but describe different objects.

it it

(C) SAPAG BC404

4-11




The Class as a Blueprint for Objects

Definition part

The class components (for
example, attributes and methods)
are defined in this part.

Implementation part
This part only contains the method
implementations.

© SAP AG 1999

A class is a description of a number of objects that have the same structure and the same behavior. A
class is therefore like a blueprint, in accordance with which all objects in that class are created.

The components of the class are defined in the definition part. The components are attributes, methods,
events, constants, types and implemented interfaces. Only methods are implemented in the
implementation part.

The CLASS statement cannot be nested, that is, you cannot define a class within a class.

(C) SAPAG BC404 4-12



Important Components in a Class

® Attributes
m Data

m Determine the state of the object
® Methods

m Executable coding

m Determine the behavior of the object

© SAP AG 1999

Further components in classes are events and interfaces, which will be explained later.

(C) SAPAG BC404 4-13



Principles: Overview (3)

OB ECILS
Classes

ATTHPUTES

v

VIEHIGES
Iristapifziijog), Gergzieja Colleaioy
Weridne) Wit @ojecis

Furinler Prifeioles

© SAP AG 1999

(C) SAPAG BC404

4-14



»y

® Attribute types can have any kind of data type:
m Elementary types:
m C, I, P, STRING
m TYPE REF TO (References to objects/interfaces)

m Define your own types

Icl_airplane

name: LH Berlin
weight: 30 000 kg
tank: @ ‘

Icl_tank

© SAP AG 1999

Attributes describe the data that can be stored in the objects in a class.
Class attributes can be of any type:

Data types: scalar (for example, data element), structured, in tables
ABAP elementary types (C, |, ...)

Object references

Interface references

Attributes of the airplane class are, for example:

Name

Seats

Weight

Length

Wwings

Tank

(C) SAPAG BC404 4-15



Attributes, Types and Constants: Syntax

© SAP AG 1999

In classes, you can only use the TYPE reference to refer to data types in the ABAP Dictionary.
You can only use the LIKE reference for local data objects.

The READ-ONLY addition means that a public attribute declared with DATA can be read from outside, but
can only be changed by methods within the class.

You can currently only use the READ-ONLY addition in the public visibility section (PUBLIC SECTION) of a
class declaration or in an interface definition.

(C) SAPAG BC404 4-16



Attributes and Visibility Hr
WL

CLASS | cl _ai rpl ane DEFI NI TI ON.

PUBLI C SECTI ON.

® Public attributes DATA: nanme TYPE string.
m Can be viewed and PRI VATE SECTI ON.
changed by all users and DATA: wei ght TYPE sapl ane- wei ght .

in all methods

. ENDCLASS.
m Direct access

CLASS | cl _airpl ane DEFI NI TI ON.
® Private attributes PUBLI C SECTI ON.

m Can only be viewed and
changed from within the PRI VATE SECTI O\,
class DATA: weight TYPE sapl ane-wei ght

m No direct access name TYPE string.

from outside the class ENDCLASS.

© SAP AG 1999

You can protect attributes against access from outside by characterizing them as private attributes (defined
in the PRIVATE SECTION).

Attributes and their values that may be used directly by an external user are public attributes and are
defined in the PUBLIC SECTION.

In the above example for class Icl_airplane, the name attribute is initially defined as a public attribute and
the weight attribute is defined as a private attribute.

Public attributes belong to the class ‘external point of contact’ that is, their implementation is publicized. If
you want to hide the internal implementation from users, you must define internal and external views of
attributes.

As a general rule, you should define as few public attributes as possible.

(C) SAPAG BC404 4-17



Instance Attributes and Static Attributes (1) H'

® Instance attributes CLASS | cl _airplane DEFI NI TI ON.

m One per instance PUBLI C SECTI ON.

m Statement: DATA PRI VATE SECTI ON.

DATA: wei ght TYPE sapl ane- wei ght ,
name TYPE string.

® Static attributes

CLASS- DATA: count TYPE |.
m Only one per class

m Statement: CLASS-DATA ENDCLASS.

m Also known as class attributes

© SAP AG 1999

There are two kinds of attributes
Static attributes
Instance attributes

Instance attributes are attributes that exist separately for each object.
Instance attributes are defined using the DATA keyword.

Static attributes exist once only for each class and are visible for all (runtime) instances in that class. Static
attributes usually contain information that is common to all instances, such as:

Data that is the same in all instances
Administrative information about the instances in that class (for example, counters and so on)
Static attributes are defined using the CLASS-DATA keyword.

You may come across the expression “class attributes” in documentation, however, the official term in
ABAP Objects (as in C++, Java) is “static” attributes.

(C) SAPAG BC404 4-18



name: LH Be name: AA Bos
weight: 30,00 weight: 45,00

D Static attributesfor classLCL_AIRPLANE

© SAP AG 1999

(C) SAPAG BC404

4-19



Principles: Overview (4)

B
B
Cosmbss
Cmems
QRS R
e e
CRwmredwiges

OB)ECHS
Classes
ALTHPULES

VIETHIEES
Ipistzipltizition), Celrgzieja Colleaioy
Werkisie) Wits) Ggjaets

EUAHEREIINCIPIES

© SAP AG 1999

(C) SAPAG BC404

4-20



® Contain coding

® Have an interface

© SAP AG 1999

Icl_airplane

Methods are internal procedures in classes that determine the behavior of an object. They can access all

attributes in their class and can therefore change the state of an object.

Methods have a parameter interface that enables them to receive values when they are called and pass

values back to the calling program.

(C) SAPAG

BC404

4-21



Methods: Syntax

© SAP AG 1999

In ABAP Objects, methods can have IMPORTING, EXPORTING, CHANGING and RETURNING
parameters as well as EXCEPTIONS. All parameters can be passed by value or reference.

You can define a return code for methods using RETURNING. You can only do this for a single parameter,
which additionally must be passed as a value. Also, you cannot then define EXPORTING and CHANGING
parameters. You can define functional methods using the RETURNING parameter (explained in more
detail below).

All input parameters (IMPORTING, CHANGING parameters) can be defined as optional parameters in the
declaration using the OPTIONAL or DEFAULT additions. These parameters then do not necessarily have
to be passed when the object is called. If you use the OPTIONAL addition, the parameter remains
initialized according to type, whereas the DEFAULT addition allows you to enter a start value.

(C) SAPAG BC404 4-22



Methods and Visibility Hr
A

CLASS | cl _airpl ane DEFI NI TI ON.
PUBLI C SECTI ON.

® Public methods METHODS: set _nane inporting
i mnanme TYPE string.

m Can be called from PRI VATE SECTI ON.
outside the class METHODS: init_name.
DATA: nane TYPE stri ng.
ENDCLASS.

® Private methods
CLASS | cl _airpl ane | MPLEMENTATI ON.

m Can only be called VETHOD i ni t _nane.
within the class name = ‘No Nane‘.
ENDIVET HOD.

VETHOD set nane.
IF imnanme IS | NITIAL.
* Calling init_name

ELSE. name = i mnane. ENDI F.
ENDIVETHCD.
ENDCLASS.

© SAP AG 1999

Methods, like attributes, must be assigned to a visibility area. This determines whether the methods can be
called from outside the class or only from within the class.

(C) SAPAG BC404 4-23



Instance Methods and Static Methods Hr
R

® Instance methods

m Can use both static and instance components in the
implementation part

m Can be called using the instance name

® Static methods

m Can only use static components in the implementation part

m Can be called using the class name

© SAP AG 1999

Static methods are defined on the class level. They are similar to instance methods, but with the restriction
that they can only use static components (such as static attributes) in the implementation part. This means
that static methods do not need instances and can therefore be called from anywhere. They are defined
using the CLASS-METHODS statement, and they are bound by the same syntax and parameter rules as
instance methods.

The term “class method” is common, but the official term in ABAP Objects (as in C++, Java) is “static
method”. This course uses the term “static method”.

(C) SAPAG BC404 4-24




Instance and Static Methods: Example Hr
A

CLASS | cl _ai rpl ane DEFI NI TI ON.

PUBLI C SECTI ON.
METHODS: set _name | MPORTI NG i m_nane TYPE stri ng.
CLASS- METHODS: get _count RETURNI NG VALUE(re_count) TYPE I.

PRI VATE SECTI ON.
DATA: nane TYPE string.
CLASS- DATA: count TYPE I.

ENDCLASS.

CLASS I cl _airplane | MPLEMENTATI ON.
METHOD get count.
re_count = count.
ENDMVETHOD

ENDCLASS.

© SAP AG 1999

(C) SAPAG BC404 4-25



Attributes and Methods in UML Notation !’
DA

Class name Icl_airplane
Attributes - name: string
- count: i .
+ public components
Methods + set_name(im_name: string) - private components
+ get _count(): i _ static components marked with
an underscore
- set_count(im_count: i)

CLASS | cl _airplane DEFI NI TI ON.

PUBLI C SECTI ON.
VETHCDS: set _name | MPORTI NG i m nane TYPE stri ng.
CLASS- METHODS: get _count RETURNI NG VALUE(re_count) TYPE I.

PRI VATE SECTI ON.
DATA: nanme TYPE string.
CLASS- DATA: count TYPE I.
METHODS: set count | MPORTI NG i m count TYPE i.
ENDCLASS.

© SAP AG 1999

A UML class diagram shows firstly the class name and, underneath that, the class attributes and methods.

The visibility of components in a class is shown in UML using the characters “+” and “-":

+ public components

- private components
Alternatively, public and private can be prefixed to the methods. The third option for providers of modeling
tools in UML is to introduce their own symbols for visibility.
Representation of visibility characteristics is optional and is normally only used for models that are close to
implementation.

Static components are marked with an underscore.

The method signature is represented as follows (optional):

The input and output parameters and the parameters to be changed are shown in brackets.
The return code is separated from the type name by a colon.

(C) SAPAG BC404 4-26



Principles: Overview (5)

© SAP AG 1999

OB ECILS
Classes
AIUEES

Maipeels

Ipisteipifztijog), Celrgzieja Colleaioy

Weridne) Wit @ojecis

Furinler Prifeioles

(C) SAPAG

BC404

4-27



Creating Objects

® Objects can only be created and addressed using
reference variables

Icl_airplane

name

weight > name: LHBe
weight: 30,00

© SAP AG 1999

A class contains the generic description of an object. It describes all the characteristics that are common to
all the objects in that class. During the program runtime, the class is used to create specific objects
(instances). This process is called instantiation.

Example:

The object LH Berlin is created during runtime in the main memory by instantiation from the Icl_airplane
class.

The Icl_airplane class itself does not exist as an independent runtime object in ABAP Objects.
Realization:

Objects are instantiated using the statement: CREATE OBJECT.

During instantiation, the runtime environment dynamically requests main memory space and assigns it to
the object.

(C) SAPAG BC404 4-28



Reference Variables

CLASS | cl _ai rpl ane DEFI NI TI ON.
PUBLI C SECTI ON.

PRI VATE SECTI ON.
ENDCLASS.

CLASS | cl _ai rpl ane | MPLEMENTATI ON.

ai rpl anel @
ENDCLASS.

DATA: airplanel TYPE REF TO cl _airpl ane, airplane2 @
ai rpl ane2 TYPE REF TO cl _airpl ane.

Main memory

© SAP AG 1999

DATA: airplanel TYPE REF TO Icl_airplane declares the reference variable airplanel. This acts as a
pointer to an object.

(C) SAPAG BC404 4-29




Creating Objects: Syntax “i'

DATA: airplanel TYPE REF TO I cl _airpl ane,
CREATE OBJECT <reference>. ai rpl ane2 TYPE REF TO I cl _air pl ane.

CREATE OBJECT ai rpl anel.
CREATE OBJECT ai r pl ane2.

ai rpl anel :
name:

weight:

ai rpl ane2 name:

weight:

Main memory

© SAP AG 1999

The CREATE OBJECT statement creates an object in the main memory. The attribute values of this object
are either initial values or correspond to the VALUE entry.

(C) SAPAG BC404 4-30



Assigning References

DATA: airplanel TYPE REF TO | cl _airpl ane,
ai rpl ane2 TYPE REF TO | cl _airpl ane.

CREATE OBJECT air pl anel.
CREATE OBJECT air pl ane2.

ai rplanel = airpl ane2.

ai rpl anel i
name:

Weighti
ai rpl ane2 N name;;
Weight-

Main memory

Reference variables can also be assigned to each other. The above example shows that once it has been
assigned, airplanel points to the same object as reference airplane2.

© SAP AG 1999

(C) SAPAG BC404 4-31




Garbage Collector

DATA: airplanel TYPE REF TO | cl _airpl ane,
ai rpl ane2 TYPE REF TO I cl _air pl ane.

CREATE OBJECT airpl anel EXPORTI NG . ..
CREATE OBJECT ai r pl ane2 EXPORTI NG . ..

ai rpl anel = airpl ane2.

ai rpl anel

name: LH
weight:

ai r pl ane2 name:
weight:

Main memory

© SAP AG 1999

As soon as no more references point to an object, the Garbage Collector removes it from the memory.

The Garbage Collector is a system routine that automatically deletes objects that can no longer be
addressed from the main memory and releases the memory space they occupied.

(C) SAPAG BC404 4-32



Garbage Collector: Concept “ﬂ'

® All independent references in the global main memory are checked. The
references point to active objects, which are marked internally.

® If class or instance attribute references point to other objects, these are
also marked.

® Objects that are not marked are deleted from the main memory.

é@

Main memory

© SAP AG 1999

Independent references are references that have not been defined within a class.

(C) SAPAG BC404 4-33




Principles: Overview (6)

OB ECIS
Classes
AIUEES

Maipeels

Iristapifziijog), Gergzieja Colleaioy

v

WOrKINGAWILHNOECTS

Furinler Prifeioles

© SAP AG 1999

(C) SAPAG BC404

4-34



Object Identity F’

DATA: airplanel TYPE REF TO | cl _airpl ane,
ai rpl ane2 TYPE REF TO | cl _airpl ane.

CREATE OBJECT airplanel EXPORTING i mnane = ‘LH Berlin’
CREATE OBJECT airpl ane2 EXPORTING imnane = ‘LH Berlin'
| F airplanel = airpl ane2. “not equal to

ENDI F.

ai rpl anel

n: LH Ber
w: 30,000

ai r pl ane2 %

Main memory

© SAP AG 1999

(C) SAPAG BC404 4-35




Assigning References: Example

DATA: ai rpl ane
airpl ane_t abl e

y

.
i=-

TYPE REF TO cl _ai rpl ane,
TYPE TABLE OF REF TO cl _airpl ane.

CREATE OBJECT airpl ane.

CREATE OBJECT airpl ane.

© SAP AG 1999

APPEND ai r pl ane TO ai rpl ane_t abl e.

APPEND ai rpl ane TO airpl ane_t abl e. ai rpl ane_t abl e

ai rpl ane @—

ai rpl ane_t abl e

o

e

Main memory

ai r pl ane

d
—

Main memory

-
=
=
i

If you want to keep several objects from the same class in your program, you can define an internal table,
which might, for example, only consist of one column with the object references for this class.

(C) SAPAG

BC404

4-36



Assigning References: Example (2)

LOOP AT TO ai rpl ane_t abl e I NTO ai r pl ane.
* work with the current instance

ENDL COP.

ai r pl ane .<
ai rpl ane_t abl e

| o
o—

AL
T

Main memory

© SAP AG 1999

You can work with the objects using the internal table within the loop.

(C) SAPAG BC404 4-37




Object References as Attributes

Icl_airplane lcl_wings

|

orientat.: le

© SAP AG 1999

If a class defines object references to a second class as attributes (in the above example: left_wing,
right_wing), then only these object references will be stored in the objects belonging to that class. The
objects in the second class have their own identity.

(C) SAPAG BC404 4-38



External Access to Public Attributes

CLASS | cl _ai rpl ane DEFI NI TI ON.

PUBLI C SECTI ON.
DATA: nane TYPE string READ- ONLY.
CLASS- DATA: count TYPE | READ- ONLY.

ENDCLASS.
DATA: airplanel TYPE REF TO I cl _ai rpl ane.

DATA: airpl ane_nane TYPE STRI NG
n_o_airplanes TYPE i .

ai r pl ane_nane
n_o_airpl anes

ai rpl anel- >nane.
I cl _airplane=>count.

© SAP AG 1999

Public attributes can be accessed from outside the class in various ways:
Static attributes are accessed using <classname>=><class_attribute>.

Instance attributes are accessed using <instance>-><instance_attribute>.

(C) SAPAG BC404 4-39




Calling Methods

all method O2->Do _it

02

© SAP AG 1999

Every object behaves in a certain way. This behavior is determined by its methods. There are three types
of method:

1. Methods that cause behavior and do not pass values
2. Methods that pass a value
3. Methods that pass or change several values

An object that requires services from another object sends a message to the object providing the services.
This message names the operation to be executed. The implementation of this operation is known as a
method.

For the sake of simplicity, method is used below as a synonym for operation and message.

(C) SAPAG BC404 4-40



Calling Methods: Syntax

DATA: airplane TYPE REF TO I cl _ai r pl ane.
DATA: name TYPE string.
DATA: count _pl anes TYPE |I.

CREATE OBJECT air pl ane.

CALL METHOD ai r pl ane- >set _nanme EXPORTI NG i m name = nane.
CALL METHOD | cl _ai rpl ane=>get count RECEI VI NG re_count = count_pl anes.

© SAP AG 1999

Public methods can be called from outside the class in a number of ways:
Instance methods are called using CALL METHOD <reference>-><instance_method>.

Static methods are called using CALL METHOD <classname>=><class_method>.
Static methods are addressed by class name, since they do not need instances.

Note:

If you are calling a static method from within the class, you can omit the class name.

When calling an instance method from within another instance method, you can omit the instance name.
The method is automatically executed for the current object.

(C) SAPAG BC404 4-41



Functional Methods !r
s

® \When defining:
= RETURNING parameters
= Only IMPORTING parameters and exceptions are also possible
® When calling:
= RECEIVING parameters, or ...
= ... Various forms of direct call possible:
¢ MOVE, CASE, LOOP
¢ Logical expressions (IF, ELSEIF, WHILE, CHECK, WAIT)

¢ Arithmetic expressions and bit expressions (COMPUTE)

© SAP AG 1999

Methods that have a RETURNING parameter are described as functional methods. These methods cannot
have EXPORTING or CHANGING parameters, but has many (or as few) IMPORTING parameters and
EXCEPTIONS as required.

Functional methods can be used directly in various expressions (although EXCEPTIONS are not catchable
at the moment - you must use the long form of the method call):

in logical expressions (IF, ELSEIF, WHILE, CHECK, WAIT)
in the CASE statement (CASE, WHEN)

in the LOOP statement

in arithmetic expressions (COMPUTE)

in Bit expressions (COMPUTE)

in the MOVE statement.

(C) SAPAG BC404 4-42



Functional Methods: Examples Hr
A

CLASS | cl _airplane DEFI NI TI ON.
PUBLI C SECTI ON.
METHODS: estinmated fuel consunption
| MPORTI NG i m di st ance TYPE ty_di stance
RETURNI NG VALUE(re fuel) TYPE ty_fuel,
CLASS- METHODS: get count RETURNI NG VALUE(re_count) TYPE i.

ENDCLASS.

DATA: pl anel TYPE REF TO | cl _airpl ane,
pl ane2 TYPE REF TO | cl _airpl ane,
fuel _consunption TYPE ty fuel,
count _pl anes TYPE i .

* |nstantiation omtted

* CALL METHOD pl anel->get _count RECEI VI NG re_count = count_pl anes.
count _pl anes = | cl _airpl ane=>get _count( ).

fuel _consunption = pl anel->esti mat ed_f uel _consunpti on( 1000 )
+ pl ane2->estimat ed_fuel consunption( imdistance = 1500 ).

© SAP AG 1999

The syntax for instance methods (analogous to static methods) is as follows, depending on the number of
IMPORTING parameters :

no IMPORTING parameters: ref->func_method( )

exactly 1 IMPORTING parameter : ref->func_method( p1 ) oder
ref->func_method(im_1 =pl)
several IMPORTING parameters : ref->func_method(im_1 = plim_2 =p2)

(C) SAPAG BC404 4-43



L+ ER .i|

® Special method for creating Icl_airplane
objects with defined initial
state hame
weight

® Only has IMPORTING
parameters and
EXCEPTIONS

count

P constructor

® Exactly one constructor is
defined per class (explicitly
or implicitly)

® |s executed exactly once per
instance

© SAP AG 1999

The constructor is a special (instance) method in a class and is always named CONSTRUCTOR. The
following rules apply:

Each class has exactly one constructor.

The constructor does not need to be defined if no implementation is defined.

The constructor is automatically called during runtime within the CREATE OBJECT statement.

If you need to implement the constructor, then you must define and implement it in the PUBLIC SECTION.

When EXCEPTIONS are triggered in the constructor, instances are not created (as of 4.6a), so no main
memory space is taken up.

(C) SAPAG BC404 444




Constructor: Example

CLASS | cl _ai rpl ane DEFI NI TI ON.
PUBLI C SECTI ON.
METHODS CONSTRUCTOR | MPORTI NG i m namne TYPE string
i mwei ght TYPE I.
PRI VATE SECTI ON.
DATA: nane TYPE string, weight TYPE I.
CLASS- DATA count TYPE |.

ENDCLASS.
CLASS | cl _airpl ane | MPLEMENTATI ON.
METHOD CONSTRUCTOR.
name = i m nane.
wei ght = i m wei ght.
count = count + 1.
ENDIVETHCD.
ENDCLASS.

DATA ai rpl ane TYPE REF TO I cl _airpl ane.

CREATE OBJECT airpl ane
EXPORTI NG i m_name
i m wei ght

"LH Berl
30000.

© SAP AG 1999

You need to implement the constructor when, for example

You need to allocate (external) resources

You need to initialize attributes that cannot be covered by the VALUE supplement to the DATA statement
You need to modify static attributes

You cannot normally call the constructor explicitly.

(C) SAPAG BC404 4-45



Static Constructor: Implementation

CLASS | cl _airpl ane DEFI NI Tl ON.
PUBLI C SECTI ON.
CLASS- METHODS:
CLASS_CONSTRUCTOR,
get _count RETURNI NG
VALUE(re_count) TYPE I.
CLASS- DATA: count TYPE |I.
ENDCLASS.

CLASS | cl _airpl ane | MPLEVENTATI ON.
METHOD CLASS CONSTRUCTOR.
ENDVETHOD.

ENDCLASS.

© SAP AG 1999

The static constructor is a special static method in a class and is always named CLASS_CONSTRUCTOR.
It is executed precisely once per program. The static constructor of class <classname> is called
automatically before the class is first accessed, that is, before any of the following actions are executed:

Creating an instance in the class using CREATE OBJECT obj, where obj has the data type
REF TO <classname>.

Addressing a static attribute using <classname>=><an_attribute>.

Calling a static attribute using CALL METHOD <classname>=><a_classmethod>.

Registering a static event handler method using SET HANDLER <classname>=><handler_method> for
obj.

Registering an event handler method for a static event in class <classname>.

The static constructor cannot be called explicitly.

(C) SAPAG BC404 4-46



Static Constructor: Call Examples H’
A

Special static method

Automatically called
before the class is first
accessed

® Only executed once per
program

© SAP AG 1999

* Exanpl e 1:

DATA airpl ane TYPE REF TO cl _airpl ane.

CREATE OBJECT ai r pl ane.

* Exanpl e 2:
DATA cl ass_id TYPE string.

class_id = Icl_airplane=>count.

* Exanpl e 3:
DATA count _ai rpl ane TYPE |.

CALL METHOD | cl _ai r pl ane=>get _count

RECEI VI NG re_count = count _air pl ane.

(C) SAPAG

BC404

4-47




Principles: Overview (7)

OB)ECHS
Classes
ALTHPULES

VIETHEES
Ipistzipltizition), Celrgzieja Colleaioy

Werkisie) Wits) Ggjaets

v

EUHEREIHNCIPIES

© SAP AG 1999

(C) SAPAG BC404

4-48



Encapsulation Fr
S

Class as capsule for functions
Defined responsibilities within a capsule (class)
Defined interfaces using

m Public components of class (PUBLIC SECTION)

® Implementation of component remains hidden through
limited visibility (PRIVATE SECTION)

© SAP AG 1999

Encapsulation

The principle of encapsulation is to hide the implementation of a class from other components in the
system, so that these components cannot make assumptions about the internal state of the objects in that
class or of the class itself. This prevents dependencies on specific implementations from arising.

The class is the capsule surrounding related functions.

The principle of visibility ensures that the implementation of the functions and the information administered
within a class is hidden.

(C) SAPAG BC404 4-49



Client/Server Behavior “’
A

® C(Classes behave toward each other as client/server
systems.

Classes normally play both roles.

Responsibilities between the classes must be established.

Client Server

© SAP AG 1999

Classes behave like client/server systems: When a class is called by a method of another class, it
automatically becomes the client of the other (server) class. This creates two requirements :

- The client class must observe the protocol of the server class.

- The server class protocol must be clear and detailed enough that a potential client has no trouble in
orienting by it.

Classes normally play both roles. Every class is a potential server class, and when it is called by a method
of another class it then becomes a client class too.

Establishing logical business and software responsibilities between classes results in a true client/server
software system in which redundancy is avoided.

(C) SAPAG BC404 4-50




The Delegation Principle

lcl_airplane |cl_tank
tank : lcl_tank

Icl_client

get_fuel_level () : re level

get_fuel_level () : re_level

re_level = tank->get_fuel_level (). re_level = fuel / fuel_max * 100.

© SAP AG 1999

In delegation, two objects are involved in handling a request: the recipient of the request delegates the
execution of the request to a delegate.

Example:

The pilot (Icl_client) calls the method get_fuel_level from the airplane class (Icl_airplane). The airplane
cannot carry out this task itself. Therefore the airplane calls the get_fuel_level method from the tank class
(Icl_tank), that is, the airplane delegates the execution of the method to the tank.

The main advantage of delegation (as a re-use mechanism) lies in the option of changing the behavior of
the recipient by substituting the delegate (at runtime). For example, delegation enables the airplane to be
equipped with a new tank, without the call changing for the client or for the airplane class.

Good capsulation often forces you to use delegation: if tank in the above example were a private attribute
in class Icl_airplane, then the user cannot address the tank directly, but only through the airplane!

(C) SAPAG BC404 4-51



Sequence Diagram: Delegation SAP
pilot : Icl_client airbus : Icl_airplane tank : Icl_tank

© SAP AG 1999

(C) SAPAG BC404 4-52



Namespace Within a Class

® The same namespace for

Attribute names
Method names
Event names
Type names
Constant names
ALIAS names

® Thereis alocal namespace within methods

© SAP AG 1999

Within a class, attribute names, method names, event names, constant names, type names and alias

names all share the same namespace.

There is a local namespace within methods. Definitions of variables can cover components in one class.

(C) SAPAG




Namespace: Example

CLASS | cl _airpl ane DEFI NI TI O\.
PUBLI C SECTI ON.

METHODS CONSTRUCTOR
| MPORTI NG i m nane TYPE string

i m wei ght TYPE |.
PRI VATE SECTI ON.

DATA nane TYPE string.

DATA wei ght TYPE | .
ENDCLASS.

CLASS cl _airpl ane | MPLEMENTATI ON.
METHOD CONSTRUCTOR.

DATA nane TYPE string VALUE "-airpl ane .
CONCATENATE i m nane nane | NTO ME- >nane.
wei ght = i m wei ght.

ENDIVETHOD.
ENDCLASS.

© SAP AG 1999

You can address the object itself within object methods using the implicitly available reference variable ME.
Description of the example:

In the CONSTRUCTOR, the instance attribute name is covered by the locally defined variable name. In
order to still be able to address the instance attribute, you need to use ME.

(C) SAPAG BC404



Principles: Summary

© SAP AG 1999

‘Z You are now able to:

Create classes
Create objects
Call methods

Explain how the Garbage Collector works

(C) SAPAG

BC404

4-55



)2 )

Exercises

Unit: Principles

Topic: Creating Classes

At the end of this exercise you will be able to:

e Create aclass

An airline needs to manage its airplanes.

1-1 Create development class for your group ZBC404_## (##: group number) and save all the
repository objects you have created during the course in this development class.

1-2 Create include program ZBC404 ## LCL_AIRPLANE
(##: group number) .

1-3 Create class Icl_airplane in the above include program.

1-3-1

1-3-2

1-3-3

1-3-4

1-3-5

This class has two private instance attributes:
- name

- planetype.
The attribute for the name of the airplane should be type C, length 25. Define the type
in the PUBLIC SECTION. Define the attribute for the plane type using the table field
saplane-planetyp.

The class has a private static attribute:
-n_o_airplanes.
This attribute should be type I.

The class has a public instance method set_attributes to set the private instance
attributes name and plane type. Enter two corresponding importing parameters for the
declaration of the method in the definition part. The definition of these parameters
should be analogous to the two attributes.

Implement the method in the implementation part. Each time the method is called, the
static attribute n_o_airplanes should increase by one.

The class has another public instance method display_attributes to display the
instance attributes. Declare this method and output the attribute in the implementation
part using the WRITE statement.

Declare and implement a public static method display_n_o_airplanes to display the
static attribute n_o_airplanes.

(C) SAPAG

BC404 4-56



Unit: Principles

Topic: Instantiating Objects

At the end of this exercise you will be able to:
e Instantiate objects

e Call methods

An airline needs to manage its airplanes.

D,

2-1 Create program ZBC404_##_ MAINTAIN_AIRPLANES
(##: group number).

2-2 Use the INCLUDE statement to include program ZBC404_## LCL_AIRPLANE (##: group
number) from the previous exercise .

2-3 Create a reference to class Icl_airplane.

2-4 Call the static method display_n_o_airplanes (before instantiating an object in class
Icl_airplane).

2-5 Create an object in class Icl_airplane.

2-6 Set the object attributes using the set_attributes method.

2-6-1 Invent an airplane name and airplane type and pass them as text literal.

2-7 Display the object attributes using the display_attributes method.

2-8 Call the static method display_n_o_airplanes for a second time .

(C) SAPAG BC404 4-57



Unit: Principles

Topic: Constructor

At the end of this exercise you will be able to:
e Create a constructor for a class

e Create an object using the constructor

An airline needs to manage its airplanes.

D,

3-1 Create a constructor for class Icl_airplane (in the include program
ZBC404_## LCL_AIRPLANE)

1-1-1 The constructor must have two importing parameters that fill the instance attributes
name and planetype.

1-1-2 The static attribute n_o_airplanes should have an ascending sequence of one in the
constructor.

3-2 In the method set_attributes, comment out the line in which the static attribute n_o_airplanes is
increased by one.

3-3 In the main program ZBC404_## MAINTAIN_AIRPLANES, extend the creation of the object
with the constructor interface.

1-3-1 Fill the constructor interface parameters with the same values you used when calling
the set_attributes method.

3-4 Comment out the set_attributes method call.

(C) SAPAG BC404 4-58



Principles Solutions

Unit: Principles

/ Topic: Creating Classes

* *
* CLASS Icl_airplane DEFINITION *
* *

CLASS Icl_airplane DEFINITION.

* Public section
PUBLIC SECTION.

TYPES: name_type(25) TYPE c.
CONSTANTS: pos_1 TYPE i VALUE 30.

METHODS: set_attributes IMPORTING

im_name  TYPE name_type

im_planetype TYPE saplane-planetype,
display_attributes.

CLASS-METHODS: display_n_o_airplanes.

* Private section
PRIVATE SECTION.

DATA: name  TYPE name_type,
planetype TYPE saplane-planetype.

CLASS-DATA: n_o_airplanes TYPE i.

ENDCLASS.

(C) SAPAG BC404

4-59



* CLASS Icl_airplane IMPLEMENTATION *

* *

CLASS Icl_airplane IMPLEMENTATION.

* Method set_attributes
METHOD set_attributes.
name =1im_name.
planetype =im_planetype.
n_o_airplanes = n_o_airplanes + 1.
ENDMETHOD.

* Method display_attributes
METHOD display_attributes.
WRITE: / 'Name of the airplane: '(001), AT pos_1 name,
/ 'Plane type: '(002), AT pos_1 planetype.
ENDMETHOD.

* Method display_n_o_airplanes
METHOD display_n_o_airplanes.
WRITE: /, / 'Total number of airplanes: '(cal),
AT pos_1 n_o_airplanes LEFT-JUSTIFIED, /.
ENDMETHOD.

ENDCLASS.

(C) SAPAG BC404 4-60



Unit: Principles

/ Topic: Instantiating Objects

REPORT sapbc404bass_create_object

* Including class Icl_airplane
INCLUDE sapbc404bass_|Icl_airplane_1.

DATA: airplane TYPE REF TO Icl_airplane.

START-OF-SELECTION.
CALL METHOD Icl_airplane=>display_n_o_airplanes.
CREATE OBJECT airplane.
CALL METHOD airplane->set_attributes EXPORTING
im_name  ='LH Berlin'
im_planetype = '747-400'.

CALL METHOD airplane->display_attributes.

CALL METHOD Icl_airplane=>display_n_o_airplanes.

Include program SAPBC404BASS_LCL_AIRPLANE_1
* *

* CLASS Icl_airplane DEFINITION *

* *

CLASS Icl_airplane DEFINITION.

* Public section
PUBLIC SECTION.

TYPES: name_type(25) TYPE c.
CONSTANTS: pos_1 TYPE i VALUE 30.

METHODS: set_attributes IMPORTING
im_name  TYPE name_type
im_planetype TYPE saplane-planetype,

(C) SAPAG BC404 5-61



display_attributes.
CLASS-METHODS: display_n_o_airplanes.

* Private section
PRIVATE SECTION.

DATA: name  TYPE name_type,
planetype TYPE saplane-planetype.

CLASS-DATA: n_o_airplanes TYPE i.

ENDCLASS.

* *
* CLASS Icl_airplane IMPLEMENTATION

* *

CLASS Icl_airplane IMPLEMENTATION.

* Method set_attributes
METHOD set_attributes.
name =im_name.
planetype =im_planetype.
n_o_airplanes = n_o_airplanes + 1.
ENDMETHOD.

* Method display_attributes
METHOD display_attributes.
WRITE: / 'Name of the airplane: '(001), AT pos_1 name,
/ 'Plane type: '(002), AT pos_1 planetype.
ENDMETHOD.

* Method display_n_o_airplanes
METHOD display_n_o_airplanes.
WRITE: /, / 'Total number of airplanes: '(cal),
AT pos_1 n_o_airplanes LEFT-JUSTIFIED, /.
ENDMETHOD.

ENDCLASS.

(C) SAPAG BC404

5-62



Unit: Principles

/ Topic: Constructor

REPORT sapbc404bass_constructor

include sapbc404bass_|Icl_airplane_2.

DATA: airplane TYPE REF TO Icl_airplane.

START-OF-SELECTION.
CALL METHOD Icl_airplane=>display_n_o_airplanes.
* Create object with constructor
CREATE OBJECT airplane EXPORTING im_name  ='LH Berlin'
im_planetype = '747-400'.
* CALL METHOD airplane->set_attributes EXPORTING
* im_name  ='LH Berlin'
* im_planetype = '747-400'.

CALL METHOD airplane->display_attributes.

CALL METHOD Icl_airplane=>display_n_o_airplanes.

Include program SAPBC404BASS_LCL_AIRPLANE_2

* *
* CLASS Icl_airplane DEFINITION *
* *

CLASS Icl_airplane DEFINITION.
PUBLIC SECTION.

TYPES: name_type(25) TYPE c.
CONSTANTS: pos_1 TYPE i VALUE 30.

* NEW: constructor
METHODS: constructor importing
im_name  TYPE name_type

(C) SAPAG BC404

5-63



im_planetype TYPE saplane-planetype,
set_attributes IMPORTING
im_name  TYPE name_type
im_planetype TYPE saplane-planetype,
display_attributes.

CLASS-METHODS: display_n_o_airplanes.

PRIVATE SECTION.

DATA: name  TYPE name_type,
planetype TYPE saplane-planetype.

CLASS-DATA: n_o_airplanes TYPE i.

ENDCLASS.

* *

* CLASS Icl_airplane IMPLEMENTATION *
* *

CLASS Icl_airplane IMPLEMENTATION.

* NEW: constructor
METHOD constructor.
name =im_name.
planetype = im_planetype.
n_o_airplanes = n_o_airplanes + 1.
ENDMETHOD.

METHOD set_attributes.
name  =im_name.
planetype = im_planetype.
* n_o_airplanes =n_o_airplanes + 1.
ENDMETHOD.

METHOD display_attributes.
WRITE: / 'Name of the airplane: '(001), at pos_1 name,
/ 'Plane type: '(002), at pos_1 planetype.
ENDMETHOD.

METHOD display_n_o_airplanes.
WRITE: /, / 'Total number of airplanes: '(cal),
AT pos_1 n_o_airplanes left-justified, /.
ENDMETHOD.

ENDCLASS.

(C) SAPAG BC404



(C) SAPAG BC404 5-65



Generalization/Specialization

Contents:

Inheritance
Cast
Polymorphism

Interfaces

Compound interfaces

© SAP AG 1999

(C) SAPAG BC404

6-1




Generalization/Specialization: Unit Objectives !’
WA

: At the conclusion of this unit, you will be able to:

® . :
® Use inheritance
® Carry out casts
® Define and implement interfaces
® Develop generic programs using polymorphism

© SAP AG 1999

(C) SAPAG BC404 6-2




Generalization/Specialization: Course Overview

Diagram

Summary and Outlook

Global Classes/Interfaces

Generalization/
Specialization

Events

Principles

Analysis and Design

Introduction

© SAP AG 1999

(C) SAPAG

BC404

6-3



Generalization/Specialization: Overview (1)

} ITWENIENCE
Ceisi
Polymoronisim

Flrifer Sherziciarisiies o lnnaritegee

(MEHECES

COMPEURNENILEHECES

© SAP AG 1999

(C) SAPAG BC404 6-4



Inheritance (1)

Icl_airplane

- name
- weight

+ get_fuel_level () : ty_level
+ estimate_fuel_consumption () : i

“is-a” relationship

el M iy

IcI_passenger_airélane Icl_cargo_airplane

- seats - cargo
- emergency_exits

+get_seats () :i + get_cargo () : ty_cargo

© SAP AG 1999

Inheritance is a relationship in which one class (the subclass) inherits all the main characteristics of another
class (the superclass). The subclass can also add new components (attributes, methods, and so on) and
replace inherited methods with its own implementations.

Inheritance is an implementation relationship that emphasizes similarities between classes. In the example
above, the similarities between the passenger plane and cargo plane classes are extracted to the airplane
superclass. This means that common components are only defined/implemented in the superclass and are
automatically present in the subclasses.

The inheritance relationship is often described as an “is-a” relationship: a passenger plan is an airplane.

(C) SAPAG BC404 6-5



Inheritance (2)

>

Generalization

Specialization

<

© SAP AG 1999

Inheritance should be used to implement generalization and specialization relationships. A superclass is a
generalization of its subclasses. The subclass in turn is a specialization of its superclasses.

The situation in which a class, for example Icl_8, inherits from two classes (Icl_6 and Icl_7) simultaneously,
is known as multiple inheritance. This is not realized in ABAP Objects. ABAP Objects only has single
inheritance.

However, you can simulate multiple inheritance in ABAP Objects using interfaces (see the section on
interfaces).

Single inheritance does not mean that the inheritance tree only has one level. On the contrary, the direct
superclass of one class can in turn be the subclass of a further superclass. In other words: the inheritance
tree can have any number of levels, so that a class can inherit from several superclasses, as long as it only
has one direct superclass.

Inheritance is a “one-sided relationship”: subclasses know their direct superclasses, but (super)classes do
not know their subclasses.

(C) SAPAG BC404 6-6



Inheritance: Syntax !’
A

CLASS | cl _ai rpl ane DEFI NI TI ON.

PUBLI C SECTI ON.
METHODS: get fuel |evel RETURNI NG VALUE(re level) TYPE ty |evel.

PRI VATE SECTI ON.
DATA: name TYPE string,
wei ght TYPE |I.
ENDCLASS.

CLASS | cl _cargo_airpl ane DEFI NI TI ON | NHERI TI NG FROM | ¢l _ai r pl ane.

PUBLI C SECTI ON.
METHODS: get_cargo RETURNI NG VALUE(re_cargo) TYPE ty_car go.

PRI VATE SECTI ON.
DATA: cargo TYPE ty cargo.

ENDCLASS.

© SAP AG 1999

Normally the only other entry required for subclasses is what has changed in relation to the direct
superclass. Only additions are permitted in ABAP Obijects, that is, in a subclass you can “never take
something away from a superclass”. All components from the superclass are automatically present in the

subclass.

(C) SAPAG BC404 6-7



Relationships between Superclasses and Subclasses Hr

® Common components are only present once in the
superclass

m New components in the superclass are automatically available
to the subclasses

m Amount of new coding is reduced (“programming by
difference”)

® Subclasses are extremely dependent on superclasses

m “White Box Re-use”:
Subclass must possess detailed knowledge of the
implementation of the superclass

© SAP AG 1999

If inheritance is used properly, it provides a significantly better structure, as common components only
need to be stored once centrally (in the superclass) and are then automatically available to subclasses.
Subclasses also profit immediately from changes (although the changes can also render them invalid!).

Inheritance provides very strong links between the superclass and the subclass. The subclass must
possess detailed knowledge of the implementation of the superclass, particularly for redefinition, but also in
order to use inherited components. Even if, technically, the superclass does not know its subclasses, the
subclass often makes additional requirements of the superclass, for example, because a subclass needs
certain protected components or because implementation details in the superclass need to be changed in
the subclass in order to redefine methods. The basic reason is that the developer of a (super)class cannot
normally predict all the requirements that subclasses will later need to make of the superclass.

(C) SAPAG BC404 6-8



Inheritance and Visibility Hr
A

CLASS | cl _airplane DEFI NI TI ON.

® Public components PUBLI C SECTI ON
METHODS get nane RETURN NG

m Visible to all
VALUE(re_nane) TYPE string.

m Direct access

PROTECTED SECTI ON.

® Protected components
DATA tank TYPE REF TO | cl _t ank.

m Only visible within their

class and within the PRI VATE SECTI ON.
subclass DATA nane TYPE stri ng.
° :
Private components ENDCLASS.
m Only visible within the class
m No access from outside the Icl_airplane + public
class,not even from the — # protected

# tank : Icl_tank

subclass - private

- name : string

+ get_name () : string

© SAP AG 1999

Inheritance provides an extension of the visibility concept: there are protected components. The visibility of
these components lies between that of the public components (visible to all users, all subclasses, and the
class itself), and private (visible only to the class itself). Protected components are visible to and can be
used by all subclasses and the class itself.

Subclasses cannot access the private components (particularly attributes) of the superclass. Private
components are genuinely private. This is particularly important if a (super)class needs to make local
enhancements to handle errors: it can use private components to do this without knowing or invalidating
subclasses.

In ABAP Objects, you must keep to the section sequence PUBLIC, PROTECTED, PRIVATE.

(C) SAPAG BC404 6-9



Inheritance and the (Instance) Constructor Hr
A

CLASS | cl _ai rpl ane DEFI NI TI ON. CLASS | cl _ai rpl ane | MPLEMENTATI ON.
PUBLI C SECTI ON. METHOD CONSTRUCTCOR.
METHODS: CONSTRUCTOR | MPORTI NG nanme = i m nane.
i m name TYPE string. ENDMETHOD.
ENDCLASS. ENDCLASS.

CLASS | cl _cargo_airpl ane DEFI NI TI ON | NHERI TI NG FROM | cl _ai r pl ane.
PUBLI C SECTI ON.
METHODS: CONSTRUCTOR | MPORTI NG i m name TYPE string
i mcargo TYPE ty_cargo.
PRI VATE SECTI ON.
DATA: cargo TYPE ty_ cargo.
ENDCLASS.

CLASS | cl _cargo_airpl ane | MPLEMENTATI ON.
METHOD CONSTRUCTOR.
CALL METHOD SUPER- >CONSTRUCTOR EXPCORTI NG i m nane = i m nane.
cargo = i m cargo.
ENDMETHOD.
ENDCLASS.

© SAP AG 1999

The constructor of the superclass must be called within the constructor of the subclass. The reason for this
is the special task of the constructor: to ensure that objects are initialized correctly. Only the class itself,
however, can initialize its own (private) components correctly; this task cannot be carried out by the
subclass. Therefore it is essential that all (instance) constructors are called in an inheritance hierarchy (in
the correct sequence).

For static constructors, unlike instance constructors, the static constructor in the superclass is called
automatically, that is, the runtime system automatically ensures that, before the static constructor in a
particular class is executed, the static constructors of all its superclasses have already been executed.

(C) SAPAG BC404 6-10



Parameters and CREATE OBJECT Hr
S

DATA: ref2 TYPE REF TO I cl _2,
ref3 TYPE REF TO | cl _3.

CREATE OBJECT ref2 EXPORTING i m1 = 100.
lel_1
CREATE OBJECT ref3 EXPORTING im 1 = 100 #ali
im2 = 1000.
+ constructor
(im_al:i)
® The class to which the instance to be created belongs has |
a constructor
S lcl_2
= Fill its parameters.
® The class to which the instance to be created belongs A
does not have a constructor |
= Search for the next superclass with a constructor lcl_3
in the inheritance tree. - azi
Fill its parameters +eonstructor
P : (im_al:i,im_a2:i)

© SAP AG 1999

You must also consider the model described for instance constructors when using CREATE OBJECT. In
this model, the constructor of the immediate superclass must be called before the non-inherited instance
attributes can be initialized.

There are basically two methods of creating an instance in a class using CREATE OBJECT:

1. The instance constructor for that class has been defined (and implemented).

In this case, when you are using CREATE OBJECT, the parameters have to be filled according to the
constructor interface, that is, optional parameters may, and non-optional parameters must be filled with

actual parameters. If the constructor does not have any (formal) parameters, no parameters may or can be
filled.

2. The instance constructor for that class has not been defined.

In this case, you must search the inheritance hierarchy for the next highest superclass in which the
instance constructor has been defined and implemented. Then, when you are using CREATE OBJECT, the
parameters of that class must be filled (similarly to the first method above).

If there is no superclass with a defined instance constructor, then no parameters may or can be filled.

If no instance constructor has been defined for a class, then a default constructor, which is implicitly always
present is used. This default constructor calls the constructor from the immediate superclass.

(C) SAPAG BC404 6-11



Redefining Methods in ABAP Objects Hr
A i

® Inherited methods can be redefined in subclasses

m Redefined methods must be re-implemented in subclasses
m The signature of redefined methods cannot be changed

m You can only redefine instance methods, not static methods

Icl airplane

+ estimate_fuel_consumption ( ): fuel

A

Icl_passenger_airplane Icl_cargo_airplane

+ estimate_fuel_consumption (): fuel + estimate_fuel_consumption ( ): fuel

© SAP AG 1999

In ABAP Objects, you can not only add new components, but also provide inherited methods with new
implementations. This is known as redefinition. You can only redefine (public and protected) instance
methods, other components (static methods, attributes and so on) cannot be redefined. Furthermore,
implementation is restricted to (re-)implementation of an inherited method; you cannot change method
parameters (signature change).

You also cannot redefine a class’s (instance) constructor.

In UML, the redefinition of a method is represented by listing the method again in the subclass. Methods
(and all other components) that are inherited but not redefined are not listed in the subclass, as their
presence there is clear from the specialization relationship.

You should not confuse redefinition with “overlaying”. This describes the ability of a class to have methods
with the same name but a different signature (number and type of parameters). This option is not available
in ABAP Objects.

(C) SAPAG BC404 6-12



Redefining Methods: Example (1)

CLASS | cl _ai rpl ane DEFI NI TI ON.
PUBLI C SECTI ON.
METHODS esti mate fuel consunpti on
I MPORTI NG i m di st ance TYPE ty_di stance
RETURNI NG VALUE(re_fuel) TYPE ty fuel.
ENDCLASS.

CLASS | cl _passenger _airpl ane DEFI NI TI ON | NHERI TI NG FROM | cl _ai r pl ane.
PUBLI C SECTI ON.
METHODS esti mate fuel consunpti on REDEFI NI Tl ON.
ENDCLASS.
CLASS | cl _passenger _ai rpl ane | MPLEMENTATI ON.
METHOD esti mate_fuel _consunpti on.
ENDVETHCD.
ENDCLASS.

© SAP AG 1999

The REDEFINITION statement for the inherited method must be in the same SECTION as the definition of
the original method. (It can therefore not be in the PRIVATE SECTION, since a class’s private methods are
not visible and therefore not redefinable in subclasses!)

If you redefine a method, you do not need to enter its interface again in the subclass, but only the name of
the method. The reason for this is that ABAP Objects does not support overlaying (see notes to previous
slide).

(C) SAPAG BC404 6-13



Redefining Methods: Example (2)

Icl_airplane

+ estimate_fuel_consumption ( ): fuel

Icl_passenger_airplane Icl_cargo_airplane

+ estimate_fuel_consumption ( ): fuel + estimate_fuel_consumption ( ): fuel

METHCD estimate_fuel _consunption. (| NETHOD esti mat e_f uel _consunpt i on.
DATA: total _weight ... DATA: total weight
total weight = seats * _ total _weight = cargo + weight.
aver age_wei ght + wei ght.
re fuel = total weight *
i mdi stance * factor.
ENDVETHCD. ENDVETHOD.

re fuel = total weight *
i mdistance * factor.

© SAP AG 1999

In the above example, both redefined methods calculate the return code in different ways. The important
point is that the semantics stay the same.

To implement a redefined method in a subclass, you often need to call the method of the same name in the
immediate superclass. In ABAP Objects you can call the method from the superclass using the pseudo-
reference super: CALL METHOD super->method_name.The pseudo-reference super can only be used in
redefined methods.

(C) SAPAG BC404 6-14



Generalization/Specialization: Overview (2)

IhERanCcE

} Czigi

Polvioroniss)

Eurirlar Crizirziciarisiies of Irperiizipes

(MEHaCES

COIMPLURENRLEHECES

© SAP AG 1999

(C) SAPAG BC404 6-15



Compatibility and Narrowing Cast !’
S

® |Instances from subclasses can be used in any context in
which the instances of the superclass appear

DATA: airpl ane TYPE REF TO I cl _ai rpl ane,
cargo_airplane TYPE REF TO I cl _cargo_airpl ane,
| evel TYPE ty_level.

CREATE OBJECT cargo_air pl ane.

* Subcl ass i nstance understands the sane nessages
* as supercl ass instance
CALL METHOD cargo_ai rpl ane->get _fuel |evel RECEIVING re | evel = |evel.

* Narrowi ng Cast
ai rpl ane = cargo_ai rpl ane.

* Using the subclass instance in the superclass context
CALL METHOD airpl ane->get fuel |evel RECEIVING re | evel = |evel.

© SAP AG 1999

One of the significant principles of inheritance is that an instance from a subclass can be used in every
context in which an instance from the superclass appears. This is possible because the subclass has
inherited all components from the superclass and therefore has the same interface as the superclass. The
user can therefore address the subclass instance in the same way as the superclass instance.

Variables of the type “reference to superclass” can also refer to subclass instances at runtime.

The assignment of a subclass instance to a reference variable of the type “reference to superclass” is
described as a narrowing cast, because you are switching from a view with more detail to a view with less
detail.

The description “up-cast” is also used.

What is a narrowing cast used for? A user who is not interested in the finer points of cargo or passenger
planes (but only, for example, in the tank gauge) does not need to know about them. This user only needs
to work with (references to) the Icl_airplane class. However, in order to allow the user to work with cargo or
passenger planes, you would normally need a narrowing cast.

(C) SAPAG BC404 6-16



Principles of the Narrowing Cast

DATA: airpl ane TYPE REF TO I cl _ai rpl ane,
cargo_airplane TYPE REF TO | cl _cargo_air pl ane.

CREATE OBJECT cargo_air pl ane.

airplane [

cargo_airplane @—

ai rpl ane = cargo_airpl ane.

airplane [

cargo_airplane @—

© SAP AG 1999

After the narrowing cast you can use the airplane reference to access the components of the cargo plane
instance that were inherited from Icl_airplane, obviously in some cases with the limitations entailed by their
visibility. You can no longer access the cargo-plane-specific part of the instance (cargo in the above
example) using the airplane reference.

(C) SAPAG BC404 6-17



Static and Dynamic Types: Example

for airplane

e

DATA: airpl ane TYPE REF TO I cl _ai rpl ane,
cargo_airplane TYPE REF TO I cl _cargo_airpl ane.

CREATE OBJECT cargo_air pl ane.
ai rpl ane = cargo_ai rpl ane.

for airplane
Y 4
airplane [ name
weight
cargo_airplane @ cargo

© SAP AG 1999

A reference variable always has two types: static and dynamic:

- The static type of a reference variable is determined by variable definition using TYPE REF TO. It cannot
and does not change. It establishes which attributes and methods can be addressed

- The dynamic type of a reference variable is the type of the instance currently being referred to, it is
therefore determined by assignment and can change during the program run. It establishes what coding is
to be executed for redefined methods.

In the example, the static type of the airplane variable is always ‘REF TO Icl_airplane’, but its dynamic type
after the cast is ‘REF TO Icl_cargo_airplane’.

The reference ME can be used to determine the dynamic type in the Debugger.

(C) SAPAG BC404 6-18



Static and Dynamic Types for References Hr
A

® The static type of a reference variable
» |s determined using TYPE REF TO
= Remains constant throughout the program run

= Establishes which attributes and methods can be
addressed

® The dynamic type of areference variable
» |s determined by assignment
= Can change during the program run

» Establishes what coding is to be executed for redefined
methods

© SAP AG 1999

(C) SAPAG BC404 6-19



Widening Cast (1)

DATA: airpl ane TYPE REF TO I cl _airpl ane,
cargo_airplane TYPE REF TO I cl _cargo_airpl ane,
cargo_airplane2 TYPE REF TO I cl _cargo_airpl ane.

CREATE OBJECT cargo_air pl ane.
ai rpl ane = cargo_airpl ane.

airplane o LH Berl name
30,000/ L weight

cargo_airplane & E—
— 100t cargo

cargo_airplane2 @

cargo_airpl ane2 ?= airpl ane.

airplane [

\

cargo_airplane @

T

cargo_airplane2 @

© SAP AG 1999

The type of case described above is known as a widening cast because it changes the view to one with
more details. The instance assigned (a cargo plane in the above example) must correspond to the object
reference (cargo_airplane in the above example), that is, the instance must have the details implied by the
reference.

This is also known as a “down cast”.

The widening cast in this case does not cause an error because the reference airplane actually points to an
instance in the subclass Icl_cargo_airplane. The dynamic type is therefore ‘REF TO Icl_cargo_airplane’.

(C) SAPAG BC404 6-20




Widening Cast (2)

DATA: airpl ane TYPE REF TO I cl _ai rpl ane,
cargo_airplane TYPE REF TO | cl _cargo_air pl ane.

CREATE OBJECT air pl ane.

airplane o name
- weight

cargo_airplane @

. . Runtime
=

cargo_airplane ?= airpl ane. @ N
airplane o name
i weight

cargo_airplane e

© SAP AG 1999

Here the widening cast produces the MOVE_CAST_ERROR runtime error that can be caught with
“CATCH ... ENDCATCH?”, because the airplane reference does not point to an instance in the subclass

Icl_cargo_airplane, but to a “general airplane object”. Its dynamic type is therefore ‘REF TO Icl_airplane’
and does not correspond to the reference type cargo_airplane.

(C) SAPAG BC404 6-21



Widening Cast (3) H’
YA

® Cannot be checked statically

® |[f unsuccessful, ends with a catchable runtime
error

CATCH SYSTEM EXCEPTI ON MOVE_CAST_ERROR = 4.
cargo_airplane ?= airpl ane.

ENDCATCH.

| F SY- SUBRC EQ 4.

ENDI F.

© SAP AG 1999

The widening cast logically represents the opposite of the narrowing cast. The widening cast cannot be
checked statically, only at runtime. The Cast Operator “?=" (or the equivalent “MOVE ... ?TO ...”) must be
used to make this visible.

With this kind of cast, a check is carried out at runtime to ensure that the current content of the source
variable corresponds to the type requirements of the target variables. In this case therefore, it checks that
the dynamic type of the source reference airplane is compatible with the static type of the target reference
cargo_airplane. If it is, the assignment is carried out. Otherwise the catchable runtime error
“MOVE_CAST_ERROR” occurs, and the original value of the target variable remains the same.

(C) SAPAG BC404 6-22




Inheritance Semantics !’
A

® Inherited components must behave in subclasses exactly
as they do in superclasses for all users

® Redefined methods must keep the semantics of the
inherited components

® Inheritance only for generalization/specialization
= No “coding inheritance”

CALL METHOD air pl ane->esti mat e_f uel _consunpti on

Used by user Dynamic type, often unknown to user

airplane o

© SAP AG 1999

A subclass instance can be used in any context in which a superclass instance also appears. Moreover:
the user does not and is not intended to know whether he/she is dealing with a subclass or a superclass.
The user therefore works only with references to the superclass and must rely on the inherited components
behaving in the subclass instances exactly as they do in the superclass instances, otherwise the program
will not work!

On the other hand, this ensures useful restrictions on the implementation of the subclasses: inherited
components must keep their inherited semantics. You cannot use inherited attributes or events in any way
other than intended in the superclass, and you cannot change method semantics by redefinition!

You must avoid coding inheritance: it is not correct for one class to inherit from another simply because
part of the functionality required is already implemented there.

(C) SAPAG BC404 6-23



Generalization/Specialization: Overview (3)

>

© SAP AG 1999

ITENIENCE

el

Rolvaoroniss)

U EREh e CIENSHCSIOIN INEIENCE
INEHIECES

COIMPLURENRLEHECES

(C) SAPAG

BC404

6-24



Polymorphism and Inheritance !’
S

Icl_airport Icl_airplane
0,1 0.*

- plane_list :internal table

+ Calculate required fuel:re fuel + estimate_fuel_consumption:re_fuel

DATA: plane TYPE REF TO I cl _airpl ane.
LOOP AT plane_list |INTO pl ane.

re fuel = re fuel +
pl ane- >esti mat e_fuel consunption...
ENDL OOP.
Icl_passenger... Icl_cargo...
+ estimate_fuel_consu.. + estimate_fuel_consu..

© SAP AG 1999

When objects from different classes react differently to the same method call, this is known as
polymorphism. To do this, the classes implement the same method in different ways. This can done using
inheritance, by redefining a method from the superclass in subclasses and implementing it differently.
Interfaces are also introduced below: they too can enable polymorphic behavior!

When an instance receives a message to execute a particular method, then that method is executed if it
has been implemented by the class the instance belongs to. If the class has not implemented that method,
but only inherited and not redefined it, then a search up through the inheritance hierarchy is carried out until
an implementation of that method is found.

Technically speaking, the dynamic type of the reference variable, not the static type, is used to search for
the implementation of a method. In the above example of CALL METHOD plane-
>estimate_fuel_consumption, the class of the instance that plane actually refers to is used to search for the
implementation of estimate_fuel_consumption; the static type of plane, which is always ‘REF TO
Icl_airplane’ is not used.

Polymorphism is one of the main strengths of inheritance: the user can work in the same way with different
classes, regardless of their implementation. The search for the right implementation of a method is carried
out by the runtime system, not the user!

(C) SAPAG BC404 6-25



Polymorphism: Example (1) !..'
DATA: cargo_pl ane TYPE REF TO | cl _cargo_airpl ane,
passenger _pl ane TYPE REF TO | cl _passenger _ai r pl ane,
pl ane_li st TYPE TABLE OF REF TO | cl _airpl ane.
1 CREATE OBJECT: cargo_pl ane.
2 APPEND cargo_pl ane TO pl ane_Ii st.
3 CREATE OBJECT passenger _pl ane.
4 APPEND passenger _airplane TO pl ane_li st.
. 1
cargo_airpl ane [ >
plain |ist /
[
*4\
. 3
passenger _airpl ane @ >
©

Objects from different classes (Icl_cargo_airplane and Icl_passenger_airplane in the above example ) can
be stored in an internal table consisting of references to the superclass (Icl_airplane in the above example,
and then processed identically (polymorphically) (see next slide).

(C) SAPAG BC404 6-26



Polymorphism: Example (2)

METHOD cal cul ate_requi red_fuel .
DATA: pl ane TYPE REF TO I cl _ai rpl ane.
LOOP AT plane_list |INTO pl ane.
re fuel = re_fuel
+ pl ane->esti mate_fuel _consunpti on( distance ).

ENDL OOP.
ENDMETHOD.
METHOD estinmat e _fuel consunpti on.
pl ane .\\ total _weight = cargo_max + wei ght.
re fuel = total weight *
pl ane_li st /V -~ | ENDVETHOD.
o carg
METHOD estinmate fuel consunption.

total weight =

n_o_seats * human_wei ght + wei ght.

re fuel = total weight *
ENDMETHOD.

pass

© SAP AG 1999

What coding is actually executed when estimate_fuel_consumption is called depends on the dynamic type
of the plane reference variable, that is, it depends on which object from which (sub)class plane points to.

You can use polymorphism to write programs that are generic to a high degree and that do not even need
to be changed if use cases are added. In the simple example above, this means that, should a further
subclass be added, for example, for airplanes that fly in space, the above coding would not need to be
changed.

(C) SAPAG BC404 6-27



Polymorphism: Advantages Compared to !r
DA

Procedural Programming

® You often do not need to change the coding if you add use

cases .
plane_list

name | category

* Procedural realization of the pol ynorphi sm exanpl e
DATA: pl ane_li st TYPE TABLE OF pl ane_I|ist_type,
pl ane TYPE pl ane_li st _type,

LOOP AT plane_list |INTO pl ane.
CASE pl ane-cat egory.
VWHEN ' CARCGO .
PERFORM esti mat e_fuel consum for_cargo USI NG ...
CHANG NG car go_f uel .

needed_fuel = needed_fuel + cargo_fuel.
WHEN ' PASSENGER' .
PERFORM esti mate fuel consum for pass USING ...
CHANG NG passenger _f uel .
needed_fuel = needed_fuel + passenger_fuel.
ENDCASE.
ENDL OOP.

© SAP AG 1999

Using polymorphism makes generic programming easier. Instead of implementing a CASE or IF statement,
you can have one access or call, which improves readability and does not need to be changed if you
extend the program by adding further subclasses.

(C) SAPAG BC404 6-28



Generalization/Specialization: Overview (4)

ITENIENCE
el
Polvioroniss)
} U EREhareCIENSHCSIOIN INERIENCE

(MEHaCES

COIMPLURENRLEHECES

© SAP AG 1999

(C) SAPAG BC404 6-29



Abstract Classes and Methods !’
DA

® Abstract classes themselves cannot be instantiated
(although their subclasses can)

m References to abstract classes can refer to instances in
subclasses

® Abstract (instance) methods are defined in the class, but
not implemented

m They must be redefined in subclasses

CLASS | cl _airplane DEFI NI TI ON ABSTRACT. Icl_airplane
PUBLI C SECTI ON. {abstract}
METHODS esti mate_ fuel consunpti on ABSTRACT
I MPORTI NG . . . + estimate_fuel_consumption ()
ENDCLASS. {abstract}

© SAP AG 1999

You cannot instantiate objects in an abstract class. This does not, however, mean that references to such
classes are meaningless. On the contrary, they are very useful, since they can (and must) refer to
instances in subclasses of the abstract class during runtime. The CREATE-OBJECT statement is extended
in this context. You can enter the class of the instance to be created explicitly:

CREATE OBJECT <RefToAbstractClass> TYPE <NonAbstractSubclassName>.

Abstract classes are normally used as an incomplete blueprint for concrete (that is, non-abstract)
subclasses, in order to define a uniform interface, for example.

Abstract instance methods are used to specify particular interfaces for subclasses, without having to
immediately provide implementation for them. Abstract methods need to be redefined and thereby
implemented in the subclass (here you also need to include the corresponding redefinition statement in the
DEFINITION part of the subclass).

Classes with at least one abstract method are themselves abstract
Static methods and constructors cannot be abstract (they cannot be redefined).

(C) SAPAG BC404 6-30



Final Classes and Methods Hr
A

® Final classes cannot have subclasses.

CLASS | cl _passenger _airpl ane DEFI NI TI ON FI NAL
| NHERI TI NG FROM | cl _ai r pl ane.

ENDCLASS.

® Final methods cannot be redefined in subclasses.

CLASS | cl _passenger airplane DEFI NI TI ON | NHERI TI NG FROM | ¢l _ai r pl ane.
PUBLI C SECTI ON.
METHODS esti mat e _nunber of free seats Fl NAL.
ENDCLASS.

© SAP AG 1999

A final class cannot have subclasses, and can protect itself in this way against (uncontrolled) specialization.

A final method in a class cannot be redefined in a subclass, and can protect itself in this way against
(uncontrolled) redefinition.

Some characteristics:

A final class implicitly only contains final methods. You cannot enter FINAL explicitly for these methods in
this case.

Methods cannot be both final and abstract.

Classes, on the other hand, can usefully be both abstract and final: only static components can be used
there.

(C) SAPAG BC404 6-31



Inheritance and Static Components Hr
A

® \With inheritance, static components are shared:

m A class shares its non-private static attributes with all
its subclasses

m Static methods cannot be redefined

© SAP AG 1999

In ABAP Objects, all static components in an inheritance relationship are shared.

For attributes this means that each static attribute only exists once per roll area. In this way a class that
defines a public or protected static attribute shares this attribute with all its subclasses. The significant point
here is that subclasses do not each receive their own copy of the static attribute.

Shared static methods cannot be redefined in subclasses. However, you can call inherited (public or
protected) static methods using subclasses.

(C) SAPAG BC404 6-32



Component Namespaces in Classes !r
A i

® Thereis acommon namespace in a class for
m all components in that class itself and
m all public and protected components in all its superclasses

® Adding public or protected components may invalidate
subclasses

Icl_airplane

# name : string @]
<+ — # Seats:i

Icl_passenger_airplane

- seats: i

© SAP AG 1999

Adding private components is never a problem. Adding public or protected components to a class can
however invalidate that class’s subclasses, if they already contain components with the same name. When

you add that component, you get the syntax error message that that component has already been
declared.

(C) SAPAG BC404 6-33



Using Inheritance

Classes can be extended using specialization
Re-use

Polymorphic behavior through redefinition

m No need to program CASE structures

® Inheritance is often used incorrectly
m To simply recycle coding
m Instead of additional attributes/aggregation/role concepts

m The use of inheritance does not always correspond to
expectations in the real world

© SAP AG 1999

Using inheritance instead of attributes, or a misunderstanding of inheritance as an “is-one” relationship
often leads to the following kind of design: the superclass “car” has the subclasses “red car”, “green car”,
and so on. These subclasses all have an identical structure and identical behavior.

As an instance cannot change its class, in circumstances like the following, you should not use inheritance
directly, but use additional attributes to differentiate between cases (see appendix):

The class “employee” has the subclasses “full-time employee” and “part-time employee”. What happens
when a part-time employee becomes a full-time employee? A new full-time-employee object would have to
instantiated and all the information copied from the part-time-employee object. However, users who still
have a reference to the part-time-employee instance would then be working with a part-time-employee
object that logically does not exist anymore!

The use of inheritance does not always correspond to expectations in the real world: for example, if the
class ‘square’ inherits from the class ‘rectangle’, the latter will have two separate methods for changing
length and width, although the sides of the square actually need to be changed by the same measurement.

(C) SAPAG BC404 6-34



Generalization/Specialization: Overview (5)

IhERanCcE
Tzl
Polvioroniss)

Eurirlar Crizirziciarisiies of Irperiizipes

} (NEHaCES

COIMPLURENRLEHECES

© SAP AG 1999

(C) SAPAG BC404 6-35



Plain_text Spreadsheet

F PR

k

e athes|

M Tzin Taut.... =3
LT B I o
IFa

Flain |oxt]

‘ E

4 et 4] DO

Document Library: File BrOV\{ser:
Print and Display Show File
Documents Hierarchy

© SAP AG 1999

In ABAP Objects, interfaces are implemented in addition to and independently of classes. Interfaces
exclusively describe the external point of contact of a class, but they do not contain their own
implementation part.

Interfaces are usually defined by a user. The user describes in the interface which services (technical and
semantic) it needs in order to carry out a task. The user never actually knows the providers, but
communicates with them through the interface. In this way the user is protected from actual
implementations and can work in the same way with different classes/objects, as long as they provide the
services required (this is polymorphism using interfaces).

The above example shows two users: the document library and the file browser. Both define the tasks that
potential providers must be able to carry out: display and print in the first case and show a node for the file
folder display in the second. Various providers (plain text files, spreadsheets) can perform all the services
required, but one provider (the folder) can only perform the service required by the File Browser and can
therefore not be used by the Document Library.

(C) SAPAG BC404 6-36



Interfaces in UML

Icl_document_library Icl_file_browser

«interface» «interface»
lif_document lif_tree_node

author : Icl_author
display () display ()

print ()
» 1 <

Icl_plain_text [lcl_text_document|| Icl_spreadsheet Icl_folder Icl_executable

© SAP AG 1999

In UML, interfaces can represented in the same way as classes. However, they always have stereotype
«interface» above their name and can therefore be told apart from classes.

The use of an interface is represented by a dotted line with a two-sided arrow from the user to the interface,
the stereotype «uses» is optional. The fact that a class implements an interface is represented by a dotted
line with a three-sided arrow from the class to the interface. The similarity to the representation of
inheritance is intentional, as the interface can be seen as a generalization of the class implemented or the
class can be seen as a specialization of the interface.

In ABAP Objects, the same components can be defined in interfaces and in classes. This allows you to
shift part of the public point of contact of a class into an interface, even though the class is already in use;
users will not notice the difference as long as you use alias names (see appendix) for the components that
are now in the interface.

A class can implement any number of interfaces and an interface can be implemented by any number of
classes.

(C) SAPAG BC404 6-37



Defining and Implementing an Interface Hr
A i

® Interface onIy has a | NTERFACE |if_docunent .

. DATA: aut hor TYPE REF TO | cl _aut hor.
declaration METHODS: print,
di spl ay.

® An interface
corresponds to an
abstract class that

ENDI NTERFACE.

CLASS | cl _text docunent DEFI N TI ON.
PUBLI C SECTI ON.

only contains | NTERFACES | i f_document .
abstract methods METHODS: di spl ay.
ENDCLASS.
® |Interfaces are
implemented in CLASS | cl _text docunment | MPLEMENTATI ON.
classes METHOD | i f _docunent ~print.
ENDVETHOD.
® |Interfaces do not METHOD | i f _document ~di spl ay.
have visibility ENDIVETHOD.
sections METHCOD di spl ay.
ENDVETHOD.
ENDCLASS.

© SAP AG 1999

In ABAP Objects, the same components (attributes, methods, constants, types, alias names) can be
defined in an interface in largely the same way as in classes. However, interfaces do not have component
visibility sections.

Interfaces are implemented in classes.

The interface name is listed in the definition part of the class. Interfaces can only be implemented ‘publicly’
and are therefore always in the PUBLIC SECTION (this is only valid as of Release 4.6). If you do not do
this, you risk multiple implementations, if a superclass and a subclass both implement the same interface
privately.

The operations defined in the interface are implemented as methods of a class. A check is carried out to
ensure that all the methods defined in the interfaces are actually present in the implementation part of the
class (for global interfaces, a missing or superfluous implementation of an interface method results in a
ToDo warning).

The attributes, events, constants and types defined in the interface are automatically available to the class
carrying out the implementation.

Interface components are addressed in the class carrying out the implementation by prefixing the interface
name, followed by a tilde (the Interface Resolution Operator): <interfacename>~<componentname>.

(C) SAPAG BC404 6-38



Working with Interface Components Hr
A

CLASS | cl _text _docunent | MPLEMENTATI ON.

METHOD | i f docunent ~print. ”;qgtoeé?;e;m
ENDNEI-HO.D' . author : Icl_author
METHOD | i f docunent ~di spl ay. . =
ENDVETHOD. display ()
METHOD di spl ay. ... print ()
ENDMETHOD.

ENDCLASS. i

Icl_text_document

DATA: text _doc TYPE REF TO | cl text docunent.

display ()

CREATE OBJECT text doc.

CALL METHOD text_doc->lif docunent~print.
CALL METHOD text _doc->lif docunent~di spl ay.
CALL METHOD t ext _doc->di spl ay.

© SAP AG 1999

The interface resolution operator enables you to access interface components using an object reference
belonging to the class implementing the interface in exactly the same way as the method definition in the
implementation part of the class.

This allows you to differentiate between components defined in the interface and components of the same
name that are defined in the class itself. This is caused by the shared namespace.

(C) SAPAG BC404 6-39



Interface References: Narrowing Cast Hr
A

. : «interface»
DATA: | _doc TYPE REF TO | i f_docunent, lif_document

text _doc TYPE REF TO | cl text docunent. A

CREATE OBJECT text doc.

Icl_text_document

* Narrow ng Cast: i_doc
i _doc = text _doc.

text_doc

* Method call using interface reference
CALL METHOD i _doc- >di spl ay.
* CALL METHOD text_doc->lif_docunment ~di spl ay.

© SAP AG 1999

Interfaces are addressed using interface references. Interface references always refer to instances in the
classes carrying out the implementation. Interface references therefore always have both static and
dynamic types.

The assignment of an object reference to an interface reference is known as a narrowing cast since, as
with inheritance, only a part of the object interface is visible once you have assigned the reference.

With an interface reference, you can no longer address all components in the class carrying out the
implementation, but only the components defined in the interface. These components are now addressed
using the interface reference exclusively with their own ‘short’ name!

When an object reference is assigned to an interface reference, the static types must be convertible, that
is, the class that was used to define the object reference must have implemented the interface-reference
interface. Otherwise there will be a syntax error.

(C) SAPAG BC404 6-40



Interface References: Widening Cast

«interface»
DATA: | doc TYPE REF TO | i f _docunent, lif document

text _doc TYPE REF TO | cl text docunent, A
text _doc2 TYPE REF TO I cl text docunent. .

Icl_text_document

CREATE OBJECT t ext doc.

i_dOC = t ext _dOC. I_dOC o—

* work with i_doc

* W deni ng Cast: /
text _doc2 ?= i _doc. text_doc2 o«

© SAP AG 1999

The widening cast is, as with inheritance, the opposite of the narrowing cast: here it is used to retrieve an
object reference from an interface reference. Obviously it cannot be statically checked, since an interface
can be implemented by more than one class.

An object reference cannot be assigned to an interface reference if it has itself not implemented the
corresponding interface. It cannot be assigned even if a subclass has implemented the interface and the
interface reference points to an object in this class.

(C) SAPAG BC404 6-41



Using Several Interfaces H'
A

CLASS I cl _text_docunment DEFI NI TI ON. «interface» «interface»
PUBL: (I\:FFEFEQIC:::I’-;IC(IE]; i d : lif_document lif_tree_node
. lif_docunent,
lif _tree_node. 4l ,V 4§
METHODS: di spl ay. i, i

ENDCLASS.

Icl_text_document Icl_folder
DATA: i _doc TYPE REF TO |i f_docunent,

i _tree node TYPE REF TO |if _tree node,
t ext doc TYPE REF TO | cl text docunent.

CREATE OBJECT: text doc. i doc o
i _doc = text_doc. —
i _tree_node = text_doc. text_doc —

i_tree_node @

© SAP AG 1999

In the above example, one class is implementing several interfaces. Even if these interfaces contain
components with the same name, they are differentiated in the class carrying out the implementation by the
prefix “<interfacename>~".

(C) SAPAG BC404 6-42



Cast Between Interface References Hr

«interface» «interface»
PA'Cli'AZ YPE REE TO1if d t lif_document lif_tree_node
i _doc [ ocunent ,
i tree_node TYPE REF TO lif _tree_node, Z.> ,V Z.>
t ext _doc TYPE REF TO | cl _text _docunent, L !
f ol der TYPE REF TO | cl _fol der.
- Icl_text_document Icl_folder

. o—
CREATE OBJECT: text doc. LEGE

i _tree_node = text _doc. text doc ——>
i _doc ?= i _tree_node. -

i_tree_node @

o @S
CREATE OBJECT f ol der .
——>

i _tree_node = fol der. folder

i _doc ?= i_tree_node.@ Runtime
r i_tree_node &

© SAP AG 1999

Assignments between interface references whose interfaces are not related to each other cannot be
checked statically and must therefore be formulated using the cast operator “?=".

For this type of assignment, a check must be carried out at runtime to see whether the class of the instance
that the source reference points to also supports the interface that the target reference refers to. If this is
the case, the cast is carried out, otherwise the catchable runtime MOVE_CAST_ERROR occurs.

This type of cast is neither a widening nor a narrowing cast, rather a switch from one view of an object to
another.

(C) SAPAG BC404 6-43



Polymorphism and Interfaces

«interface»

Icl_document_library lit document

- document_list

+ show display ()
print ()

DATA: docunent TYPE REF TO |if_document.

LOOP AT docunent _|ist | NTO docunent.
CALL METHOD docunent - >di spl ay.
ENDL OOP.

Icl_text_document ||Icl_spreadsheet

© SAP AG 1999

Polymorphism can also be used for interfaces: you can use interface references to call methods that can
have a different implementation depending on the object behind the reference.

The dynamic type, not the static type of the reference variable is used to search for the implementation of a
method. CALL METHOD document->display above therefore uses the class of the instance that document
actually refers to to search for the implementation of display. The static type for document, which is always
‘REF TO lif_doc’ is not used.

(C) SAPAG BC404 6-44



Differences Between Polymorphism and !r
Inheritance and Polymorphism and Interfaces SAP

® Polymorphism and inheritance

m Can only be used with objects from classes that are
connected by an inheritance hierarchy

® Polymorphism and interfaces

m Can be used with objects from any class, as long as
these classes have implemented the corresponding
interface

© SAP AG 1999

If you want to write polymorphic programs, you must first decide how the objects that you want to work with
are related to each other. If the objects are dependent on each other through inheritance, then choose
polymorphism and inheritance. However, if the objects are not directly related to each other, but simply
‘happen’ to have the same characteristics, then use interfaces to achieve polymorphism.

(C) SAPAG BC404 6-45




Generalization/Specialization: Overview (6)

ITENIENCE

el

Polvioroniss)

U EREh e CIENSHCSIOIN INEIENCE

(MEHaCES

} COMPEURNENRTEHECES

© SAP AG 1999

(C) SAPAG BC404 6-46



Compound Interfaces

«interface»
lif_document

print ()

«interface»
lif_document

print ()

«interface»
lif_ markup doc

is_well_formed ()
7 7

Icl_html_doc Icl_xml_doc Icl_sgml_doc

© SAP AG 1999

Changes to an interface usually invalidate all the classes implementing it.

ABAP Objects contains a composition model for interfaces. A compound interface contains other interfaces
as components (component interfaces) and is therefore a summarized extension of these component
interfaces. An elementary interface does not itself contain other interfaces.

One interface can be used as a component interface in several compound interfaces.

UML only deals with the specialization/generalization of interfaces. This relationship is represented by a
dotted line with a three-sided arrow from the specialized to the generalized interface.

Compound interfaces in ABAP Objects can always be seen as specializations of their component
interfaces and represented as such in UML.

(C) SAPAG BC404 6-47



Compound Interfaces: Example Hr
A i

| NTERFACE | i f_doc. CLASS | cl _htm _doc DEFI NI TI ON.
METHODS edi t . PUBLI C SECTI ON.
ENDI NTERFACE. | NTERFACES | i f _mar kup_doc.
_ ENDCLASS.
| NTERFACE |i f _mar kup_doc. CLASS | cl _htm _doc | MPLEMENTATI ON.
| NTERFACES | i f _doc. METHOD |i f _doc~edi t.
METHODS is_wel | _forned. ENDVETHOD.
ENDI NTERFACE. METHOD | i f _markup_doc~i s_wel | _forned.
ENDMETHOD.
ENDCLASS.
DATA: i _doc TYPE REF TO |if_doc,
i _mar kup_doc TYPE REF TO Iif_mar kup_doc,
htm _doc TYPE REF TO I cl _htnl doc.
i _doc = i_rmarkup_doc. “Narrowi ng Cast
CALL METHOD i _mar kup_doc->lif_doc~edit.
*CALL METHOD i _doc->edit.
*CALL METHOD html doc->lif_doc~edit.
i _markup_doc ?= i _doc. “W deni ng Cast
© SAP AG 1999

In a compound interface, the components of the component interface keep their original names, that is
<component-interfacename>~<componentname>; no more prefixes are added! In other words: all
components in a compound interface are on the same level, and components inherited from component
interfaces are marked with the usual interface prefix.

This ‘equality principle’ for compound interfaces also affects how they are implemented. The procedure is
as follows: first you implement the elementary interfaces, then the additional methods from the compound
interfaces. For multiple compound interfaces, the process is simply repeated. In the class carrying out the
implementation, all components of all interfaces implemented are again on the same level.

This means that interface components only ever exist once and are known by their original names
<interfacename>~<componentname>. This is true both for compound interfaces and for the classes that
implement them.

(C) SAPAG BC404 6-48



Using Interfaces (1) Hr
YA

® Separation of external point of contact ,
. . . Icl_client
(interface) and implementation (class) .
m The client defines the external point of «“Ses’w
contact, the server implements it «interface»
m “Black Box principle”: %'&
Client only knows the interface, not \
the implementation ’
) ) Icl_serverl| |Icl_server2
m Looser linkage between client and server

© SAP AG 1999

Interfaces are the means of choice for describing external points of contact, without linking them to a type
of implementation. An extra layer is introduced between the client and the server to protect the client
explicitly from the server, thereby making it much more independent!

(C) SAPAG BC404 6-49




Using Interfaces (2) Hr

® Polymorphism
_ _ ) Icl_client
m Generic handling of objects —
from different classes «interface»
. lif_int
® Abstraction <]— P
m Interface as a generalization of o
the class carrying out the Icl_serverl| |Icl_server2

implementation

® Simulation of «interface»
lif_int lel_1
multiple inheritance A A
! |
Icl_serverl Icl_server3

© SAP AG 1999

Interfaces enable you to work uniformly with different classes (providers). In particular, they always ensure
polymorphic behavior as they do not have their own implementation, but instead allow the providers to

carry it out.

The definition of an interface is always an abstraction: the user wants to handle various providers in the
same way and must therefore abstract concrete implementations to a description of the services required
to fulfill the task.

You can also use interfaces to achieve multiple inheritance by defining the functionality to be inherited by a
second class as an interface that the inheriting class then has to implement.

(C) SAPAG BC404 6-50



Generalization/Specialization: Unit Summary

‘Z You are now able to:
® Use inheritance
Carry out casts
Define and implement interfaces

Nest interfaces

Develop generic programs using polymorphism

© SAP AG 1999

(C) SAPAG BC404 6-51



Generalization/Specialization Exercises

X

.

)

11

1-2

1-3

Unit: Generalization/Specialization

Topic: Inheritance

At the end of this exercise you will be able to:
e Define subclasses
e Redefine superclass methods in subclasses

An airline needs to manage its airplanes.

Make both instance attributes in class Icl_airplane (in the include program
ZBC404_## LCL_AIRPLANE) visible to their subclasses (PRIVATE SECTION ->
PROTECTED SECTION).

Create subclass Icl_passenger_airplane for class Icl_airplane. Create the include program
ZBC404 ## LCL_PASSENGER_PLANE for class Icl_passenger_airplane.

1-2-1

1-2-2

1-2-3

The class has a private instance attribute n_o_seats, that has the same type as table
field sflight-seatsmax.

A public constructor is defined and implemented in the class. This constructor provides
all instance attributes in the class with values.

Redefine method display_attributes of class Icl_airplane, so that, using the redefined
method, the WRITE statement displays all instance attributes.

Create subclass Icl_cargo_airplane for class Icl_airplane. Create the include program
ZBC404_## LCL_CARGO_PLANE for class Icl_cargo_airplane.

1-3-1

1-3-2

1-3-3

The class has the private instance attribute cargo_max, that has the same type as
table field scplane-cagomax.

A public constructor has been defined and implemented in the class. This constructor
provides all instance attributes in the class with values.

Redefine method display_attributes of class Icl_airplane, so that, using the redefined
method, the WRITE statement displays all instance attributes.

Create program ZBC404_## MAIN (##: group number).

1-4-1

Use the INCLUDE statement to include the following programs
- ZBC404_##_|L CL_AIRPLANE
- ZBC404_##_|L CL_PASSENGER_PLANE
- ZBC404_##_|L CL_CARGO_PLANE.

(C) SAPAG

BC404 6-52



1-4-2

1-4-3

1-4-4

1-4-5
1-4-6

Use the DATA statement to create a reference for each subclass
(Icl_passenger_airplane, Icl_cargo_airplane).

Call the static method display_n_o_airplanes (before instantiating any objects).

Use the references 1-4-2 from to create one instance in each of the subclasses
Icl_passenger_airplane and Icl_cargo_airplane. Decide for yourself how to fill the
attributes.

Call the display_attributes method for each of the instances.

Call the static method display_n_o_airplanes again.

(C) SAPAG

BC404

6-53



< Unit: Generalization/Specialization

Topic: Polymorphism and Inheritance

At the end of this exercise you will be able to:
e Use references in internal tables

e Implement polymorphic method calls

An airline needs to manage its airplanes.

D,

2-1 Copy the template SAPBC404GENT_LCL_CARRIER and call your new include program
ZBC404_##_LCL_CARRIER.

2-2 Add two public instance methods from program ZBC404 ## LCL_CARRIER to the class
Icl_carrier:

2-2-1 The first method is add_a_new_airplane, which adds airplanes to the list_of airplanes
list of airplanes already defined in the class. The transfer parameter is a reference to
class Icl_airplane. Check the definition of the internal table list_of airplanes.

2-2-2 The second method is display_airplanes, which displays the airplane attributes from
the list_of_airplanes list. The display_attributes method from class Icl_airplane should
be called at this point.

Question: which program part is executed for the method call display_attributes?

2-3 Go into program ZBC404_##_ MAIN.

Add another INCLUDE statement including program ZBC404_## LCL_CARRIER to the
existing INCLUDE statements. Make sure the include programs are in the correct
sequence.

Use the DATA statement to create a reference to class Icl_carrier.

Comment out all the method calls in your program up till now that display data
(display_n_o_airplane, display_attributes). (But only these!)

Create an airline instance using the reference from
2-3-2. Fill the transfer parameters with your own data.

Add the two planes you have created in the last exercise (one passenger and one cargo plane)
to the list_of airplanes list of planes. To do this, call method add_a_new_airplane from
class Icl_carrier.

Create more planes and add them to the airplane list.

Display the attributes of all the planes in the airplane list by calling the display_airplanes
method from class Icl_carrier.

(C) SAPAG BC404 6-54



< Unit: Generalization/Specialization

Topic: Interfaces

At the end of this exercise, you will be able to:
e Define and implement interfaces

e Use polymorphism with interfaces

A travel agency needs to maintain its business connections to partners, such as
airlines and hotels.

D,

3-1 Create the include program ZBC404_## LIF_BUSI_PARTNERS. Define the
lif_business_partners interface in this program. The interface consists solely of the method
display_company_data.

3-2 Go into the include program ZBC404 ## LCL_CARRIER. Implement the
lif_business_partners interface in class Icl_carrier.

3-2-1 Enter the interface in the definition part of the class.

3-2-2 Implement the interface's method display_company_data. Use the WRITE statement
to display important data about an airline, such as the name and number of airplanes
available for business partners. Use the list_of airplanes internal table to find out the
number of planes (-> statement DESCRIBE TABLE ...

LINES ...).

3-3 Copy template SAPBC404GENT_LCL_HOTEL and call the new include program
ZBC404_## LCL_HOTEL. Implement the lif_business_partners interface in class Icl_hotel.

Enter the interface in the definition part of the class.

Implement the interface's method display_company_data. Use the WRITE statement to display
important data on a hotel, such as the name, the town and the number of rooms
available (see class attributes) for business partners.

(C) SAPAG BC404 6-55



3-4 Copy template SAPBC404GENT_LCL_TRAVEL_AGENCY and call the new include program
ZBC404_##_ LCL_ TRAVEL_AGENCY. In class Icl_travel_agency, create a list of business
partners using references from the lif_business_partners interface.

Create a list_of business_partners internal table as a private instance attribute using
references to the lif_business_partners interface.

Create a public instance method add_business_partner , which adds business partners to the
list_of business_partners list. The transfer parameter is a reference to the
lif_business_partners interface .

3-4-3 Create a public instance method display_business_partners, that displays the most
important company data of all business partners in the list_of business_partners list.
The display_company_data method from the lif_business_partners interface must be
called.
Question: which program part is executed for the method call
display_ company_data?

3-5 Go into program ZBC404_##_ MAIN.

Use the INCLUDE statement to include the following include programs in your program:
- ZBC404_## LIF_BUSI_PARTNERS
- ZBC404_## LCL_HOTEL
-ZBC404_##_ LCL_ TRAVEL_AGENCY.
Make sure that the INCLUDE statement with
ZBC404 ## LCL_ CARRIER comes before INCLUDE
ZBC404 ## LCL_TRAVEL_AGENCY.

Use the DATA statement to define a reference to class Icl_travel_agency and at least one
reference to class Icl_hotel.

Comment out the "CALL METHOD carrier->display_airplanes.” statement from the last
exercise.

At the end of the program, create a travel agency and at least one hotel using the reference(s)
defined in 3-5-2. Fill the transfer parameters with your own data.

Add the airline instance you created in the last exercise and the hotels you created in 3-5-4 to
the list_of business_partners list of the travel agency you created in 3-5-4. To do this,
call method add_business_partner.

Call method display_business_partners to display a list of important company data for all the
travel agency's business partners.

(C) SAPAG BC404 6-56



Generalization/Specialization Solutions

/ Topic: Inheritance

REPORT sapbc404gens_inheritance

INCLUDE sapbc404gens_lIcl_airplane.
INCLUDE sapbc404gens_Icl_passenger_air.
INCLUDE sapbc404gens_Icl_cargo_air.

DATA: passenger_airplane TYPE REF TO Icl_passenger_airplane,

cargo_airplane TYPE REF TO Icl_cargo_airplane.

START-OF-SELECTION.

CALL METHOD Icl_airplane=>display_n_o_airplanes.

CREATE OBJECT passenger_airplane EXPORTING
im_name  ='LH Berlin'
im_planetype = '747-400'
im_n_o_seats = 580.

CREATE OBJECT cargo_airplane EXPORTING
im_name ='US Hercules'
im_planetype = 'Galaxy'
im_cargo_max = 30000.

CALL METHOD passenger_airplane->display_attributes.

CALL METHOD cargo_airplane->display_attributes.

CALL METHOD Icl_airplane=>display_n_o_airplanes.

Unit: Generalization/Specialization

(C) SAPAG BC404

6-57



Include program SAPBC404GENS_LCL_AIRPLANE

*

* CLASS Icl_airplane DEFINITION *

* *

CLASS Icl_airplane DEFINITION.

PUBLIC SECTION.

TYPES: name_type(25) TYPE c.
CONSTANTS: pos_1 TYPE i VALUE 30.

METHODS: constructor IMPORTING
im_name  TYPE name_type
im_planetype TYPE saplane-planetype,
set_attributes IMPORTING
im_name  TYPE name_type
im_planetype TYPE saplane-planetype,
display_attributes.

CLASS-METHODS: display_n_o_airplanes.

* NEW: protected section
PROTECTED SECTION.

DATA: name  TYPE name_type,
planetype TYPE saplane-planetype.

PRIVATE SECTION.

CLASS-DATA: n_o_airplanes TYPE i.

ENDCLASS.

* *
* CLASS Icl_airplane IMPLEMENTATION

* *

CLASS Icl_airplane IMPLEMENTATION.

METHOD constructor.
name =1im_name.
planetype = im_planetype.
n_o_airplanes = n_o_airplanes + 1.
ENDMETHOD.

(C) SAPAG BC404

6-58



METHOD set_attributes.
name =im_name.
planetype = im_planetype.

ENDMETHOD.

METHOD display_attributes.
WRITE: / 'Name of the airplane: '(001), AT pos_1 name,
/ 'Plane type: '(002), AT pos_1 planetype.
ENDMETHOD.

METHOD display_n_o_airplanes.
WRITE: /, / 'Total number of airplanes: '(cal),
AT pos_1 n_o_airplanes LEFT-JUSTIFIED, /.
ENDMETHOD.

ENDCLASS.

Include program SAPBC404GENS_LCL_PASSENGER_AIR

* CLASS Icl_passenger_airplane DEFINITION

* *

CLASS Icl_passenger_airplane DEFINITION INHERITING FROM

Icl_airplane.
PUBLIC SECTION.
METHODS: constructor IMPORTING

im_name  TYPE name_type
im_planetype TYPE saplane-planetype
im_n_o_seats TYPE sflight-seatsmax,

display_attributes REDEFINITION.
PRIVATE SECTION.

DATA: n_o_seats TYPE sflight-seatsmax.

ENDCLASS.

(C) SAPAG BC404

6-59



* *

* CLASS Icl_passenger_airplane IMPLEMENTATION

* *

CLASS Icl_passenger_airplane IMPLEMENTATION.

METHOD constructor.
CALL METHOD super->constructor EXPORTING
im_name  =im_name
im_planetype = im_planetype.
n_o_seats =im_n_o_seats.
ENDMETHOD.

METHOD display_attributes.

CALL METHOD super->display_attributes.

WRITE: / 'Number of seats:  '(003), 25 n_o_seats, /.
ENDMETHOD.

ENDCLASS.

Include program SAPBC404GENS_LCL_CARGO_AIR
* *

* CLASS Icl_cargo_airplane DEFINITION

* *

CLASS Icl_cargo_airplane DEFINITION INHERITING FROM Icl_airplane.

PUBLIC SECTION.
METHODS: constructor IMPORTING
im_name  TYPE name_type
im_planetype TYPE saplane-planetype
im_cargo_max TYPE p,
display_attributes REDEFINITION.
PRIVATE SECTION.

DATA: cargo_max TYPE scplane-cargomax.

ENDCLASS.

(C) SAPAG BC404

6-60



* *

* CLASS Icl_cargo_airplane IMPLEMENTATION *

* *

CLASS Icl_cargo_airplane IMPLEMENTATION.

METHOD constructor.
CALL METHOD super->constructor EXPORTING
im_name  =im_name
im_planetype = im_planetype.
cargo_max = im_cargo_max.
ENDMETHOD.

METHOD display_attributes.
CALL METHOD super->display_attributes.
WRITE: / 'Maximal cargo:  '(004),
at pos_1 cargo_max left-justified, /.
ENDMETHOD.

ENDCLASS.

(C) SAPAG BC404 6-61



Unit: Generalization/Specialization

/ Topic: Polymorphism and Inheritance

REPORT sapbc404gens_inh_polymorphism .

INCLUDE sapbc404gens_lIcl_airplane.
INCLUDE sapbc404gens_Icl_passenger_air.
INCLUDE sapbc404gens_Icl_cargo_air.

* New include

INCLUDE sapbc404gens_Icl_carrier_1.

DATA: passenger_airplane TYPE REF TO Icl_passenger_airplane,
cargo_airplane TYPE REF TO Icl_cargo_airplane,

*  new reference
carrier TYPE REF TO Icl_carrier.

START-OF-SELECTION.
* CALL METHOD Icl_airplane=>display_n_o_airplanes.

CREATE OBJECT passenger_airplane EXPORTING
im_name  ='LH Berlin'
im_planetype = '747-400'
im_n_o_seats = 580.

CREATE OBJECT cargo_airplane EXPORTING
im_name  ='US Hercules'
im_planetype = 'Galaxy"'
im_cargo_max = 30000.
* CALL METHOD passenger_airplane->display_attributes.
* CALL METHOD cargo_airplane->display_attributes.
* CALL METHOD Icl_airplane=>display_n_o_airplanes.
* new coding

* Create a carrier
CREATE OBJECT carrier EXPORTING im_name = 'Lufthansa’.

(C) SAPAG BC404 6-62



* Add passenger airplane to airplane list
CALL METHOD carrier->add_a_new_airplane EXPORTING
im_airplane = passenger_airplane.

* Create new passenger airplane
CREATE OBJECT passenger_airplane EXPORTING
im_name  ='LH Minchen'
im_planetype = 'A310-300'
im_n_o_seats = 280.

* Add new passenger airplane to airplane list
CALL METHOD carrier->add_a_new_airplane EXPORTING
im_airplane = passenger_airplane.

* Add cargo airplane to airplane list
CALL METHOD carrier->add_a_new_airplane EXPORTING
im_airplane = cargo_airplane.

* Display all airplanes of airplane list
CALL METHOD carrier->display_airplanes.

Include program SAPBC404GENS_LCL_AIRPLANE

* CLASS Icl_airplane DEFINITION *

*, *

CLASS Icl_airplane DEFINITION.

PUBLIC SECTION.

TYPES: name_type(25) TYPE c.
CONSTANTS: pos_1 TYPE i VALUE 30.

METHODS: constructor IMPORTING
im_name  TYPE name_type
im_planetype TYPE saplane-planetype,
set_attributes IMPORTING
im_name  TYPE name_type
im_planetype TYPE saplane-planetype,
display_attributes.

CLASS-METHODS: display_n_o_airplanes.

(C) SAPAG BC404

6-63



* NEW: protected section
PROTECTED SECTION.

DATA: name  TYPE name_type,
planetype TYPE saplane-planetype.

PRIVATE SECTION.

CLASS-DATA: n_o_airplanes TYPE i.

ENDCLASS.

*, *
* CLASS Icl_airplane IMPLEMENTATION

* *

CLASS Icl_airplane IMPLEMENTATION.

METHOD constructor.
name =im_name.
planetype =im_planetype.
n_o_airplanes = n_o_airplanes + 1.
ENDMETHOD.

METHOD set_attributes.
name  =im_name.
planetype = im_planetype.

ENDMETHOD.

METHOD display_attributes.
WRITE: / 'Name of the airplane: '(001), AT pos_1 name,
/ 'Plane type: '(002), AT pos_1 planetype.
ENDMETHOD.

(C) SAPAG BC404



METHOD display_n_o_airplanes.
WRITE: /, / 'Total number of airplanes: '(cal),
AT pos_1n_o_airplanes LEFT-JUSTIFIED, /.
ENDMETHOD.

ENDCLASS.

Include program SAPBC404GENS_LCL_PASSENGER_AIR
* *

* CLASS Icl_passenger_airplane DEFINITION *

* *

CLASS Icl_passenger_airplane DEFINITION INHERITING FROM
Icl_airplane.

PUBLIC SECTION.

METHODS: constructor IMPORTING
im_name  TYPE name_type
im_planetype TYPE saplane-planetype
im_n_o_seats TYPE sflight-seatsmax,
display_attributes REDEFINITION.

PRIVATE SECTION.

DATA: n_o_seats TYPE sflight-seatsmax.

ENDCLASS.

*, *

* CLASS Icl_passenger_airplane IMPLEMENTATION
* *

CLASS Icl_passenger_airplane IMPLEMENTATION.

METHOD constructor.
CALL METHOD super->constructor EXPORTING
im_name =im_name
im_planetype = im_planetype.
n_o_seats =im_n_o_seats.
ENDMETHOD.

(C) SAPAG BC404

6-65



METHOD display_attributes.

CALL METHOD super->display_attributes.

WRITE: / 'Number of seats:  '(003), 25 n_o_seats, /.
ENDMETHOD.

ENDCLASS.

Include program SAPBC404GENS_LCL_CARGO_AIR

* CLASS Icl_cargo_airplane DEFINITION

* *

CLASS Icl_cargo_airplane DEFINITION INHERITING FROM Icl_airplane.

PUBLIC SECTION.

METHODS: constructor IMPORTING
im_name  TYPE name_type
im_planetype TYPE saplane-planetype
im_cargo_max TYPE p,
display_attributes REDEFINITION.

PRIVATE SECTION.

DATA: cargo_max TYPE scplane-cargomax.

ENDCLASS.

* *
* CLASS Icl_cargo_airplane IMPLEMENTATION
* *

CLASS Icl_cargo_airplane IMPLEMENTATION.

METHOD constructor.
CALL METHOD super->constructor EXPORTING
im_name  =im_name
im_planetype = im_planetype.
cargo_max = im_cargo_max.
ENDMETHOD.

METHOD display_attributes.
CALL METHOD super->display_attributes.

(C) SAPAG BC404

6-66



WRITE: / 'Maximal cargo:  '(004),
at pos_1 cargo_max left-justified, /.
ENDMETHOD.

ENDCLASS.

Include program SAPBC404GENS_LCL_CARRIER_1
*, *

* CLASS Icl_carrier DEFINITION *

* *

CLASS Icl_carrier DEFINITION.

PUBLIC SECTION.

TYPES: BEGIN OF flight_list_type,
connid TYPE sflight-connid,
fldate TYPE sflight-fldate,
airplane TYPE REF TO Icl_airplane,
seatsocc TYPE sflight-seatsocc,
cargo(5) TYPE p DECIMALS 3,
END OF flight_list_type.

METHODS: constructor IMPORTING im_name TYPE string,
get_name returning value(ex_name) type string,
* add a new airplane
add_a_new_airplane IMPORTING
im_airplane TYPE REF TO Icl_airplane,
create_a_new_flight IMPORTING
im_connid TYPE sflight-connid
im_fldate TYPE sflight-fldate
im_airplane TYPE REF TO Icl_airplane
im_seatsocc TYPE sflight-seatsocc
OPTIONAL
im_cargo TYPE p OPTIONAL,
* display airplanes
display_airplanes.

PRIVATE SECTION.
DATA: name TYPE string,

list_of airplanes TYPE TABLE OF REF TO Icl_airplane,
list_of flights TYPE TABLE OF flight_list_type.

(C) SAPAG BC404 6-67



ENDCLASS.

* *
* CLASS Icl_carrier IMPLEMENTATION
* *

CLASS Icl_carrier IMPLEMENTATION.

METHOD constructor.
name = im_name.
ENDMETHOD.

METHOD get_name.
ex_name = name.
ENDMETHOD.

* add a new airplane
METHOD add_a_new_airplane.
APPEND im_airplane TO list_of airplanes.
ENDMETHOD.

METHOD create_a_new_flight.
DATA: wa_list_of_flights TYPE flight_list_type.

wa_list_of flights-connid =im_connid.
wa_list_of flights-fldate =im_fldate.
wa_list_of flights-airplane = im_airplane.
IF im_seatsocc IS INITIAL.

wa_list_of flights-cargo = im_cargo.

ELSE.
wa_list_of_flights-seatsocc = im_seatsocc.
ENDIF.
APPEND wa_list_of_flights TO list_of flights.
ENDMETHOD.

* display airplanes
METHOD display_airplanes.
DATA airplane TYPE REF TO Icl_airplane.

LOOP AT list_of_airplanes INTO airplane.
*  Polymorphism: calling different method implementations
* by one call
CALL METHOD airplane->display_attributes.
ENDLOOP.
ENDMETHOD.

(C) SAPAG BC404 6-68



ENDCLASS.

(C) SAPAG BC404 6-69



Unit: Generalization/Specialization

/ Topic: Interfaces

REPORT sapbc404gens_interfaces .

INCLUDE sapbc404gens_lIcl_airplane.
INCLUDE sapbc404gens_Icl_passenger_air.
INCLUDE sapbc404gens_Icl_cargo_air.

* new includes

INCLUDE sapbc404gens_lif _busi_partners.
INCLUDE sapbc404gens_Icl_hotel.

* |cl_carrier is implementing the interface BUSINESS PARTNERS

INCLUDE sapbc404gens_lcl_carrier_2.
INCLUDE sapbc404gens_lIcl_travel_agency.

DATA: passenger_airplane TYPE REF TO Icl_passenger_airplane,

cargo_airplane TYPE REF TO Icl_cargo_airplane,
carrier TYPE REF TO Icl_carrier,
*  New references for hotels and travel agency

hotell TYPE REF TO Icl_hotel, hotel2 TYPE REF TO Icl_hotel,

agency TYPE REF TO Icl_travel_agency.

START-OF-SELECTION.

CREATE OBJECT passenger_airplane EXPORTING
im_name  ='LH Berlin'
im_planetype = '747-400'
im_n_o_seats = 580.

CREATE OBJECT cargo_airplane EXPORTING
im_name  ='US Hercules'
im_planetype = 'Galaxy'
im_cargo_max = 30000.

CREATE OBJECT carrier EXPORTING im_name = 'Lufthansa'.

CALL METHOD carrier->add_a_new_airplane EXPORTING
im_airplane = passenger_airplane.

(C) SAPAG BC404

6-70



CREATE OBJECT passenger_airplane EXPORTING
im_name  ='LH Minchen'
im_planetype = 'A310-300'
im_n_o_seats = 280.

CALL METHOD carrier->add_a_new_airplane EXPORTING
im_airplane = passenger_airplane.
CALL METHOD carrier->add_a_new_airplane EXPORTING
im_airplane = cargo_airplane.
* CALL METHOD carrier->display_airplanes.
* Create hotels
CREATE OBJECT hotell EXPORTING im_name  ='Budget Inn'
im_city = 'Washington'
im_n_o_rooms = 112.
CREATE OBJECT hotel2 EXPORTING im_name  ='Ambassador'
im_city = 'Frankfurt'

im_n_o_rooms = 85.

* Create travel agency

CREATE OBJECT agency EXPORTING im_name = 'Happy Holiday'.

* Add new business partners
CALL METHOD agency->add_business_partner
EXPORTING im_business_partner = carrier.
* narrowing cast: type ref to interface =
* type ref to LCL_CARRIR

CALL METHOD agency->add_business_partner
EXPORTING im_business_partner = hotell.
* narrowing cast: type ref to interface =
* type refto LCL_HOTEL

CALL METHOD agency->add_business_partner
EXPORTING im_business_partner = hotel2.
* narrowing cast: type ref to interface =
* type ref to LCL_HOTEL

* Display business partners: Polymorphism with interfaces
CALL METHOD agency->display_business_partners.

(C) SAPAG BC404

6-71



Include program SAPBC404GENS_LCL_AIRPLANE
* *

* CLASS Icl_airplane DEFINITION *

* *

CLASS Icl_airplane DEFINITION.

PUBLIC SECTION.

TYPES: name_type(25) TYPE c.
CONSTANTS: pos_1 TYPE i VALUE 30.

METHODS: constructor IMPORTING
im_name  TYPE name_type
im_planetype TYPE saplane-planetype,
set_attributes IMPORTING
im_name  TYPE name_type
im_planetype TYPE saplane-planetype,

display_attributes.

CLASS-METHODS: display_n_o_airplanes.

* NEW: protected section
PROTECTED SECTION.

DATA: name  TYPE name_type,
planetype TYPE saplane-planetype.

PRIVATE SECTION.

CLASS-DATA: n_o_airplanes TYPE i.

ENDCLASS.

* *
* CLASS Icl_airplane IMPLEMENTATION

* *

CLASS Icl_airplane IMPLEMENTATION.

METHOD constructor.
name =im_name.
planetype = im_planetype.
n_o_airplanes = n_o_airplanes + 1.

(C) SAPAG BC404

6-72



ENDMETHOD.

METHOD set_attributes.
name =im_name.
planetype = im_planetype.

ENDMETHOD.

METHOD display_attributes.
WRITE: / 'Name of the airplane: '(001), AT pos_1 name,
/ 'Plane type: '(002), AT pos_1 planetype.
ENDMETHOD.

METHOD display_n_o_airplanes.
WRITE: /, / 'Total number of airplanes: '(cal),
AT pos_1 n_o_airplanes LEFT-JUSTIFIED, /.
ENDMETHOD.

ENDCLASS.

(C) SAPAG BC404 6-73



Include program SAPBC404GENS_LCL_PASSENGER_AIR

* CLASS Icl_passenger_airplane DEFINITION *

*. *
CLASS Icl_passenger_airplane DEFINITION INHERITING FROM
Icl_airplane.

PUBLIC SECTION.
METHODS: constructor IMPORTING
im_name  TYPE name_type
im_planetype TYPE saplane-planetype
im_n_o_seats TYPE sflight-seatsmax,
display_attributes REDEFINITION.
PRIVATE SECTION.
DATA: n_o_seats TYPE sflight-seatsmax.

ENDCLASS.

* *

* CLASS Icl_passenger_airplane IMPLEMENTATION

*, *

CLASS Icl_passenger_airplane IMPLEMENTATION.

METHOD constructor.
CALL METHOD super->constructor EXPORTING
im_name  =im_name
im_planetype = im_planetype.
n_o_seats = im_n_o_seats.
ENDMETHOD.

METHOD display_attributes.

CALL METHOD super->display_attributes.

WRITE: / 'Number of seats:  '(003), 25 n_o_seats, /.
ENDMETHOD.

ENDCLASS.

(C) SAPAG BC404

6-74



Include program SAPBC404GENS_LCL_CARGO_AIR

* CLASS Icl_cargo_airplane DEFINITION *

*, *

CLASS Icl_cargo_airplane DEFINITION INHERITING FROM Icl_airplane.

PUBLIC SECTION.

METHODS: constructor IMPORTING
im_name  TYPE name_type
im_planetype TYPE saplane-planetype
im_cargo_max TYPE p,
display_attributes REDEFINITION.

PRIVATE SECTION.

DATA: cargo_max TYPE scplane-cargomax.

ENDCLASS.

* *

* CLASS Icl_cargo_airplane IMPLEMENTATION *
*, *

CLASS Icl_cargo_airplane IMPLEMENTATION.

METHOD constructor.
CALL METHOD super->constructor EXPORTING
im_name  =im_name
im_planetype = im_planetype.
cargo_max = im_cargo_max.
ENDMETHOD.

METHOD display_attributes.
CALL METHOD super->display_attributes.
WRITE: / 'Maximal cargo:  '(004),
at pos_1 cargo_max left-justified, /.
ENDMETHOD.

ENDCLASS.

Include program SAPBC404GENS_LIF_BUSI_PARTNERS

INTERFACE lif_business_partners.
(C) SAPAG BC404 6-75




METHODS: display_company_data.

ENDINTERFACE.

Include program SAPBC404GENS_LCL_HOTEL

*

* CLASS Icl_hotel DEFINITION *

* *

CLASS Icl_hotel DEFINITION.

PUBLIC SECTION.

* Interface declaration
INTERFACES: lif_business_partners.

METHODS: constructor IMPORTING im_name  TYPE string
im_city  TYPE string
im_n_o_rooms TYPEi.

PRIVATE SECTION.
DATA: name  TYPE string,

city  TYPE string,
n_o_rooms TYPE i.

ENDCLASS.

* *

* CLASS Icl_hotel IMPLEMENTATION *
*, *

CLASS Icl_hotel IMPLEMENTATION.

METHOD constructor.

name =im_name.

city = im_city.

Nn_o_rooms =im_n_o_rooms.
ENDMETHOD.

* Interface Implementation
METHOD Ilif_business_partners~display_company_data.
WRITE: / 'Hotel '(h01), name COLOR COL_NEGATIVE, 'in'(h02), city,
/'The number of available rooms is'(h03),
n_o_rooms left-justified, /.

(C) SAPAG BC404 6-76



ENDMETHOD.

ENDCLASS.

Include program SAPBC404GENS_LCL_CARRIER_2
*, *

* CLASS Icl_carrier DEFINITION *

* *

CLASS Icl_carrier DEFINITION.

PUBLIC SECTION.

TYPES: BEGIN OF flight_list_type,
connid TYPE sflight-connid,
fldate TYPE sflight-fldate,
airplane TYPE REF TO Icl_airplane,
seatsocc TYPE sflight-seatsocc,
cargo(5) TYPE p DECIMALS 3,
END OF flight_list_type.

* Interface declaration
INTERFACES: lif_business_partners.

METHODS: constructor IMPORTING im_name TYPE string,
get_name RETURNING value(ex_name) TYPE string,
add_a_new_airplane IMPORTING

im_airplane TYPE REF TO Icl_airplane,
create_a_new_flight IMPORTING

im_connid TYPE sflight-connid

im_fldate TYPE sflight-fldate

im_airplane TYPE REF TO Icl_airplane

im_seatsocc TYPE sflight-seatsocc

OPTIONAL

im_cargo TYPE p OPTIONAL,

display_airplanes.

PRIVATE SECTION.
DATA: name TYPE string,
list_of airplanes TYPE TABLE OF REF TO Icl_airplane,

list of flights TYPE TABLE OF flight_list_type.

ENDCLASS.

(C) SAPAG BC404

6-77



* CLASS Icl_carrier IMPLEMENTATION

* *

CLASS Icl_carrier IMPLEMENTATION.

METHOD constructor.
name = im_name.
ENDMETHOD.

METHOD get_name.
ex_name = name.
ENDMETHOD.

* Interface Implementation
METHOD lif_business_partners~display_company_data.
DATA: n_o_airplanes TYPE i.

DESCRIBE TABLE list_of airplanes LINES n_o_airplanes.
WRITE: / name COLOR COL_POSITIVE, / 'Number of Airplanes:'(c01),

n_o_airplanes LEFT-JUSTIFIED, /.
ENDMETHOD.

METHOD add_a_new_airplane.
APPEND im_airplane TO list_of airplanes.
ENDMETHOD.

METHOD create_a_new_flight.
DATA: wa_list_of flights TYPE flight_list_type.

wa_list_of flights-connid =im_connid.
wa_list_of flights-fldate =im_fldate.
wa_list_of flights-airplane = im_airplane.

IF im_seatsocc IS INITIAL.
wa_list_of flights-cargo = im_cargo.
ELSE.
wa_list_of flights-seatsocc = im_seatsocc.
ENDIF.
APPEND wa_list_of flights TO list_of flights.
ENDMETHOD.

METHOD display_airplanes.
DATA airplane TYPE REF TO Icl_airplane.

LOOP AT list_of_airplanes INTO airplane.

(C) SAPAG BC404

6-78



CALL METHOD airplane->display_attributes.
ENDLOORP.
ENDMETHOD.

ENDCLASS.

Include program SAPBC404GENS_LCL_TRAVEL_AGENCY
*, *

* CLASS Icl_travel_agency DEFINITION *

* *

CLASS Icl_travel_agency DEFINITION.

PUBLIC SECTION.

METHODS: constructor IMPORTING im_name TYPE string,
* Add new business partner
add_business_partner IMPORTING im_business_partner
TYPE REF TO lif_business_partners,
* Display business partners
display _business_partners.

PRIVATE SECTION.

DATA: name TYPE string,
* List of business partners
list_of business_partners TYPE TABLE OF REF TO
lif_business_partners.

ENDCLASS.

* *
* CLASS Icl_travel_agency IMPLEMENTATION
* *

CLASS Icl_travel_agency IMPLEMENTATION.

METHOD constructor.
name = im_name.
ENDMETHOD.

* Add new business partner
METHOD add_business_partner.
APPEND im_business_partner TO list_of business_partners.
ENDMETHOD.

(C) SAPAG BC404

6-79



* Display business partners
METHOD display_business_partners.

DATA business_partner TYPE REF TO lif_business_partners.

write: / "'Travel Agency:'(tal), name color col_heading,
/ 'Business partners:'(ta2), /.
LOOP AT list_of_business_partners INTO business_partner.
CALL METHOD business_partner->display_company_data.
ENDLOOP.
ENDMETHOD.

ENDCLASS.

(C) SAPAG BC404

6-80



Contents:

® Define and trigger events

® Register and handle events

© SAP AG 1999

(C) SAPAG BC404 7-1



Events: Unit Objectives !r
A

At the conclusion of this unit, you will be able to:

Define and trigger events
Handle events
Register and deregister events

Receive areference from the sender

Explain the conceptual differences between
methods and events

© SAP AG 1999

(C) SAPAG BC404

7-2




Events: Course Overview Diagram

Summary and Outlook

Global Classes/Interfaces

Generalization/
Specialization

Events

Principles

Analysis and Design

Introduction

© SAP AG 1999

(C) SAPAG

BC404

7-3



Events: Overview

Airplane

]

LH Berli
IF altitude = 0.
RAI SE EVENT t ouched down.
ENDI F.

© SAP AG 1999

)k

Air-traffic controller

Pilot

By triggering an event, an object or a class announces a change of state, or that a certain state has been
achieved.

In the above example, the airplane class triggers the event ‘touched_down’. Other classes subscribe to this
event and process it. The air-traffic controller marks the plane as landed on the list, the pilot breathes a
sigh of relief and the passenger, Mr. Miller, applauds.

Note:

The events discussed here are not ABAP events such as INITIALIZATION,
START-OF-SELECTION, and so on.

(C) SAPAG BC404 7-4



Characteristics and Uses

® Looser linkage than for a method call
® Different communication model
m Trigger does not know the user
® Important for GUI implementation
® Conformity to other object models
m COM
m ActiveX Controls

m OpenDoc

© SAP AG 1999

Events link objects or classes more loosely than direct method calls do. Method calls establish precisely
when and in which statement sequence the method is called. However, with events, the reaction of the
object to the event is determined by the triggering of the event itself.

Events are most often used in GUI implementations.
Other external object models, such as COM, ActiveX Controls etc, also provide events.

(C) SAPAG BC404 7-5



Triggering and Handling Events: Overview

® Triggering events

= Class defines event
(EVENTS, CLASS- EVENTS)

= Object or class triggers event
(RAI SE EVENT)

® Handling events

= Event handler class defines and implements event handler method
([ CLASS-] METHODS. .. FOR EVENT ... OF...)

= “Event handler object” or handler class registers itself to specific
object/class events at runtime
(SET HANDLER)

© SAP AG 1999

At the moment of implementation, a class defines its
instance events (using the statement EVENTS) and
static events (using the statement CLASS-EVENTS)

Classes or their instances that receive a message when an event is triggered at runtime and want to react
to this event define event handler methods.
Statement : (CLASS-)METHODS <handler_method> FOR EVENT <event> OF <classname>.

These classes or their instances register themselves at runtime to one or more events.
Statement : SET HANDLER <handler_method> FOR <reference>. (for instance events)
SET HANDLER <handler_method>. (for static events).

A class or an instance can trigger an event at runtime using the statement RAISE EVENT.

(C) SAPAG BC404 7-6




Defining and Triggering Events: Syntax

CLASS | cl _ai rpl ane DEFI NI TI ON.
PUBLI C SECTI ON.
METHODS arrive_at_airport.
EVENTS t ouched_down EXPORTI NG VALUE(ex_nane) TYPE string.
PRI VATE SECTI ON.
DATA: nane TYPE string.
ENDCLASS. l ,))

CLASS cl _airpl ane | MPLEMENTATI ON.
METHOD arrive_at_airport.

RAI SE EVENT t ouched_down EXPORTI NG ex_nane = nane.
ENDVETHCD.
ENDCLASS.

© SAP AG 1999

Both instance and static events can be triggered in instance methods.

Only static events can be triggered in static methods.

Events can only have EXPORTING parameters which must be passed by value.
Triggering an event using the statement RAISE EVENT has the following effect:
the program flow is interrupted at that point

the event handler methods registered to this event are called and processed

once all event handler methods have been executed, the program flow starts again.

If an event handler method in turn triggers an event, then the program flow is again interrupted and all
event handler methods are executed (nesting).

(C) SAPAG BC404 7-7



Handling and Registering Events

Pilot

]
Air-traffic
controller

Passenger

© SAP AG 1999

Events are registered using the command SET HANDLER. Registration is only active at program runtime.
Events cannot be persistent.

You want to register an object to an event belonging to another object. The SET HANDLER... statement
enters the registration in that object’s list. All handlers for one event are entered in this list.

When the event is triggered, the list shows which event handler methods need to be called.

(C) SAPAG BC404 7-8



Handling Events: Syntax

CLASS Icl _air _traffic _controller DEFIN TI ON.

PRI VATE SECTI ON.
METHODS: on touched down FOR EVENT touched _down OF Icl _airpl ane
| MPORTI NG ex_nane
SENDER.

a =

© SAP AG 1999
Event handler methods are triggered by events (RAISE EVENT), although they can also be called like
normal methods (CALL METHOD).

The interface of the event handler method consists solely of IMPORTING parameters. Only parameters
from the definition of the corresponding event (event interface) can be used. An event interface only has
EXPORTING parameters and is defined using the EVENTS statement in the declaration of the event. The
parameters are typed in the event definition and the typing is passed to the event handler method, that is,
the interface parameters of the event handler method cannot be typed in the definition of the event handler
method.

In addition to the explicitly defined event interface parameters, the implicit parameter SENDER can also be
listed as an IMPORTING parameter for instance events. This passes on a reference to the object that
triggered the event.

ENDCLASS.

(C) SAPAG BC404 7-9



Registering for an Event: Syntax "
Ly i

CLASS lcl _air traffic_controller DEFI N TION.
PUBLI C SECTI ON.
METHODS: add_ai r pl ane | MPORTI NG i m pl ane TYPE REF TO I cl _air pl ane.
PRI VATE SECTI ON.
METHODS: on_touched down FOR EVENT touched_down OF ...
ENDCLASS.

CLASS cl _air_traffic_controller | MPLEVMENTATI ON.
METHOD add_ai r pl ane.
SET HANDLER on_t ouched_down FOR i m pl ane ACTI VATION "X .
ENDIVET HOD.

ENDCLASS. 1

© SAP AG 1999

When an event is triggered, only those event handler methods that have registered themselves using SET
HANDLER by this point at runtime are executed.

You can register an event using Activation ‘X' (see above example), and deregister it using Activation
‘SPACE' (see next slide). You can also register and deregister using a variable <var>, which is filled with
one of these two values. If you do not specify a value for Activation, then the event is registered (default
setting).

You can register several methods in one SET-HANDLER statement:

SET HANDLER <ref_handlel>-><handler_method1> ...
<ref_handlen>-><handler_methodN>

FOR <ref_sender> | FOR ALL INSTANCES.

(C) SAPAG BC404 7-10



Deregistration and the Implicit Reference SENDER “’
S

CLASS Icl _air _traffic_controller DEFIN TION.
PUBLI C SECTI ON.
METHODS: add_air pl ane | MPORTI NG i m pl ane TYPE REF TO I cl _air pl ane.
PRI VATE SECTI ON.
METHODS: on_touched down FOR EVENT touched down OF Icl _airplane
| MPORTI NG ex_nanme SENDER
ENDCLASS.

CLASS cl _air_traffic_controller | MPLEMENTATI ON.

METHOD on_t ouched_down.
SET HANDLER on_t ouched_down FOR SENDER ACTI VATI ON SPACE.

i )

In the above example, air-traffic controller Schmidt deregisters himself from the event touch_down for the
airplane “LH Berlin” once it has landed, as the next time “LH Berlin” lands (again triggering touch_down) ,
this will be at a different airport and so of no interest to him.

ENDIVETHOD.
ENDCLASS.

© SAP AG 1999

(C) SAPAG BC404 7-11



Registration/Deregistration: Handler Table

Handler table
for object “LH Berlin”

t ouched down (Event)

Handling Registered
Airplane ? method object
> /on t ouched down @

LH Berliiii

Traffic_controller &

© SAP AG 1999

Every object that has defined events has an internal table: the handler table. All objects that have
registered for events are entered in this table together with their event handler methods.

Objects that have registered themselves for an event that is still “live” also remain “live”. The methods of
these objects are called when the event is triggered, even if they can no longer be reached using main
memory references.

(C) SAPAG BC404 7-12



Event Handling: Characteristics Hr
A

Event handling is sequential.

Sequence in which event handler methods are called is not
defined.

® As far as the Garbage Collector is concerned, registration
has the same effect as a reference to the object registered.

m Registered objects are never deleted.

® |Immediate effects of SET HANDLER on event handler
methods:

m Newly registered event handlers are also executed.

m Deregistered handlers may already have been executed.

© SAP AG 1999

If several objects have registered themselves for an event, then the sequence in which the event handler
methods are called is not defined, that is, there is no guaranteed algorithm for the sequence in which the
event handler methods are called.

If a new event handler is registered in an event handler method for an event that has just been triggered,
then this event handler is added to the end of the sequence and is then also executed when its turn comes.
If an existing event handler is deregistered in an event handler method, then this handler is deleted from
the event handler method sequence.

(C) SAPAG BC404 7-13



Events and Visibility Hr
WL

® The visibility of an event establishes authorization for
event handling.

® The visibility in an event handler method establishes
authorization for SET- HANDLER statements.

e An event handler method must have either the same or more
restricted visibility than the event it refers to :

Event Event handler method
public public, protected, private
protected protected, private

private private

© SAP AG 1999

Events are also subject to the visibility concept and can therefore be either public, protected or private.
Visibility establishes authorization for event handling :

all users

only users within that class or its subclasses

only users in that class.

Event handler methods also have visibility characteristics. Event handler methods, however, can only have
the same visibility or more restricted visibility than the events they refer to.

The visibility of event handler methods establishes authorization for SET-HANDLER statements: SET
HANDLER statements can be made

anywhere
in that class and its subclasses
only in that class

(C) SAPAG BC404 7-14



© SAP AG 1999

‘Z You are now able to:
°

Define and trigger events
Handle events
Register and deregister events

Explain the conceptual differences between
methods and events

(C) SAPAG

BC404

7-15



Exercises

< Unit: Events

Topic: Events

At the end of this exercise you will be able to:
e Define and trigger events

e Handle events

e Reqgister for events

An airline creates new flights and publicizes them in the media. Travel agencies
can then include these flights in their offerings.

)2 )

11

Go to the include program ZBC404 ## LCL_CARRIER and define an event flight_created,
that you also trigger in the class.

1-1-1 The eventis a public event that has two transfer parameters: ex_connid (type: sflight-
connid) and ex_fldate (type: sflight-fldate).

1-1-2 The event should be triggered in the existing create_a_new_flight method, after the
APPEND statement. Consider carefully how to pass the parameters.

Go to the include program ZBC404_## LCL_TRAVEL_AGENCY, write a handler method for

the flight_created event and register the travel agency to the flight_created event for all airlines
that are business partners of the travel agency. The flights created by these airlines should be
saved in the travel agency in a flight list .

1-2-1 Inclass Icl_travel_agency, create an internal table list_of flights as a private attribute.
The table should have the structure bc404_flight_list_type, which is already defined in
the Dictionary. Examine the structure definition in the Dictionary.

Define a public instance method add_a new_flight as a handler method for the flight_created
event in class Icl_carrier. Enter the flight number (ex_connid), the flight date (ex_fldate)
and a reference to the event trigger (sender) as IMPORTING parameters.

When implementing the add_a_new_flight method, enter the airline, the flight number and the
flight date in the list of flights (list_of_flights). To do this, create a table work area in the
method. This table work area must have the same structure as the internal table
list_of flights. Use the APPEND statement to fill the table.

Define the public method subscribe_for_flight_creation for registering the travel agency to the
flight_created event. This method does not have any transfer parameters.

Since the travel agency only includes flights provided by airlines that are its business partners
in its offering, it can only register itself to the flight_created event of these airlines. To
do this, you must use a LOOP structure to determine all the business partners that are
airlines in the internal table list_of business_partners (since business partners also
include hotels).

Warning: If, during registration (SET-HANDLER ...), you enter a reference to an object
that has not implemented the corresponding event, you will get a runtime error.

(C) SAPAG

BC404 7-16



Tip: In the method, define a reference to class Icl_carrier and carry out a widening cast
check using the interface reference that you need to read from the internal table

list_of business_partners. Use the CATCH SYSTEM-EXCEPTIONS statement to
catch the move_cast_error runtime error. If no runtime error occurs (sy-subrc = 0), then
you can register the method add_a_new_flight.

Define and implement the public instance method display_list_of flights to display the flight list
list_of flights. This method does not have any transfer parameters.

1-3 Go to program ZBC404_## MAIN.
Comment out the line with the method call display_business_partners.

Register the travel agency to new flights provided by airlines that are its business partners. At
the end of the program, call method subscribe_for_flight_creation.

An airline creates a new flight (method create_a_new_flight). Fill the transfer parameters with
your own data.

Display the list of flights of your travel agency (method display_list_of_flights).

(C) SAPAG BC404 7-17



Solutions

Unit: Events

/ Topic: Events

REPORT sapbc404gens_interfaces .

INCLUDE sapbc404gens_lIcl_airplane.

INCLUDE sapbc404gens_Icl_passenger_air.

INCLUDE sapbc404gens_Icl_cargo_air.

INCLUDE sapbc404gens_lif_busi_partners.

INCLUDE sapbc404gens_Icl_hotel.

* Definition and raising the event FLIGHT_CREATED
INCLUDE sapbc404eves_|cl_carrier.

* Subscribing and handling the event FLIGHT_CREATED
INCLUDE sapbc404eves_Icl_travel_agency.

DATA: passenger_airplane TYPE REF TO Icl_passenger_airplane,
cargo_airplane TYPE REF TO Icl_cargo_airplane,
carrier TYPE REF TO Icl_carrier,
hotell TYPE REF TO Icl_hotel, hotel2 TYPE REF TO Icl_hotel,
agency TYPE REF TO Icl_travel_agency.

START-OF-SELECTION.

INCLUDE sapbc404eves_agency_partners.

CREATE OBJECT agency EXPORTING im_name = 'Happy Holiday'.

CALL METHOD agency->add_business_partner
EXPORTING im_business_partner = carrier.

CALL METHOD agency->add_business_partner
EXPORTING im_business_partner = hotell.

CALL METHOD agency->add_business_partner
EXPORTING im_business_partner = hotel2.

* call method agency->display_business_partners.

* Display empty flight list
(C) SAPAG BC404 7-18




CALL METHOD agency->display_list_of flights.

* Subscribe for event FLIGHT_CREATED of all business partners
CALL METHOD agency->subscribe_for_flight_creation.

* One business partner is creating a new flight
CALL METHOD carrier->create_a_new_flight
EXPORTING im_connid ='815'
im_fldate ='19991231'
im_airplane = passenger_airplane.

* Display flight list
CALL METHOD agency->display_list_of flights.

Include program SAPBC404GENS_LCL_AIRPLANE

*

* CLASS Icl_airplane DEFINITION *

* *

CLASS Icl_airplane DEFINITION.

PUBLIC SECTION.

TYPES: name_type(25) TYPE c.
CONSTANTS: pos_1 TYPE i VALUE 30.

METHODS: constructor IMPORTING
im_name  TYPE name_type
im_planetype TYPE saplane-planetype,
set_attributes IMPORTING
im_name  TYPE name_type
im_planetype TYPE saplane-planetype,
display_attributes.

CLASS-METHODS: display_n_o_airplanes.

(C) SAPAG BC404

7-19



* NEW: protected section
PROTECTED SECTION.

DATA: name  TYPE name_type,
planetype TYPE saplane-planetype.

PRIVATE SECTION.

CLASS-DATA: n_o_airplanes TYPE i.

ENDCLASS.

* CLASS Icl_airplane IMPLEMENTATION

*

CLASS Icl_airplane IMPLEMENTATION.

METHOD constructor.
name =im_name.
planetype =im_planetype.
n_o_airplanes = n_o_airplanes + 1.
ENDMETHOD.

METHOD set_attributes.
name  =im_name.
planetype = im_planetype.

ENDMETHOD.

METHOD display_attributes.

WRITE: / 'Name of the airplane: '(001), AT pos_1 name,
/ 'Plane type: '(002), AT pos_1 planetype.

ENDMETHOD.

METHOD display_n_o_airplanes.

WRITE: /, / 'Total number of airplanes: '(cal),
AT pos_1n_o_airplanes LEFT-JUSTIFIED, /.

ENDMETHOD.

ENDCLASS.

(C) SAPAG

7-20



Include program SAPBC404GENS_LCL_PASSENGER_AIR

* CLASS Icl_passenger_airplane DEFINITION *

* *
CLASS Icl_passenger_airplane DEFINITION INHERITING FROM
Icl_airplane.

PUBLIC SECTION.

METHODS: constructor IMPORTING
im_name  TYPE name_type
im_planetype TYPE saplane-planetype
im_n_o_seats TYPE sflight-seatsmax,
display_attributes REDEFINITION.

PRIVATE SECTION.

DATA: n_o_seats TYPE sflight-seatsmax.

ENDCLASS.

* *

* CLASS Icl_passenger_airplane IMPLEMENTATION
* *

CLASS Icl_passenger_airplane IMPLEMENTATION.

METHOD constructor.
CALL METHOD super->constructor EXPORTING
im_name  =im_name
im_planetype = im_planetype.
n_o_seats = im_n_o_seats.
ENDMETHOD.

METHOD display_attributes.

CALL METHOD super->display_attributes.

WRITE: / 'Number of seats:  '(003), 25 n_o_seats, /.
ENDMETHOD.

ENDCLASS.

Include program SAPBC404GENS_LCL_CARGO_AIR
*, *

* CLASS Icl_cargo_airplane DEFINITION *

(C) SAPAG BC404

7-21



* *

CLASS Icl_cargo_airplane DEFINITION INHERITING FROM Icl_airplane.

PUBLIC SECTION.

METHODS: constructor IMPORTING
im_name  TYPE name_type
im_planetype TYPE saplane-planetype
im_cargo_max TYPE p,
display_attributes REDEFINITION.

PRIVATE SECTION.

DATA: cargo_max TYPE scplane-cargomax.

ENDCLASS.

* *

* CLASS Icl_cargo_airplane IMPLEMENTATION *
* *

CLASS Icl_cargo_airplane IMPLEMENTATION.

METHOD constructor.
CALL METHOD super->constructor EXPORTING
im_name  =im_name
im_planetype = im_planetype.
cargo_max = im_cargo_max.
ENDMETHOD.

METHOD display_attributes.
CALL METHOD super->display_attributes.
WRITE: / 'Maximal cargo:  '(004),
at pos_1 cargo_max left-justified, /.
ENDMETHOD.

ENDCLASS.

Include program SAPBC404GENS_LIF_BUSI_PARTNERS

INTERFACE lif_business_partners.

METHODS: display_company_data.

(C) SAPAG BC404 7-22



ENDINTERFACE.

Include program SAPBC404GENS_LCL_HOTEL
*.

*

* CLASS Icl_hotel DEFINITION *

* *

CLASS Icl_hotel DEFINITION.

PUBLIC SECTION.

* Interface declaration
INTERFACES: lif_business_partners.

METHODS: constructor IMPORTING im_name  TYPE string
im_city  TYPE string
im_n_o_rooms TYPE i.

PRIVATE SECTION.
DATA: name  TYPE string,

city  TYPE string,
n_o_rooms TYPE i.

ENDCLASS.

* *

* CLASS Icl_hotel IMPLEMENTATION *
* *

CLASS Icl_hotel IMPLEMENTATION.

METHOD constructor.

name = im_name.

city = im_city.

Nn_0_rooms =im_n_o_rooms.
ENDMETHOD.

* Interface Implementation
METHOD lif_business_partners~display_company_data.
WRITE: / 'Hotel '(h01), name COLOR COL_NEGATIVE, 'in'(h02), city,
[ 'The number of available rooms is'(h03),
n_o_rooms left-justified, /.
ENDMETHOD.

(C) SAPAG BC404 7-23



ENDCLASS.

Include program SAPBC404EVES_LCL_CARRIER

* CLASS Icl_carrier DEFINITION *

* *

CLASS Icl_carrier DEFINITION.

PUBLIC SECTION.

TYPES: BEGIN OF flight_list_type,
connid TYPE sflight-connid,
fldate TYPE sflight-fldate,
airplane TYPE REF TO Icl_airplane,
seatsocc TYPE sflight-seatsocc,
cargo(5) TYPE p DECIMALS 3,
END OF flight_list_type.

INTERFACES.: lif_business_partners.

METHODS: constructor IMPORTING im_name TYPE string,
get_ name RETURNING value(ex_name) TYPE string,
add_a_new_airplane IMPORTING

im_airplane TYPE REF TO Icl_airplane,
create_a_new_flight IMPORTING

im_connid TYPE sflight-connid

im_fldate TYPE sflight-fldate

im_airplane TYPE REF TO Icl_airplane

im_seatsocc TYPE sflight-seatsocc

OPTIONAL

im_cargo TYPE p OPTIONAL,

display_airplanes.

* Definition of event FLIGHT_CREATED
EVENTS: flight_created EXPORTING
value(ex_connid) TYPE sflight-connid
value(ex_fldate) TYPE sflight-fldate.

PRIVATE SECTION.
DATA: name TYPE string,

list_of airplanes TYPE TABLE OF REF TO Icl_airplane,
list_of flights TYPE TABLE OF flight_list_type.

(C) SAPAG BC404

7-24



ENDCLASS.

* *
* CLASS Icl_carrier IMPLEMENTATION
* *

CLASS Icl_carrier IMPLEMENTATION.

METHOD constructor.
name = im_name.
ENDMETHOD.

METHOD get_name.
ex_name = name.
ENDMETHOD.

METHOD lif_business_partners~display_company_data.
DATA: n_o_airplanes TYPE i.
DESCRIBE TABLE list_of airplanes LINES n_o_airplanes.
WRITE: / name COLOR COL_POSITIVE, / 'Number of Airplanes:'(c01),
n_o_airplanes LEFT-JUSTIFIED, /.
ENDMETHOD.

METHOD add_a_new_airplane.
APPEND im_airplane TO list_of airplanes.
ENDMETHOD.

METHOD create_a_new_flight.
DATA: wa_list_of flights TYPE flight_list_type.

wa_list_of flights-connid =im_connid.
wa_list_of flights-fldate =im_fldate.
wa_list_of flights-airplane = im_airplane.
IF im_seatsocc IS INITIAL.

wa_list_of flights-cargo = im_cargo.
ELSE.

wa_list_of flights-seatsocc = im_seatsocc.
ENDIF.
APPEND wa_list_of flights TO list_of flights.

* Raise event FLIGHT _CREATED
RAISE EVENT flight_created EXPORTING ex_connid = im_connid
ex_fldate = im_fldate.
ENDMETHOD.

METHOD display_airplanes.
DATA airplane TYPE REF TO Icl_airplane.

(C) SAPAG BC404 7-25



LOOP AT list_of _airplanes INTO airplane.
CALL METHOD airplane->display_attributes.
ENDLOOP.
ENDMETHOD.

ENDCLASS.

Include program SAPBC404EVES LCL_TRAVEL_AGENCY
* *

* CLASS Icl_travel_agency DEFINITION *

* *

CLASS Icl_travel_agency DEFINITION.

PUBLIC SECTION.

METHODS: constructor IMPORTING im_name TYPE string,
add_business_partner IMPORTING im_business_partner
TYPE REF TO lif_business_partners,
display_business_partners,

* Subscribe for event FLIGHT _CREATED
subscribe_for_flight_creation,
* Handler method for event FLIGHT _CREATED

add_a_new_flight FOR EVENT flight_created
OF Icl_carrier
IMPORTING ex_connid ex_fldate sender,
* Display flight list
display_list_of flights.

PRIVATE SECTION.

DATA: name TYPE string,
* Internal table for flight list
list_of flights TYPE TABLE OF bc404_flight_list_type,
list_of business_partners TYPE TABLE OF REF TO
lif_business_partners.

ENDCLASS.

* *
* CLASS Icl_travel_agency IMPLEMENTATION
* *

CLASS Icl_travel_agency IMPLEMENTATION.

(C) SAPAG BC404

7-26



METHOD constructor.
name = im_name.
ENDMETHOD.

* Implementation of subscribe method
METHOD subscribe_for_flight_creation.
DATA: partner TYPE REF TO lif_business_partners,
carrier type ref to Icl_carrier.
LOOP AT list_of business_partners INTO partner.
*  Attention: widening cast ...
CATCH SYSTEM-EXCEPTIONS move_cast_error = 4.
carrier ?= partner.
ENDCATCH.
IF sy-subrc = 0.
* ... in SET HANDLER command
SET HANDLER add_a_new_flight FOR partner.
ENDIF.
ENDLOOP.
ENDMETHOD.

(C) SAPAG BC404 7-27



* Implementation of handler method
METHOD add_a_new_flight.
DATA: flight TYPE bc404_flight_list_type.
flight-carrier = sender->get_name( ).
flight-connid = ex_connid.
flight-fldate = ex_fldate.
APPEND flight TO list_of_flights.
ENDMETHOD.

* Implementation of display flight list

METHOD display_list_of _flights.
DATA: flight TYPE bc404_flight_list_type.
WRITE: / 'flight list of the travel agency'(evl), name, /.
LOOP AT list_of_flights INTO flight.

WRITE: / flight-carrier, flight-connid, 30 flight-fldate.

ENDLOOP.
write: /, / ‘created at'(ev2), sy-datum.
skip 5.

ENDMETHOD.

METHOD add_business_partner.
APPEND im_business_partner TO list_of business_partners.
ENDMETHOD.

METHOD display_business_partners.
DATA business_partner TYPE REF TO lif_business_partners.
WRITE: / 'Travel Agency:'(tal), name COLOR COL_HEADING,

/ 'Business partners:'(ta2), /.
LOOP AT list_of_business_partners INTO business_partner.
CALL METHOD business_partner->display_company_data.

ENDLOOP.

ENDMETHOD.

ENDCLASS.

(C) SAPAG BC404 7-28



Include program SAPBC404EVES_AGENCY_PARTNERS
CREATE OBJECT passenger_airplane EXPORTING

im_name  ='LH Berlin'
im_planetype = '747-400'
im_n_o_seats = 580.

CREATE OBJECT cargo_airplane EXPORTING im_name = 'US Hercules'

im_planetype = 'Galaxy"'
im_cargo_max = 30000.

CREATE OBJECT carrier EXPORTING im_name = 'Lufthansa’'.

CALL METHOD carrier->add_a_new_airplane EXPORTING
im_airplane = passenger_airplane.

CREATE OBJECT passenger_airplane EXPORTING
im_name  ='LH Minchen'
im_planetype = 'A310-300'
im_n_o_seats = 280.

CALL METHOD carrier->add_a_new_airplane EXPORTING
im_airplane = passenger_airplane.

CALL METHOD carrier->add_a_new_airplane EXPORTING
im_airplane = cargo_airplane.

create object hotell exporting im_name  ='Budget Inn'
im_city = 'Washington'
im_n_o_rooms =112,

create object hotel2 exporting im_name  ='Ambassador’
im_city = 'Frankfurt'
im_n_o_rooms = 85.

(C) SAPAG BC404

7-29



Global Classes/Interfaces

Contents:

® |ocal vs. global classes/interfaces

® Class Builder

© SAP AG 1999

(C) SAPAG

BC404

81



Global Classes/Interfaces: Unit Objectives !r
WA

At the conclusion of this unit, you will be able to:

® Describe the difference between local and global
classes/interfaces

® Create global classes/interfaces using the Class
Builder

© SAP AG 1999

(C) SAPAG BC404

8-2



Global Classes/Interfaces: Course Overview Diagram !r
SAF

Summary and Outlook

Global Classes/Interfaces

Generalization/

. Events
Specialization

Principles

Analysis and Design

Introduction

© SAP AG 1999

(C) SAPAG BC404 8-3



Local Classes/Interfaces

® |Localin program
m Local classes are only valid in the program they were defined
in
® Not stored in the Repository

m No global access

REPORT prog_1. REPORT prog_2.

DATA: airpl ane
TYPE REF TO | cl _airpl ane.

CLASS | cl _airplane DEFI NI TI ON.
ENDCLASS!
CLASS | cl _ai

ENDCLASS.

© SAP AG 1999

Local classes/interfaces are only known within the program in which they are defined and implemented.
Local classes/interfaces are not stored in the Repository (no TADIR entry). There is no “global” access to
these classes/interfaces (for example, from other programs).

If a local class is implemented in an include which is then embedded in two different programs, then
references to the “same” class still cannot be exchanged at runtime. Two classes that do not conform to
type are created at runtime.

(C) SAPAG BC404 8-4



Global Classes/Interfaces Hr
A

® Stored in Repository
m Access from all programs using TYPE REF TO

® Class and interface names governed by the SAP
namespace concept

m Customer namespace: Y* or Z*

Where-used list available

Own maintenance tool FI HR WM
m Transaction SE24 - Class Builder ' ' 4
SD
] MM 0
0
] . 0

© SAP AG 1999

Unlike local in program classes/interfaces, global classes/interfaces can be created and implemented using
the ABAP Workbench Tool Class Builder or transaction SE24. These classes/interfaces are then available
to all developers.

Global class and interface names share the same namespace.
Global classes/interfaces have a TADIR entry: R3TR CLASS <name>
The smallest transport unit is method LIMU METH.

(C) SAPAG BC404 8-5



Class Builder

® Tool for creating, testing and administrating global
classes and interfaces

m Menu-driven
® Generates the framework coding
m e.g. CLASS <name> DEFINITION

® Administers the include programs in which the coding is
stored

© SAP AG 1999

The Class Builder is a tool in the ABAP Workbench that is used to create, define and test global ABAP
classes and interfaces.

(C) SAPAG BC404 8-6



Class Builder: Structure Hr
A
Class Builder .--—-» Basicdata L, Class
| maintenance Browser
| : —
""" > Class Editor oo ens !
. —> !
o R B |
Initial screen ; | v
P
o ABAP Editor v , Class
; : library
L
Lo
NN
._____, Test environment Navigation: -----
Data flow: —
© SAP AG 1999

In the initial screen, select the object type you want to work with - class or interface. Then choose one of
the display, change, create or test functions.

In the initial screen you have the choice of viewing the contents of the R/3 class library using the Class
Browser or going straight to basic data maintenance of the object types and the Class Editor, where you
can define the object types and their components. The object type definition can be immediately followed
by method implementation in the ABAP Editor. You can also access the test environment from the initial
screen or from the Class Editor.

(C) SAPAG BC404 87



Class Builder: Global Classes

Class Editor
Class |ZCL_AIRPLANE
Properties | Interfaces Attributes| Methods | Events | Internal types|
Em|ok BIE] $#Bla] S = C r
Attributes Level | Visibility  Read-Onl| Typing Referencetype | Description |initial valuil
NAME Instance AttribuPrivate I Type STRING @5 Name of airplane =l
WEIGHT Instance AttribuPrivate T Type SAPLANE-WEIG & |Weight of airplane
1| Type | Lae )
[ Type | T =
1] [¥]

© SAP AG 1999

In the Class Builder you have the same options for creating a global class as for creating a local class.

(C) SAPAG BC404 8-8



Class Builder: Global Interfaces

»y

Class Editor

Interface [zIF_BOOK
Properties | Interfaces | Attributes  Methods ]Events |

[k Parameters| Bl Exceptions | B @ | B|E| ®]|2]T] &)

Methods Level | Category | Description |Modeledt

BOOK Instance Method || Book various booking objects [

DISPLAY Instance Method | Display bookings [
=

Doubje click

\ 4

ABAP Editor

© SAP AG 1999

In the Class Builder you have the same options for creating a global interface as for creating a local

interface.

(C) SAPAG

BC404

8-9




Class Builder: Testing Classes (1) H’
A

2 [ Jinstance

Q‘T’IiONSTRUCTOR
=

Import Parameter

E4M_LEFT_WING #) 7<ZCL_ WING>

[E<M_LENGTH 120

[ksM_NAME

[E4M_RIGHT_WING € 8<zCL_WING> 1

[k<IM_SeATS 280
— & iM_WEIGHT 35000

© SAP AG 1999

(C) SAPAG BC404 8-10



Class Builder: Testing Classes (2)

® Test methods

® Trigger events

@ ZCL_AIRPLANE

Interfaces
Attributes
—[= Methods

@R DISPLAY
im TAKE_OFF
&) TOUCH_DOWN

—I[=  Events

&)l TOUCHED_DOWN

© SAP AG 1999

Test environment

i

(C) SAPAG BC404

8-11



Global Classes/Interfaces: Unit Summary !r
SAF

lz You are now able to:

® Describe the difference between local and global
classes/interfaces

® Create global classes/interfaces using the Class
Builder

© SAP AG 1999

(C) SAPAG BC404 8-12



Global Classes/Interfaces Exercises

X

)2 )

11

1-2

1-3

Unit: Global Classes/Interfaces

Topic: Global Classes

At the end of this exercise you will be able to:
e Create a global class in the Class Builder
e Test a global class in the Class Builder

e Use global classes in programs

o

An airline needs to manage its airplanes.

Create global class zcl_##_airplane in the Class Builder. Define the global class similarly to the

local class Icl_airplane (include program ZBC404_## LCL_AIRPLANE).

1-1-1

1-1-2

Test your global class zcl_## airplane in the Class Builder.

1-2-1

1-2-2 Call methods display_attributes and display_n_o_airplanes.

Attributes:

- name (protected instance attribute, type string)
— planetyp (protected instance attribute, type saplane-planetyp)

—n_o_airplanes (private static attribute, type i)
Methods:

- constructor (parameters: im_name, im_planetype)

— display_attributes (no parameters)
—display_n_o_airplanes (no parameters)

You can copy the source code for the methods from your definition of the local class

Icl_airplane (program ZBC404_## LCL_AIRPLANE).

Create an instance.

Go to program ZBC404_## MAINTAIN_AIRPLANES.

Comment out the INCLUDE statement with ZBC404_## LCL_AIRPLANE.

Replace Icl_airplane throughout the program with zcl_## airplane.

Start the program.

(C) SAPAG

BC404

8-13



C) SAPAG
() BC404 8-14



Global Classes/Interfaces Solutions

Unit: Global Classes/Interfaces

/ Topic: Global Classes

REPORT sapbc404glos_cl_airplane

* No use of the local implementation
* include sapbc404bass_Icl_airplane 2.

* Use of global class BC404_CL_AIRPLANE

DATA: airplane TYPE REF TO bc404_cl_airplane.

START-OF-SELECTION.

* Use of global class BC404_CL_AIRPLANE
CALL METHOD bc404_cl_airplane=>display_n_o_airplanes.

CREATE OBJECT airplane EXPORTING im_name  ='LH Berlin’
im_planetype = '747-400'.

CALL METHOD airplane->display_attributes.

* Use of global class BC404_CL_AIRPLANE
CALL METHOD bc404_cl_airplane=>display_n_o_airplanes.

(C) SAPAG BC404

8-15



Summary and Outlook

Contents:

® Overall aims of software development

® Strengths and weaknesses of object-oriented
programming

® Outlook

© SAP AG 1999

(C) SAPAG

BC404

o-1




Summary and Outlook: Unit Objectives !r
S

At the conclusion of this unit, you will be able to:

® Name the overall aims of software development

® Describe the strengths and weaknesses of the
object-oriented approach

© SAP AG 1999

(C) SAPAG BC404 9-2



Summary and Outlook: Course Overview Diagram

Summary and Outlook

Global Classes/Interfaces

Generalization/

L Events
Specialization

Principles

Analysis and Design

Introduction

© SAP AG 1999

(C) SAPAG BC404 9-3



Overall Aims of Software Development !r
S

Correctness Robustness

Quality
of a
software product

Extensibility Re-usability

© SAP AG 1999

In the early stages of programming history, in the 1970s and 1980s, the principle aim was to write
programs that were correct and robust. A program is considered correct if it does exactly what is said in the
program specification. A program is considered robust if it can react appropriately to (user) errors and does
not just crash immediately.

As programs grew in scope and complexity, more attention began to be paid to the possibilities of
extensibility and re-usability, in order to avoid constantly having to re-invent the wheel. Extensibility is the
facility to enhance an existing program by adding new functions, while still using it in the same context. Re-
usability, on the other hand, is when a program or part of a program is taken out of its own context and
recycled in another context, that is, as part of another program that has different tasks.

(C) SAPAG BC404 94



Characteristics of Object-Oriented Programming (1) !’
AT

L

® C(Classes

m Summarization of data and functionality
into an “independent” software unit

m Simple re-use of coding

® Encapsulation

m Communication only using interfaces (public
components)

m No dependency on actual implementation

© SAP AG 1999

Icl_airplane

- hame: string

-count: i

+ set_name(im_name: string)

+get count(): i

- set_count(im_count: i)

(C) SAPAG BC404

9-5



Characteristics of Object-Oriented Programming (2) F’
A

® Polymorphism

m Programs can be extended with
minimum effort

&

® Inheritance

m Re-use of implementations

‘ Icl_cargo_airplane ‘ ‘ Icl_passenger_airplane

® Think in terms of responsibilities
m Question: which class is responsible?

m Avoid redundancies

© SAP AG 1999

(C) SAPAG BC404 9-6



Strengths of the Object-Oriented Approach (1) !r

® The following aims are better supported:

m Extensibility through
¢ Polymorphism Extensibility
¢ Inheritance

m Re-usability through
* Classes Re-usability

¢ Encapsulation

¢ |nheritance

© SAP AG 1999

(C) SAPAG BC404 97



Strengths of the Object-Oriented Approach (2)

® Uniform language throughout the
development process

m All participants

m In all phases

® Reality is reflected in appropriate software concepts
m Objects -> objects
m Their state -> attributes

m Their functions -> methods

© SAP AG 1999

(C) SAPAG BC404 9-8



Weaknesses of the Object-Oriented Approach !r

Longer development phase before first results ready

Paradigm break between object-oriented programs and
relational databases

® Object-oriented programs normally lose out to procedural
programs in terms of performance

© SAP AG 1999

(C) SAPAG BC404 9-9



OO application OO application

Class library BOR

© SAP AG 1999

The Business Object Repository, the object-oriented view of the R/3 System, will be migrated to the Class
Library by Rel5.0. Then classes, such as customer or invoice, will be available globally in the system for
use by any application.

(C) SAPAG BC404 9-10




Appendix H’
WA

Contents:

® Additional course slides on
m Principles
m Inheritance
m Interfaces
m Events
® The complete exercise scenario in UML

® Summary of ABAP Objects syntax

© SAP AG 1999

(C) SAPAG BC404 10-1



Appendix: Overview (1)

} Princioles

INWENENCE

NEraces

EVERLS

EXEICISENSCENZII0

SUITITEIRACISYITEX

© SAP AG 1999

(C) SAPAG BC404

10-2



Instantiating Objects

® CREATE PUBLIC
m Default

m Object instantiation is not
restricted

® CREATE PROTECTED

m Objects can only be
instantiated in the class itself
and any of its subclasses

® CREATE PRIVATE

m Objects can only be
instantiated in the class itself

m [nstantiation using own
(static) methods

© SAP AG 1999

CREATE PUBLIC, the optional default supplement, allows unrestricted instantiation of objects in a class,
that is, instances in a class can be created in any part of this program/class.

CREATE PROTECTED only allows objects in a class to be instantiated in that class itself and in any of its
subclasses.

CREATE PRIVATE only allows objects in a class to be instantiated in that class itself. This is then done
using static methods (known as Factory Methods).

(C) SAPAG BC404 10-3



Instantiating Objects: Example

CLASS | cl _manager DEFI NI TI ON CREATE PRI VATE.
PUBLI C SECTI ON.
CLASS- METHODS get i nst ance RETURNI NG
VALUE( re_instance ) TYPE REF TO | cl _manager.
METHODS: CONSTRUCTOR | MPORTI NG . . .
PRI VATE SECTI ON.
DATA . ..
CLASS- DATA t he_manager TYPE REF TO | cl _nmanager.
ENDCLASS.

CLASS | cl _manager | MPLEMENTATI ON.
METHOD get _i nst ance.
| F the_manager IS I NI TIAL.
CREATE OBJECT t he_manager EXPORTI NG ...

ENDI F.
re_instance = the_manager. DATA: manager TYPE REF TO
ENDMETHOD. | cl _manager .
METHOD CONSTRUCTOR. :
ENDMETHOD. manager =
ENDCLASS. | cl _manager =>get _i nst ance() .

© SAP AG 1999

Example using the addition CREATE PRIVATE (see above):

Class Icl_manager wants to prevent several objects of this class existing at runtime. Only one instance is to
be instantiated.

Therefore the class defines the instantiation of objects as private and provides in its place the static method
get_instance, which a potential client can use to get a reference to the sole object.

(C) SAPAG BC404 10-4



CREATE OBJECT with Class Name Hr
S

® You can enter the class name with CREATE OBJECT both
statically and dynamically

m Subclasses possible with reference to class

m Classes carrying out the implementation possible with
references to interfaces

CREATE OBJECT <reference> TYPE <cl assnane> [ EXPORTI NG . . ]
[ EXCEPTIONS ...].
CREATE OBJECT <reference> TYPE (<cl assnane_string>).

DATA: doc TYPE REF TO i f _docunent, «interface»
cl ass_name(20) TYPE c¢ VALUE " CL_TEXT_DCC . if_document

A

CREATE OBJECT doc TYPE cl _htm doc.
CREATE OBJECT doc TYPE (cl ass_nane) . lcl_text_doc

© SAP AG 1999

The CREATE OBJECT statement is extended by the introduction of inheritance and interfaces: you can
enter the class of the instance to be created either statically, using the class name, or dynamically, using a
variable containing the class name. Once the statement has been executed (successfully), a (runtime)
instance of the class entered will have been created and the reference variable entered points to this
instance.

There are two possible situations:
For a reference variable referring to a class, enter the name of a subclass (or of the class itself).

For a reference variable referring to an interface, enter the name of the class carrying out the
implementation.

A check can be carried out in the static form “... TYPE <classname>...” to see if one of the two situations
above has occurred. If it has not, a syntax error will occur.

In the dynamic form “...TYPE (<classname_string>).” the classname_string field provides the class name. A
check can be carried out at runtime to ensure that the reference variable type is compatible with the class
entered. If this is not the case, a runtime error occurs.

In the dynamic form, you can only enter the names of classes whose (instance) constructor either has no
parameters or only optional parameters.

(C) SAPAG BC404 10-5



Dynamic Method Calls

Dynamic method selection

Dynamic interface
m Parameter table: type ABAP_PARMBI ND_TAB
m Exception table: type ABAP_EXCPBI ND_TAB

Parameters entered as references

Dynamic information on methods using RTTI

© SAP AG 1999

(C) SAPAG BC404



Dynamic Method Calls (Example) !r
A

CLASS CL_ABAP_OBJECTDESCR DEFI NI TI ON LQOAD.
* Definition and inplenentation of Icl _airplane omtted

DATA: plane TYPE REF TO I cl _airpl ane,
nmet hod_name TYPE string VALUE ' SET_NAME' ,
pl ane_nane TYPE string VALUE 'LH London'.
DATA: ptab TYPE abap_par nbi nd_t ab,
ptab_line LIKE LI NE OF ptab.

ptab_line-nane = '|I M NAME' .

ptab_li ne-kind CL_ABAP_OBJECTDESCR=>EXPORTI NG. "Konst ant e
GET REFERENCE OF pl ane_nane | NTO ptab_line-val ue.

| NSERT ptab_line | NTO TABLE pt ab.

*Instantiation of plane onitted
CALL METHOD pl ane->( net hod_name) PARAVMETER- TABLE pt ab.
*CALL METHOD pl ane->(net hod_nane) exporting i mnanme = pl ane_nane.

© SAP AG 1999

(C) SAPAG BC404

10-7



Runtime Type Identification (RTTI) !r
YA

® Comprehensive dynamic type inforamtion for all types
m Classes with type description: CL_ABAP_*
m CL_ABAP_TYPEDESCR as point of entry

DATA: type descr TYPE REF TO cl abap_typedescr
obj ect _descr TYPE REF TO cl _abap_obj ect descr.

* Describe type of instance:
t ype_descr = cl _abap typedescr=>descri be by data( <data field>).

obj ect _descr ?= cl _abap_typedescr=>descri be by object ref( <reference> ).

* Descri be type:

type_descr = cl _abap_typedescr=>descri be_by name( <type_name> ).

© SAP AG 1999

(C) SAPAG BC404 10-8



RTTI (Example)

WRI TE: / ' Typenane:'
WRITE: / 'Kind D
WRITE: / 'Length :°
WRI TE: / ' Decinmals:'

»y

TYPES: ny_type TYPE i.
DATA: ny_data TYPE ny_type,
descr _ref TYPE ref to cl_abap typedescr.

descr_ref = cl_abap_typedescr=>descri be_by data( nmy_data ).

descr _ref->absol ut e _nane.
descr _ref->type_kind.
descr_ref->l engt h.
descr_ref->deci mal s.

© SAP AG 1999

Output:

Type name: \Program=!TEST RTTNTYPE=MY_TYPE
Kind: |

Length: 4

Decimals: O

(C) SAPAG

BC404

10-9



Access to Components in Internal Tables !r
WA

® Possible for LOOP, READ TABLE, SORT, DELETE, MODIFY

TYPES: BEG N OF | inet ype, Icl_airplane
pl ane TYPE REF TO cl _air pl ane,
END OF |i netype. - hame
DATA: plane_ |ist TYPE TABLE OF |i netype. + weight

DATA: wa TYPE |i netype.

LOOP AT plane_list I NTO wa WHERE pl ane->wei ght = 300.

ENDL OOP.

DATA: plane |ist TYPE TABLE OF REF TO I cl _airpl ane.
DATA: wa TYPE |i netype.

LOOP AT plane_list | NTO wa WHERE TABLE LI NE->wei ght = 300.

ENDL OOP.

© SAP AG 1999

If the line type of an internal table contains references variables in the component comp, their attributes can
accessed in the following statements:

LOOP AT itab ... WHERE comp->attr ...

READ TABLE itab ... WITH [TABLE] KEY comp->attr ...
SORT itab BY comp->attr ...

DELETE itab WHERE comp->attr ...

MODIFY itab ... TRANSPORTING .. WHERE comp->attr ...

If an internal table has unstructured lines of the reference variable type, then the attributes of the object that
the line points to can be addressed using TABLE_LINE->attr.

(C) SAPAG BC404 10-10



Appendix: Overview (2)

Princioles
} hERtance
MIEHECES

EVERLS

EXEICISErSCENZII0

SUITIMERAGIRSY A

© SAP AG 1999

(C) SAPAG BC404 10-11



Polymorphism in Methods

CALL METHOD cargo_ai rpl ane- >get ready.

* do sonet hi ng =S .

CALL METHOD prepare_start. Icl_airplane
_ = + get_ready( )

* general preparations ]

== + prepare_start()

A

S Icl_cargo_airplane

* do sonething
CALL METHOD super->get_ready. -+ |

— + get_ready()

+ prepare_start()

@* speci al preparations

© SAP AG 1999

In ABAP Objects you can call a method from the superclass using the pseudo-reference super: CALL
METHOD super->method_name ...
You can only do this in the implementation of the redefined method method_name in a subclass.

In the above example, the reference variable cargo_airplane calls the method get_ready, in which the
superclass method get_ready is called. This calls the method prepare_start, which is redefined in the
subclass. As the dynamic type of the calling reference variable is the subclass cl_cargo_airplane, the call is
polymorphic, that is, the implementation of the subclass is carried out.

In the above example, the implementation of the superclass method prepare_start cannot be accessed

from the superclass method get_ready.

(C) SAPAG BC404 10-12



Polymorphism in the (Instance) Constructor Hr
A

® \Within the instance constructor, methods from the same
class cannot be called polymorphically!

CREATE OBJECT cargo_ai rpl ane EXPORTING ... . ‘

_ .
name = i mnane. :
Cal | METHOD create_parts. Icl_airplane

\A\

@ Create general parts T

= + constructor()

—+ create_parts ()

(AL METHCD super - > CONSTRUCTCR Icl_cargo_airplane
EXPORTI NG i m_nane = i m_nane. . ruct
(4)CALL METHOD create_parts. 1+ constructor()

+ create_parts ()

=
@ Create special parts

© SAP AG 1999

What happens when a cargo plane instance is created in the above example? Firstly, the constructor of
superclass Icl_airplane is called in the constructor, which in turn calls the method create_parts. As this
method is (implicitly) carried out on an instance in the Icl_cargo_airplane class, the call was, as usual,
polymorphic, that is, the implementation for class Icl_cargo_airplane was carried out. This causes a
problem: an instance method is running for an object whose constructor is not yet finished!

Therefore ABAP Objects works according to a different model: within the (instance) constructor, (instance)
methods from that class cannot be polymorphic! In other words: within the constructor, subclass method
implementations are ignored.

In the above situation, in which the constructor in the Icl_cargo_airplane class calls the superclass
constructor, which in turn calls create_parts, the implementation in the superclass Icl_airplane is used.
Therefore, once the superclass constructor has been executed, the create_parts method is called again in
the subclass constructor, so that the specialized parts of the cargo plane are also created.

The consequences of this are: the create_parts method in the superclass must be able to cope with several
calls for one and the same object. Why? Normally, the subclass method would call the method of the same
name in the immediate superclass. However, during the constructor, the superclss implementation of
create_parts is called twice.

(C) SAPAG BC404 10-13



Incorrect Use of Inheritance: Example (1) SAP

A

Icl_red_car Icl_blue_car

Icl_car

- color

© SAP AG 1999

(C) SAPAG BC404 10-14



Incorrect Use of Inheritance: Example (2) SAP

/ \

Icl_technical_airplane

- tank
+ get_fuel_level

Icl_airplane Icl_tank

- tank
+ get_fuel_level + get_fuel_level

© SAP AG 1999

(C) SAPAG BC404 10-15



Incorrect Use of Inheritance: Example (3
P ®) SAP

A

Icl_client Icl_contractor

Icl_role
roperson (S (o
A

Icl_client Icl_contractor

© SAP AG 1999

(C) SAPAG BC404 10-16



Problematic Use of Inheritance: Example

Icl_rectangle

+ lengthen
+ widen

Icl_square

+ lengthen
+ widen

® Problem: the inheritance relationship does not correspond to
the real world: it does not make sense to have 2
methods to increase the side length of a square.

© SAP AG 1999

(C) SAPAG BC404 10-17



Appendix: Overview(3)

Princioles

hEREnCE

} INLEFECES

EVERLS

EXEICISErSCENZII0

SUITITEIRACISYITEX

© SAP AG 1999

(C) SAPAG BC404 10-18



Alias Names in Interfaces F’
DA

CLASS | cl _text docunment DEFI NI TI ON.
PUBLI C SECTI ON. «interface»
| NTERFACES: |if _docunent. lif_document
METHODS: di spl ay. author : Icl_author
ALI ASES: normal _di spl ay display ()
FOR |i f _docunent ~di spl ay. print ()

ENDCLASS.

CLASS | cl _text_docunent | MPLEMENTATI ON. |
METHCOD |i f _docunent ~di spl ay. lcl text document
ENDMVETHOD.

ENDCLASS. display ()

DATA: text _doc TYPE REF TO | cl text docunent.

CREATE OBJECT text_doc.

*CALL METHOD text _doc->lif_docunment ~di spl ay.
CALL METHOD t ext doc->normal _di spl ay.

© SAP AG 1999

In the class carrying out the implementation, you can assign an alias hame to an interface component
using the ALIASES statement for the class itself and all its users. This is however only an abbreviation of
the long name. Even if an alias is assigned for an interface method, the method only needs to be
implemented once as <interfacename>~<methodname>. Alias names are subject to the usual visibility
rules.

The most important use for alias names is in nested interfaces. In the definition of a nested interface, the
components of the component interfaces cannot be addressed directly, but only using their alias names.
Alias names can be used in classes to enable class-specific components that have been replaced by

components from interfaces during the course of the development cycle to continue to be addressed by
their old names. This means that the users of the class to not need to be adjusted in accordance with the

new names.
Alias names cannot be used in the IMPLEMENTATION part of the class itself.

(C) SAPAG BC404 10-19



Inheritance and Supported Interfaces Hr
A

«interfaces CLASS | cl __pI ai n_t e?(t | MPLEMENTATI ON.
edit 4 lcl_plain_text METHOD i f _doc~print.
print ENDVETHOD.
% % ENDCLASS.
«interface» lcl html doc
NN - _ — CLASS I cl _htm doc DEFI NI TI ON
lif k d <} — —
1_Markup_doc | NHERI TI NG FROM | ¢l _pl ai n_t ext .
Is_well_formed PUBLI C SECTI ON.
| NTERFACES | i f_mar kup_doc.

METHODS | i f _doc~print REDEFI NI TI ON.
ENDCLASS.

CLASS | cl _htm _doc | MPLEMENTATI ON.
METHOD | i f _doc~print.
ENDMETHOD.
METHOD |i f_mar kup_doc~i s_wel | _f or med.
ENDVETHCD.

ENDCLASS.

© SAP AG 1999

A subclass always co-inherits the supported interfaces from its superclass, but does have the options of
implementing additional interfaces and redefining inherited interface methods.

If the subclass supports a compound interface, one of whose component interfaces is already implemented
in the superclass, then the subclass does not need to do anything about the implementation of the
component interface, but simply inherits its implementation (as long as there are no ABSTRACT constructs
involved). In this case it would only need to implement the additional methods of the compound interface,
although it could also redefine methods from the component interface.

The principle that interface components are only present once in any one class or interface is still valid. In
the situation described above, it is therefore irrelevant, whether the subclass is supporting the interface
method because it is implementing a compound interface, or because the superclass is implementing a
component interface. The unique <interfacename>~<componentname> names of interface components
ensure that interface components that are ‘inherited’ in a variety of ways can always be correctly identified
and distinguished from one another.

(C) SAPAG BC404 10-20



Appendix: Overview(4)

Princioles
INWENENCE

MIEHECES

} EVERLS

EXEICISENSCENZII0

SUITIMERAGIRSY A

© SAP AG 1999

(C) SAPAG B —



® Thereis only one static event (per roll area)

m All registrations for a static event always refer to one and the same
static event

m Triggering a static event (even in a subclass) activates all current
handlers for this static event

© SAP AG 1999

Static events can be triggered in instance methods and in static methods.

Classes or their instances that want to receive a message if an event is triggered and react to this event
define event handler methods
Statement; (CLASS-)METHODS <handler_method> FOR EVENT <event> OF <classname>.

This class or its instances register themselves for one or more events at runtime.
Statement: SET HANDLER <handler_method>.

At runtime a class/instance can trigger a static event using the RAISE EVENT statement.

Static events, like attributes, only exist once per roll area. It is not the case that every subclass has its own
copy of the static event.

All registrations for an event therefore refer to a single event, even if the event handler method registered is
defined with reference to the inherited static event of a subclass.

Consequently, triggering a static event, be it in the defining class or in a subclass, activates all current
handlers for this event, and not just those that are defined with reference to a specific class.

(C) SAPAG BC404 10-22




Appendix: Overview(5)

Princioles
hEREncE
MIEHECES

EVERLS
} EXErCISEISCENanio

SUITIMERAGIRSY A

© SAP AG 1999

(C) SAPAG BC404 10-23



Exercise Scenario for UML Notation

Icl_carrier

-name:c

- list_of_airplanes: int. table
- list_of_flights: int. table

- flight_created : event

+ constructor( )

+ get_name()

+add_a new_airplane()
+ display_airplanes( )

+ create_a new_flight()

Icl_travel_agency

- name: string
- list_of_business partners: int. table
- list_of_flights: int. table

+ constructor( )
+ display_attributes( )

© SAP AG 1999

+ constructor( )

+ add_business_partner()

+ display_business_partners( )
+add_new_flight()

+ subscribe_for_flight_creation( )
+ display_flights( )

:
interface - name: string
lif_business_partners - City : string
-Nn_o_rooms:i

Icl_airplane
#name: c
# planetyp : saplane-planetype
- n_o arplanes:i

+ o_onstructor(?)
+ display_attributes( )
+di n o airplan

-cargo: p
+ constructor( )
+ display_attributes( )

(C) SAPAG

BC404

10-24




Appendix: Overview(6)

Prificioles

INWENENCE

NEraces

EVERLS

EXEICISErSECENENO

} SUIMIMERAGIRSYIiEX:

© SAP AG 1999

(C) SAPAG BC404 10-25



ABAP Objects — Summary of Syntax

Availability: There is a brief comment on availability under each syntax summary. If there is no specific
comment, then these components are available as of Rel. 4.5A.

Global class definition (in the CLASS-POOL):

CLASS-POOL.
TYPES: ... " local types
TYPE-POOLS: ... " refer to type-pools (global types)
CLASSc.... " local helper classes
ENDCLASS

CLASS pc DEFINITION PUBLIC. " the public class of the class pool
ENDCLASS.
CLASS pc IMPLEMENTATION.

ENDCLASS.

Availability: all available as of 4.5A

Class definition:

CLASS c DEFINITION
[PUBLIC]
[ABSTRACT]
[FINAL]
[INHERITING FROM superclass]
[CREATE {PUBLIC | PROTECTED | PRIVATE}].

[PUBLIC SECTION.
... <definition of public components>]

[PROTECTED SECTION.
... <definition of protected components>]

[PRIVATE SECTION.
... <definition of private components>]

ENDCLASS.

CLASS c IMPLEMENTATION.

ENDCLASS.

(C) SAPAG

BC404

10-26



*--- forward definition of class for mutual recursive references
CLASS c DEFINITION DEFERRED.

Availability: all available as of 4.5A

(C) SAPAG BC404 10-27



Class components:

CLASS c DEFINITION.
{PUBLIC|PROTECTED|PRIVATE} SECTION.

TYPES ...
CONSTANTS ... .
[CLASS-]IDATA a TYPE t [READ-ONLY].
METHODS m REDEFINITION.
[CLASS-]METHODS m [ABSTRACT | FINAL]
[IMPORTING ...] [EXPORTING ...] [CHANGING ...]
[RETURNING VALUE(result) TYPE t ] [EXCEPTIONS ...] .
[CLASS-]METHODS m [ ABSTRACT | FINAL]
FOR EVENT e OF {c|i}
[IMPORTING fp1 fp2 ... fpn] .
[CLASS-JEVENTS e [EXPORTING ... ].

ALIASES alias FOR i~a.

INTERFACES i [VALUE al =v1 ...].

ENDCLASS.
Availability:
as of 4.5A: all components, except
as of 4.6A: METHODS: REDEFINITION, ABSTRACT, FINAL

Implementation of classes/methods:

CLASS c IMPLEMENTATION.

"--- implementation of methods for class, interfaces, events:
METHOD m1.

ENDMETHOD.

ENDCLASS.

Interface definition :

INTERFACE i.

* --> like public components of classes <--

ENDINTERFACE.

(C) SAPAG

BC404

10-28



*--- forward definition of interface
INTERFACE i DEFERRED.

*

INTERFACE i SUPPORTING REMOTE INVOCATION.

Availability:
as of 4.5A: all components, except
as of 4.6A: compound interfaces

(C) SAPAG BC404 10-29



Using OO:

Create objects:

CREATE OBJECT objvar [ TYPE class | TYPE (classname) ]
[ EXPORTING arg = val ... ].

Availability:
as of 4.5A;: CREATE OBJECT ... [ EXPORTING ... ]
as of 4.6A: TYPE ...

Call methods:

CALL METHOD o0->m [EXPORTING ...] [IMPORTING ...] [CHANGING ...]
[RECEIVING ...] [EXCEPTIONS ...].

CALL METHOD o0->m( ... [[IMPORTING ...] [CHANGING ...][EXCEPTIONS .

)

a = o->m( [IMPORTING ...]). "functional method call
a =o0->m( [arg =] val ). "ditto, with only one parameter
Availability:

as of 4.5A: CALL METHOD ...
as of 4.6A: functional method call

Examples of functional method calls:

IF 0->m(4711) = TRUE. ... ENDIF.

CASE order->status( ). WHEN ... WHEN ... ENDCASE.

LOOP AT itab WHERE name = o->hostname( ). ... ENDLOOP.
len = strlen( adr1->get_name( ) ) + strlen( adr2->get_name ) ).
MOVE o->m( pl = vall p2 = val2) TO dest.

Trigger event:

Activate/de

RAISE EVENT e [EXPORTING arg = val ... ].
RAISE EVENT I~e [EXPORTING arg = val ... ].

activate event handler:

*--- general form
SET HANDLER h1 h2 ... FOR ... <see below> ... [ACTIVATION cval].

*--- standard registration
SET HANDLER hl1 ... FORilo. "- register instance event for instance
SET HANDLER h1 ... . "- handler for class event

*--- group registration
SET HANDLER h1 ... FOR ALL INSTANCES.
"- for "e of C" event: all instances of C

"- for "e OF I" event: all instances of all C implementing |

Availability:
as of 4.5A: all components

Widening Cast:

"--- CAST
i1 ?=o01. "--- does ol implement interface of i1?
MOVE 01 ?TO il. "--- same as above

(C) SAPAG

BC404

10-30



(C) SAPAG BC404 10-31



Special compiler statements:

Component selection:

*--- make class definition known to compiler before accessing class comp.
CLASS ddic_class DEFINITION LOAD.

*--- make interface known to compiler before accessing interface comp.
INTERFACE LOAD.

Symbol Meaning

-> o->a Component access using object or interface reference
i->a

- X-a Component access for structures (and embedded objects)

~ I~a Compound names for interface components

=> c=>a Access to the static components of class ¢

(C) SAPAG

BC404

10-32



This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.



http://www.daneprairie.com

